OpenGL Rasterizer: Update to use the new cache

This commit is contained in:
James Rowe 2017-12-12 10:21:55 -07:00
parent e5adb6a26b
commit 24e187891f
2 changed files with 208 additions and 234 deletions

View file

@ -8,7 +8,6 @@
#include <utility> #include <utility>
#include <glad/glad.h> #include <glad/glad.h>
#include "common/assert.h" #include "common/assert.h"
#include "common/color.h"
#include "common/logging/log.h" #include "common/logging/log.h"
#include "common/math_util.h" #include "common/math_util.h"
#include "common/microprofile.h" #include "common/microprofile.h"
@ -23,6 +22,9 @@
#include "video_core/renderer_opengl/pica_to_gl.h" #include "video_core/renderer_opengl/pica_to_gl.h"
#include "video_core/renderer_opengl/renderer_opengl.h" #include "video_core/renderer_opengl/renderer_opengl.h"
using PixelFormat = SurfaceParams::PixelFormat;
using SurfaceType = SurfaceParams::SurfaceType;
MICROPROFILE_DEFINE(OpenGL_Drawing, "OpenGL", "Drawing", MP_RGB(128, 128, 192)); MICROPROFILE_DEFINE(OpenGL_Drawing, "OpenGL", "Drawing", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_Blits, "OpenGL", "Blits", MP_RGB(100, 100, 255)); MICROPROFILE_DEFINE(OpenGL_Blits, "OpenGL", "Blits", MP_RGB(100, 100, 255));
MICROPROFILE_DEFINE(OpenGL_CacheManagement, "OpenGL", "Cache Mgmt", MP_RGB(100, 255, 100)); MICROPROFILE_DEFINE(OpenGL_CacheManagement, "OpenGL", "Cache Mgmt", MP_RGB(100, 255, 100));
@ -227,21 +229,64 @@ void RasterizerOpenGL::DrawTriangles() {
MICROPROFILE_SCOPE(OpenGL_Drawing); MICROPROFILE_SCOPE(OpenGL_Drawing);
const auto& regs = Pica::g_state.regs; const auto& regs = Pica::g_state.regs;
// Sync and bind the framebuffer surfaces const bool has_stencil =
CachedSurface* color_surface; regs.framebuffer.framebuffer.depth_format == Pica::FramebufferRegs::DepthFormat::D24S8;
CachedSurface* depth_surface;
MathUtil::Rectangle<int> rect;
std::tie(color_surface, depth_surface, rect) =
res_cache.GetFramebufferSurfaces(regs.framebuffer.framebuffer);
const bool write_color_fb =
state.color_mask.red_enabled == GL_TRUE || state.color_mask.green_enabled == GL_TRUE ||
state.color_mask.blue_enabled == GL_TRUE || state.color_mask.alpha_enabled == GL_TRUE;
const bool write_depth_fb =
(state.depth.test_enabled && state.depth.write_mask == GL_TRUE) ||
(has_stencil && state.stencil.test_enabled && state.stencil.write_mask != 0);
const bool using_color_fb =
regs.framebuffer.framebuffer.GetColorBufferPhysicalAddress() != 0 && write_color_fb;
const bool using_depth_fb =
regs.framebuffer.framebuffer.GetDepthBufferPhysicalAddress() != 0 &&
(write_depth_fb || regs.framebuffer.output_merger.depth_test_enable != 0 ||
(has_stencil && state.stencil.test_enabled));
MathUtil::Rectangle<s32> viewport_rect_unscaled{
// These registers hold half-width and half-height, so must be multiplied by 2
regs.rasterizer.viewport_corner.x, // left
regs.rasterizer.viewport_corner.y + // top
static_cast<s32>(Pica::float24::FromRaw(regs.rasterizer.viewport_size_y).ToFloat32() *
2),
regs.rasterizer.viewport_corner.x + // right
static_cast<s32>(Pica::float24::FromRaw(regs.rasterizer.viewport_size_x).ToFloat32() *
2),
regs.rasterizer.viewport_corner.y // bottom
};
Surface color_surface;
Surface depth_surface;
MathUtil::Rectangle<u32> surfaces_rect;
std::tie(color_surface, depth_surface, surfaces_rect) =
res_cache.GetFramebufferSurfaces(using_color_fb, using_depth_fb, viewport_rect_unscaled);
const u16 res_scale = color_surface != nullptr
? color_surface->res_scale
: (depth_surface == nullptr ? 1u : depth_surface->res_scale);
MathUtil::Rectangle<u32> draw_rect{
MathUtil::Clamp(surfaces_rect.left + viewport_rect_unscaled.left * res_scale, // left
surfaces_rect.left, surfaces_rect.right),
MathUtil::Clamp(surfaces_rect.bottom + viewport_rect_unscaled.top * res_scale, // top
surfaces_rect.bottom, surfaces_rect.top),
MathUtil::Clamp(surfaces_rect.left + viewport_rect_unscaled.right * res_scale, // right
surfaces_rect.left, surfaces_rect.right),
MathUtil::Clamp(surfaces_rect.bottom + viewport_rect_unscaled.bottom * res_scale, // bottom
surfaces_rect.bottom, surfaces_rect.top)};
// Bind the framebuffer surfaces
state.draw.draw_framebuffer = framebuffer.handle; state.draw.draw_framebuffer = framebuffer.handle;
state.Apply(); state.Apply();
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
color_surface != nullptr ? color_surface->texture.handle : 0, 0); color_surface != nullptr ? color_surface->texture.handle : 0, 0);
if (depth_surface != nullptr) { if (depth_surface != nullptr) {
if (regs.framebuffer.framebuffer.depth_format == if (has_stencil) {
Pica::FramebufferRegs::DepthFormat::D24S8) {
// attach both depth and stencil // attach both depth and stencil
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D, glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D,
depth_surface->texture.handle, 0); depth_surface->texture.handle, 0);
@ -259,38 +304,30 @@ void RasterizerOpenGL::DrawTriangles() {
} }
// Sync the viewport // Sync the viewport
// These registers hold half-width and half-height, so must be multiplied by 2 state.viewport.x =
GLsizei viewport_width = static_cast<GLint>(surfaces_rect.left + viewport_rect_unscaled.left * res_scale);
(GLsizei)Pica::float24::FromRaw(regs.rasterizer.viewport_size_x).ToFloat32() * 2; state.viewport.y =
GLsizei viewport_height = static_cast<GLint>(surfaces_rect.bottom + viewport_rect_unscaled.bottom * res_scale);
(GLsizei)Pica::float24::FromRaw(regs.rasterizer.viewport_size_y).ToFloat32() * 2; state.viewport.width = static_cast<GLsizei>(viewport_rect_unscaled.GetWidth() * res_scale);
state.viewport.height = static_cast<GLsizei>(viewport_rect_unscaled.GetHeight() * res_scale);
glViewport( if (uniform_block_data.data.framebuffer_scale != res_scale) {
(GLint)(rect.left + regs.rasterizer.viewport_corner.x * color_surface->res_scale_width), uniform_block_data.data.framebuffer_scale = res_scale;
(GLint)(rect.bottom + regs.rasterizer.viewport_corner.y * color_surface->res_scale_height),
(GLsizei)(viewport_width * color_surface->res_scale_width),
(GLsizei)(viewport_height * color_surface->res_scale_height));
if (uniform_block_data.data.framebuffer_scale[0] != color_surface->res_scale_width ||
uniform_block_data.data.framebuffer_scale[1] != color_surface->res_scale_height) {
uniform_block_data.data.framebuffer_scale[0] = color_surface->res_scale_width;
uniform_block_data.data.framebuffer_scale[1] = color_surface->res_scale_height;
uniform_block_data.dirty = true; uniform_block_data.dirty = true;
} }
// Scissor checks are window-, not viewport-relative, which means that if the cached texture // Scissor checks are window-, not viewport-relative, which means that if the cached texture
// sub-rect changes, the scissor bounds also need to be updated. // sub-rect changes, the scissor bounds also need to be updated.
GLint scissor_x1 = static_cast<GLint>( GLint scissor_x1 =
rect.left + regs.rasterizer.scissor_test.x1 * color_surface->res_scale_width); static_cast<GLint>(surfaces_rect.left + regs.rasterizer.scissor_test.x1 * res_scale);
GLint scissor_y1 = static_cast<GLint>( GLint scissor_y1 =
rect.bottom + regs.rasterizer.scissor_test.y1 * color_surface->res_scale_height); static_cast<GLint>(surfaces_rect.bottom + regs.rasterizer.scissor_test.y1 * res_scale);
// x2, y2 have +1 added to cover the entire pixel area, otherwise you might get cracks when // x2, y2 have +1 added to cover the entire pixel area, otherwise you might get cracks when
// scaling or doing multisampling. // scaling or doing multisampling.
GLint scissor_x2 = static_cast<GLint>( GLint scissor_x2 =
rect.left + (regs.rasterizer.scissor_test.x2 + 1) * color_surface->res_scale_width); static_cast<GLint>(surfaces_rect.left + (regs.rasterizer.scissor_test.x2 + 1) * res_scale);
GLint scissor_y2 = static_cast<GLint>( GLint scissor_y2 = static_cast<GLint>(surfaces_rect.bottom +
rect.bottom + (regs.rasterizer.scissor_test.y2 + 1) * color_surface->res_scale_height); (regs.rasterizer.scissor_test.y2 + 1) * res_scale);
if (uniform_block_data.data.scissor_x1 != scissor_x1 || if (uniform_block_data.data.scissor_x1 != scissor_x1 ||
uniform_block_data.data.scissor_x2 != scissor_x2 || uniform_block_data.data.scissor_x2 != scissor_x2 ||
@ -311,7 +348,7 @@ void RasterizerOpenGL::DrawTriangles() {
if (texture.enabled) { if (texture.enabled) {
texture_samplers[texture_index].SyncWithConfig(texture.config); texture_samplers[texture_index].SyncWithConfig(texture.config);
CachedSurface* surface = res_cache.GetTextureSurface(texture); Surface surface = res_cache.GetTextureSurface(texture);
if (surface != nullptr) { if (surface != nullptr) {
state.texture_units[texture_index].texture_2d = surface->texture.handle; state.texture_units[texture_index].texture_2d = surface->texture.handle;
} else { } else {
@ -380,6 +417,15 @@ void RasterizerOpenGL::DrawTriangles() {
uniform_block_data.dirty = false; uniform_block_data.dirty = false;
} }
// Viewport can have negative offsets or larger
// dimensions than our framebuffer sub-rect.
// Enable scissor test to prevent drawing
// outside of the framebuffer region
state.scissor.enabled = true;
state.scissor.x = draw_rect.left;
state.scissor.y = draw_rect.bottom;
state.scissor.width = draw_rect.GetWidth();
state.scissor.height = draw_rect.GetHeight();
state.Apply(); state.Apply();
// Draw the vertex batch // Draw the vertex batch
@ -387,16 +433,8 @@ void RasterizerOpenGL::DrawTriangles() {
GL_STREAM_DRAW); GL_STREAM_DRAW);
glDrawArrays(GL_TRIANGLES, 0, (GLsizei)vertex_batch.size()); glDrawArrays(GL_TRIANGLES, 0, (GLsizei)vertex_batch.size());
// Mark framebuffer surfaces as dirty // Disable scissor test
// TODO: Restrict invalidation area to the viewport state.scissor.enabled = false;
if (color_surface != nullptr) {
color_surface->dirty = true;
res_cache.FlushRegion(color_surface->addr, color_surface->size, color_surface, true);
}
if (depth_surface != nullptr) {
depth_surface->dirty = true;
res_cache.FlushRegion(depth_surface->addr, depth_surface->size, depth_surface, true);
}
vertex_batch.clear(); vertex_batch.clear();
@ -405,6 +443,22 @@ void RasterizerOpenGL::DrawTriangles() {
state.texture_units[texture_index].texture_2d = 0; state.texture_units[texture_index].texture_2d = 0;
} }
state.Apply(); state.Apply();
// Mark framebuffer surfaces as dirty
MathUtil::Rectangle<u32> draw_rect_unscaled{
draw_rect.left / res_scale, draw_rect.top / res_scale, draw_rect.right / res_scale,
draw_rect.bottom / res_scale};
if (color_surface != nullptr && write_color_fb) {
auto interval = color_surface->GetSubRectInterval(draw_rect_unscaled);
res_cache.InvalidateRegion(boost::icl::first(interval), boost::icl::length(interval),
color_surface);
}
if (depth_surface != nullptr && write_depth_fb) {
auto interval = depth_surface->GetSubRectInterval(draw_rect_unscaled);
res_cache.InvalidateRegion(boost::icl::first(interval), boost::icl::length(interval),
depth_surface);
}
} }
void RasterizerOpenGL::NotifyPicaRegisterChanged(u32 id) { void RasterizerOpenGL::NotifyPicaRegisterChanged(u32 id) {
@ -893,227 +947,143 @@ void RasterizerOpenGL::FlushAll() {
void RasterizerOpenGL::FlushRegion(PAddr addr, u32 size) { void RasterizerOpenGL::FlushRegion(PAddr addr, u32 size) {
MICROPROFILE_SCOPE(OpenGL_CacheManagement); MICROPROFILE_SCOPE(OpenGL_CacheManagement);
res_cache.FlushRegion(addr, size, nullptr, false); res_cache.FlushRegion(addr, size);
}
void RasterizerOpenGL::InvalidateRegion(PAddr addr, u32 size) {
MICROPROFILE_SCOPE(OpenGL_CacheManagement);
res_cache.InvalidateRegion(addr, size, nullptr);
} }
void RasterizerOpenGL::FlushAndInvalidateRegion(PAddr addr, u32 size) { void RasterizerOpenGL::FlushAndInvalidateRegion(PAddr addr, u32 size) {
MICROPROFILE_SCOPE(OpenGL_CacheManagement); MICROPROFILE_SCOPE(OpenGL_CacheManagement);
res_cache.FlushRegion(addr, size, nullptr, true); res_cache.FlushRegion(addr, size);
res_cache.InvalidateRegion(addr, size, nullptr);
} }
bool RasterizerOpenGL::AccelerateDisplayTransfer(const GPU::Regs::DisplayTransferConfig& config) { bool RasterizerOpenGL::AccelerateDisplayTransfer(const GPU::Regs::DisplayTransferConfig& config) {
MICROPROFILE_SCOPE(OpenGL_Blits); MICROPROFILE_SCOPE(OpenGL_Blits);
CachedSurface src_params; SurfaceParams src_params;
src_params.addr = config.GetPhysicalInputAddress(); src_params.addr = config.GetPhysicalInputAddress();
// It's important to use the correct source input width to properly skip over parts of the input src_params.width = config.output_width;
// image which will be cropped from the output but still affect the stride of the input image. src_params.stride = config.input_width;
src_params.width = config.input_width;
// Using the output's height is fine because we don't read or skip over the remaining part of
// the image, and it allows for smaller texture cache lookup rectangles.
src_params.height = config.output_height; src_params.height = config.output_height;
src_params.is_tiled = !config.input_linear; src_params.is_tiled = !config.input_linear;
src_params.pixel_format = CachedSurface::PixelFormatFromGPUPixelFormat(config.input_format); src_params.pixel_format = SurfaceParams::PixelFormatFromGPUPixelFormat(config.input_format);
src_params.UpdateParams();
CachedSurface dst_params; SurfaceParams dst_params;
dst_params.addr = config.GetPhysicalOutputAddress(); dst_params.addr = config.GetPhysicalOutputAddress();
dst_params.width = dst_params.width = config.scaling != config.NoScale ? config.output_width.Value() / 2
config.scaling != config.NoScale ? config.output_width / 2 : config.output_width.Value(); : config.output_width.Value();
dst_params.height = dst_params.height = config.scaling == config.ScaleXY ? config.output_height.Value() / 2
config.scaling == config.ScaleXY ? config.output_height / 2 : config.output_height.Value(); : config.output_height.Value();
dst_params.is_tiled = config.input_linear != config.dont_swizzle; dst_params.is_tiled = config.input_linear != config.dont_swizzle;
dst_params.pixel_format = CachedSurface::PixelFormatFromGPUPixelFormat(config.output_format); dst_params.pixel_format = SurfaceParams::PixelFormatFromGPUPixelFormat(config.output_format);
dst_params.UpdateParams();
MathUtil::Rectangle<int> src_rect; MathUtil::Rectangle<u32> src_rect;
CachedSurface* src_surface = res_cache.GetSurfaceRect(src_params, false, true, src_rect); Surface src_surface;
std::tie(src_surface, src_rect) =
if (src_surface == nullptr) { res_cache.GetSurfaceSubRect(src_params, ScaleMatch::Ignore, true);
if (src_surface == nullptr)
return false; return false;
}
// Adjust the source rectangle to take into account parts of the input lines being cropped dst_params.res_scale = src_surface->res_scale;
if (config.input_width > config.output_width) {
src_rect.right -= static_cast<int>((config.input_width - config.output_width) *
src_surface->res_scale_width);
}
// Require destination surface to have same resolution scale as source to preserve scaling MathUtil::Rectangle<u32> dst_rect;
dst_params.res_scale_width = src_surface->res_scale_width; Surface dst_surface;
dst_params.res_scale_height = src_surface->res_scale_height; std::tie(dst_surface, dst_rect) =
res_cache.GetSurfaceSubRect(dst_params, ScaleMatch::Upscale, false);
MathUtil::Rectangle<int> dst_rect; if (dst_surface == nullptr)
CachedSurface* dst_surface = res_cache.GetSurfaceRect(dst_params, true, false, dst_rect);
if (dst_surface == nullptr) {
return false; return false;
}
// Don't accelerate if the src and dst surfaces are the same if (src_surface->is_tiled != dst_surface->is_tiled)
if (src_surface == dst_surface) { std::swap(src_rect.top, src_rect.bottom);
if (config.flip_vertically)
std::swap(src_rect.top, src_rect.bottom);
if (!res_cache.BlitSurfaces(src_surface, src_rect, dst_surface, dst_rect))
return false; return false;
}
if (config.flip_vertically) { res_cache.InvalidateRegion(dst_params.addr, dst_params.size, dst_surface);
std::swap(dst_rect.top, dst_rect.bottom);
}
if (!res_cache.TryBlitSurfaces(src_surface, src_rect, dst_surface, dst_rect)) {
return false;
}
u32 dst_size = dst_params.width * dst_params.height *
CachedSurface::GetFormatBpp(dst_params.pixel_format) / 8;
dst_surface->dirty = true;
res_cache.FlushRegion(config.GetPhysicalOutputAddress(), dst_size, dst_surface, true);
return true; return true;
} }
bool RasterizerOpenGL::AccelerateTextureCopy(const GPU::Regs::DisplayTransferConfig& config) { bool RasterizerOpenGL::AccelerateTextureCopy(const GPU::Regs::DisplayTransferConfig& config) {
// TODO(tfarley): Try to hardware accelerate this u32 input_width = config.texture_copy.input_width * 16;
u32 input_gap = config.texture_copy.input_gap * 16;
u32 output_width = config.texture_copy.output_width * 16;
u32 output_gap = config.texture_copy.output_gap * 16;
if (config.texture_copy.size == 0)
return true;
if (input_width >= config.texture_copy.size) {
input_width = config.texture_copy.size;
input_gap = 0;
}
if (output_width >= config.texture_copy.size) {
output_width = config.texture_copy.size;
output_gap = 0;
}
if (input_width != output_width || config.texture_copy.size % input_width != 0) {
return false; return false;
}
SurfaceParams src_params;
src_params.addr = config.GetPhysicalInputAddress();
src_params.stride = input_width + input_gap; // stride in bytes
src_params.width = input_width; // width in bytes
src_params.height = config.texture_copy.size / input_width;
src_params.size = ((src_params.height - 1) * src_params.stride) + src_params.width;
src_params.end = src_params.addr + src_params.size;
MathUtil::Rectangle<u32> src_rect;
Surface src_surface;
std::tie(src_surface, src_rect) = res_cache.GetTexCopySurface(src_params);
if (src_surface == nullptr)
return false;
if ((output_gap * 8) % SurfaceParams::GetFormatBpp(src_surface->pixel_format) != 0 ||
(src_surface->is_tiled && src_surface->PixelsInBytes(output_gap) % 64 != 0))
return false;
SurfaceParams dst_params = *src_surface;
dst_params.addr = config.GetPhysicalOutputAddress();
dst_params.width = src_rect.GetWidth() / src_surface->res_scale;
dst_params.stride = dst_params.width + src_surface->PixelsInBytes(
src_surface->is_tiled ? output_gap / 8 : output_gap);
dst_params.height = src_rect.GetHeight() / src_surface->res_scale;
dst_params.res_scale = src_surface->res_scale;
dst_params.UpdateParams();
const bool load_gap = output_gap != 0; // Since we are going to invalidate the gap if there is
// one, we will have to load it first
MathUtil::Rectangle<u32> dst_rect;
Surface dst_surface;
std::tie(dst_surface, dst_rect) =
res_cache.GetSurfaceSubRect(dst_params, ScaleMatch::Upscale, load_gap);
if (src_surface == nullptr)
return false;
if (!res_cache.BlitSurfaces(src_surface, src_rect, dst_surface, dst_rect))
return false;
res_cache.InvalidateRegion(dst_params.addr, dst_params.size, dst_surface);
return true;
} }
bool RasterizerOpenGL::AccelerateFill(const GPU::Regs::MemoryFillConfig& config) { bool RasterizerOpenGL::AccelerateFill(const GPU::Regs::MemoryFillConfig& config) {
MICROPROFILE_SCOPE(OpenGL_Blits); Surface dst_surface = res_cache.GetFillSurface(config);
using PixelFormat = CachedSurface::PixelFormat; if (dst_surface == nullptr)
using SurfaceType = CachedSurface::SurfaceType;
CachedSurface* dst_surface = res_cache.TryGetFillSurface(config);
if (dst_surface == nullptr) {
return false; return false;
}
OpenGLState cur_state = OpenGLState::GetCurState(); res_cache.InvalidateRegion(dst_surface->addr, dst_surface->size, dst_surface);
SurfaceType dst_type = CachedSurface::GetFormatType(dst_surface->pixel_format);
GLuint old_fb = cur_state.draw.draw_framebuffer;
cur_state.draw.draw_framebuffer = framebuffer.handle;
// TODO: When scissor test is implemented, need to disable scissor test in cur_state here so
// Clear call isn't affected
cur_state.Apply();
if (dst_type == SurfaceType::Color || dst_type == SurfaceType::Texture) {
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
dst_surface->texture.handle, 0);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0,
0);
GLfloat color_values[4] = {0.0f, 0.0f, 0.0f, 0.0f};
// TODO: Handle additional pixel format and fill value size combinations to accelerate more
// cases
// For instance, checking if fill value's bytes/bits repeat to allow filling
// I8/A8/I4/A4/...
// Currently only handles formats that are multiples of the fill value size
if (config.fill_24bit) {
switch (dst_surface->pixel_format) {
case PixelFormat::RGB8:
color_values[0] = config.value_24bit_r / 255.0f;
color_values[1] = config.value_24bit_g / 255.0f;
color_values[2] = config.value_24bit_b / 255.0f;
break;
default:
return false;
}
} else if (config.fill_32bit) {
u32 value = config.value_32bit;
switch (dst_surface->pixel_format) {
case PixelFormat::RGBA8:
color_values[0] = (value >> 24) / 255.0f;
color_values[1] = ((value >> 16) & 0xFF) / 255.0f;
color_values[2] = ((value >> 8) & 0xFF) / 255.0f;
color_values[3] = (value & 0xFF) / 255.0f;
break;
default:
return false;
}
} else {
u16 value_16bit = config.value_16bit.Value();
Math::Vec4<u8> color;
switch (dst_surface->pixel_format) {
case PixelFormat::RGBA8:
color_values[0] = (value_16bit >> 8) / 255.0f;
color_values[1] = (value_16bit & 0xFF) / 255.0f;
color_values[2] = color_values[0];
color_values[3] = color_values[1];
break;
case PixelFormat::RGB5A1:
color = Color::DecodeRGB5A1((const u8*)&value_16bit);
color_values[0] = color[0] / 31.0f;
color_values[1] = color[1] / 31.0f;
color_values[2] = color[2] / 31.0f;
color_values[3] = color[3];
break;
case PixelFormat::RGB565:
color = Color::DecodeRGB565((const u8*)&value_16bit);
color_values[0] = color[0] / 31.0f;
color_values[1] = color[1] / 63.0f;
color_values[2] = color[2] / 31.0f;
break;
case PixelFormat::RGBA4:
color = Color::DecodeRGBA4((const u8*)&value_16bit);
color_values[0] = color[0] / 15.0f;
color_values[1] = color[1] / 15.0f;
color_values[2] = color[2] / 15.0f;
color_values[3] = color[3] / 15.0f;
break;
case PixelFormat::IA8:
case PixelFormat::RG8:
color_values[0] = (value_16bit >> 8) / 255.0f;
color_values[1] = (value_16bit & 0xFF) / 255.0f;
break;
default:
return false;
}
}
cur_state.color_mask.red_enabled = GL_TRUE;
cur_state.color_mask.green_enabled = GL_TRUE;
cur_state.color_mask.blue_enabled = GL_TRUE;
cur_state.color_mask.alpha_enabled = GL_TRUE;
cur_state.Apply();
glClearBufferfv(GL_COLOR, 0, color_values);
} else if (dst_type == SurfaceType::Depth) {
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D,
dst_surface->texture.handle, 0);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0, 0);
GLfloat value_float;
if (dst_surface->pixel_format == CachedSurface::PixelFormat::D16) {
value_float = config.value_32bit / 65535.0f; // 2^16 - 1
} else if (dst_surface->pixel_format == CachedSurface::PixelFormat::D24) {
value_float = config.value_32bit / 16777215.0f; // 2^24 - 1
}
cur_state.depth.write_mask = GL_TRUE;
cur_state.Apply();
glClearBufferfv(GL_DEPTH, 0, &value_float);
} else if (dst_type == SurfaceType::DepthStencil) {
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D,
dst_surface->texture.handle, 0);
GLfloat value_float = (config.value_32bit & 0xFFFFFF) / 16777215.0f; // 2^24 - 1
GLint value_int = (config.value_32bit >> 24);
cur_state.depth.write_mask = GL_TRUE;
cur_state.stencil.write_mask = 0xFF;
cur_state.Apply();
glClearBufferfi(GL_DEPTH_STENCIL, 0, value_float, value_int);
}
cur_state.draw.draw_framebuffer = old_fb;
// TODO: Return scissor test to previous value when scissor test is implemented
cur_state.Apply();
dst_surface->dirty = true;
res_cache.FlushRegion(dst_surface->addr, dst_surface->size, dst_surface, true);
return true; return true;
} }
@ -1125,16 +1095,19 @@ bool RasterizerOpenGL::AccelerateDisplay(const GPU::Regs::FramebufferConfig& con
} }
MICROPROFILE_SCOPE(OpenGL_CacheManagement); MICROPROFILE_SCOPE(OpenGL_CacheManagement);
CachedSurface src_params; SurfaceParams src_params;
src_params.addr = framebuffer_addr; src_params.addr = framebuffer_addr;
src_params.width = config.width; src_params.width = std::min(config.width.Value(), pixel_stride);
src_params.height = config.height; src_params.height = config.height;
src_params.pixel_stride = pixel_stride; src_params.stride = pixel_stride;
src_params.is_tiled = false; src_params.is_tiled = false;
src_params.pixel_format = CachedSurface::PixelFormatFromGPUPixelFormat(config.color_format); src_params.pixel_format = SurfaceParams::PixelFormatFromGPUPixelFormat(config.color_format);
src_params.UpdateParams();
MathUtil::Rectangle<int> src_rect; MathUtil::Rectangle<u32> src_rect;
CachedSurface* src_surface = res_cache.GetSurfaceRect(src_params, false, true, src_rect); Surface src_surface;
std::tie(src_surface, src_rect) =
res_cache.GetSurfaceSubRect(src_params, ScaleMatch::Ignore, true);
if (src_surface == nullptr) { if (src_surface == nullptr) {
return false; return false;
@ -1144,8 +1117,8 @@ bool RasterizerOpenGL::AccelerateDisplay(const GPU::Regs::FramebufferConfig& con
u32 scaled_height = src_surface->GetScaledHeight(); u32 scaled_height = src_surface->GetScaledHeight();
screen_info.display_texcoords = MathUtil::Rectangle<float>( screen_info.display_texcoords = MathUtil::Rectangle<float>(
(float)src_rect.top / (float)scaled_height, (float)src_rect.left / (float)scaled_width, (float)src_rect.bottom / (float)scaled_height, (float)src_rect.left / (float)scaled_width,
(float)src_rect.bottom / (float)scaled_height, (float)src_rect.right / (float)scaled_width); (float)src_rect.top / (float)scaled_height, (float)src_rect.right / (float)scaled_width);
screen_info.display_texture = src_surface->texture.handle; screen_info.display_texture = src_surface->texture.handle;

View file

@ -43,6 +43,7 @@ public:
void NotifyPicaRegisterChanged(u32 id) override; void NotifyPicaRegisterChanged(u32 id) override;
void FlushAll() override; void FlushAll() override;
void FlushRegion(PAddr addr, u32 size) override; void FlushRegion(PAddr addr, u32 size) override;
void InvalidateRegion(PAddr addr, u32 size) override;
void FlushAndInvalidateRegion(PAddr addr, u32 size) override; void FlushAndInvalidateRegion(PAddr addr, u32 size) override;
bool AccelerateDisplayTransfer(const GPU::Regs::DisplayTransferConfig& config) override; bool AccelerateDisplayTransfer(const GPU::Regs::DisplayTransferConfig& config) override;
bool AccelerateTextureCopy(const GPU::Regs::DisplayTransferConfig& config) override; bool AccelerateTextureCopy(const GPU::Regs::DisplayTransferConfig& config) override;
@ -135,7 +136,7 @@ private:
// the end of a uniform block is included in UNIFORM_BLOCK_DATA_SIZE or not. // the end of a uniform block is included in UNIFORM_BLOCK_DATA_SIZE or not.
// Not following that rule will cause problems on some AMD drivers. // Not following that rule will cause problems on some AMD drivers.
struct UniformData { struct UniformData {
alignas(8) GLvec2 framebuffer_scale; GLint framebuffer_scale;
GLint alphatest_ref; GLint alphatest_ref;
GLfloat depth_scale; GLfloat depth_scale;
GLfloat depth_offset; GLfloat depth_offset;
@ -155,7 +156,7 @@ private:
}; };
static_assert( static_assert(
sizeof(UniformData) == 0x470, sizeof(UniformData) == 0x460,
"The size of the UniformData structure has changed, update the structure in the shader"); "The size of the UniformData structure has changed, update the structure in the shader");
static_assert(sizeof(UniformData) < 16384, static_assert(sizeof(UniformData) < 16384,
"UniformData structure must be less than 16kb as per the OpenGL spec"); "UniformData structure must be less than 16kb as per the OpenGL spec");