// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include #include "common/assert.h" #include "common/bit_field.h" #include "common/common_types.h" #include "common/logging/log.h" #include "common/scope_exit.h" #include "core/hle/ipc.h" #include "core/hle/kernel/server_session.h" #include "core/hle/result.h" #include "core/hle/service/soc_u.h" #include "core/memory.h" #ifdef _WIN32 #include #include // MinGW does not define several errno constants #ifndef _MSC_VER #define EBADMSG 104 #define ENODATA 120 #define ENOMSG 122 #define ENOSR 124 #define ENOSTR 125 #define ETIME 137 #endif // _MSC_VER #else #include #include #include #include #include #include #include #endif #ifdef _WIN32 #define WSAEAGAIN WSAEWOULDBLOCK #define WSAEMULTIHOP -1 // Invalid dummy value #define ERRNO(x) WSA##x #define GET_ERRNO WSAGetLastError() #define poll(x, y, z) WSAPoll(x, y, z); #else #define ERRNO(x) x #define GET_ERRNO errno #define closesocket(x) close(x) #endif namespace Service { namespace SOC { const s32 SOCKET_ERROR_VALUE = -1; /// Holds the translation from system network errors to 3DS network errors static const std::unordered_map error_map = {{ {E2BIG, 1}, {ERRNO(EACCES), 2}, {ERRNO(EADDRINUSE), 3}, {ERRNO(EADDRNOTAVAIL), 4}, {ERRNO(EAFNOSUPPORT), 5}, {ERRNO(EAGAIN), 6}, {ERRNO(EALREADY), 7}, {ERRNO(EBADF), 8}, {EBADMSG, 9}, {EBUSY, 10}, {ECANCELED, 11}, {ECHILD, 12}, {ERRNO(ECONNABORTED), 13}, {ERRNO(ECONNREFUSED), 14}, {ERRNO(ECONNRESET), 15}, {EDEADLK, 16}, {ERRNO(EDESTADDRREQ), 17}, {EDOM, 18}, {ERRNO(EDQUOT), 19}, {EEXIST, 20}, {ERRNO(EFAULT), 21}, {EFBIG, 22}, {ERRNO(EHOSTUNREACH), 23}, {EIDRM, 24}, {EILSEQ, 25}, {ERRNO(EINPROGRESS), 26}, {ERRNO(EINTR), 27}, {ERRNO(EINVAL), 28}, {EIO, 29}, {ERRNO(EISCONN), 30}, {EISDIR, 31}, {ERRNO(ELOOP), 32}, {ERRNO(EMFILE), 33}, {EMLINK, 34}, {ERRNO(EMSGSIZE), 35}, {ERRNO(EMULTIHOP), 36}, {ERRNO(ENAMETOOLONG), 37}, {ERRNO(ENETDOWN), 38}, {ERRNO(ENETRESET), 39}, {ERRNO(ENETUNREACH), 40}, {ENFILE, 41}, {ERRNO(ENOBUFS), 42}, #ifdef ENODATA {ENODATA, 43}, #endif {ENODEV, 44}, {ENOENT, 45}, {ENOEXEC, 46}, {ENOLCK, 47}, {ENOLINK, 48}, {ENOMEM, 49}, {ENOMSG, 50}, {ERRNO(ENOPROTOOPT), 51}, {ENOSPC, 52}, #ifdef ENOSR {ENOSR, 53}, #endif #ifdef ENOSTR {ENOSTR, 54}, #endif {ENOSYS, 55}, {ERRNO(ENOTCONN), 56}, {ENOTDIR, 57}, {ERRNO(ENOTEMPTY), 58}, {ERRNO(ENOTSOCK), 59}, {ENOTSUP, 60}, {ENOTTY, 61}, {ENXIO, 62}, {ERRNO(EOPNOTSUPP), 63}, {EOVERFLOW, 64}, {EPERM, 65}, {EPIPE, 66}, {EPROTO, 67}, {ERRNO(EPROTONOSUPPORT), 68}, {ERRNO(EPROTOTYPE), 69}, {ERANGE, 70}, {EROFS, 71}, {ESPIPE, 72}, {ESRCH, 73}, {ERRNO(ESTALE), 74}, #ifdef ETIME {ETIME, 75}, #endif {ERRNO(ETIMEDOUT), 76}, }}; /// Converts a network error from platform-specific to 3ds-specific static int TranslateError(int error) { auto found = error_map.find(error); if (found != error_map.end()) return -found->second; return error; } /// Holds the translation from system network socket options to 3DS network socket options /// Note: -1 = No effect/unavailable static const std::unordered_map sockopt_map = {{ {0x0004, SO_REUSEADDR}, {0x0080, -1}, {0x0100, -1}, {0x1001, SO_SNDBUF}, {0x1002, SO_RCVBUF}, {0x1003, -1}, #ifdef _WIN32 /// Unsupported in WinSock2 {0x1004, -1}, #else {0x1004, SO_RCVLOWAT}, #endif {0x1008, SO_TYPE}, {0x1009, SO_ERROR}, }}; /// Converts a socket option from 3ds-specific to platform-specific static int TranslateSockOpt(int console_opt_name) { auto found = sockopt_map.find(console_opt_name); if (found != sockopt_map.end()) { return found->second; } return console_opt_name; } /// Holds information about a particular socket struct SocketHolder { u32 socket_fd; ///< The socket descriptor bool blocking; ///< Whether the socket is blocking or not, it is only read on Windows. }; /// Structure to represent the 3ds' pollfd structure, which is different than most implementations struct CTRPollFD { u32 fd; ///< Socket handle union Events { u32 hex; ///< The complete value formed by the flags BitField<0, 1, u32> pollin; BitField<1, 1, u32> pollpri; BitField<2, 1, u32> pollhup; BitField<3, 1, u32> pollerr; BitField<4, 1, u32> pollout; BitField<5, 1, u32> pollnval; Events& operator=(const Events& other) { hex = other.hex; return *this; } /// Translates the resulting events of a Poll operation from platform-specific to 3ds /// specific static Events TranslateTo3DS(u32 input_event) { Events ev = {}; if (input_event & POLLIN) ev.pollin.Assign(1); if (input_event & POLLPRI) ev.pollpri.Assign(1); if (input_event & POLLHUP) ev.pollhup.Assign(1); if (input_event & POLLERR) ev.pollerr.Assign(1); if (input_event & POLLOUT) ev.pollout.Assign(1); if (input_event & POLLNVAL) ev.pollnval.Assign(1); return ev; } /// Translates the resulting events of a Poll operation from 3ds specific to platform /// specific static u32 TranslateToPlatform(Events input_event) { u32 ret = 0; if (input_event.pollin) ret |= POLLIN; if (input_event.pollpri) ret |= POLLPRI; if (input_event.pollhup) ret |= POLLHUP; if (input_event.pollerr) ret |= POLLERR; if (input_event.pollout) ret |= POLLOUT; if (input_event.pollnval) ret |= POLLNVAL; return ret; } }; Events events; ///< Events to poll for (input) Events revents; ///< Events received (output) /// Converts a platform-specific pollfd to a 3ds specific structure static CTRPollFD FromPlatform(pollfd const& fd) { CTRPollFD result; result.events.hex = Events::TranslateTo3DS(fd.events).hex; result.revents.hex = Events::TranslateTo3DS(fd.revents).hex; result.fd = static_cast(fd.fd); return result; } /// Converts a 3ds specific pollfd to a platform-specific structure static pollfd ToPlatform(CTRPollFD const& fd) { pollfd result; result.events = Events::TranslateToPlatform(fd.events); result.revents = Events::TranslateToPlatform(fd.revents); result.fd = fd.fd; return result; } }; /// Union to represent the 3ds' sockaddr structure union CTRSockAddr { /// Structure to represent a raw sockaddr struct { u8 len; ///< The length of the entire structure, only the set fields count u8 sa_family; ///< The address family of the sockaddr u8 sa_data[0x1A]; ///< The extra data, this varies, depending on the address family } raw; /// Structure to represent the 3ds' sockaddr_in structure struct CTRSockAddrIn { u8 len; ///< The length of the entire structure u8 sin_family; ///< The address family of the sockaddr_in u16 sin_port; ///< The port associated with this sockaddr_in u32 sin_addr; ///< The actual address of the sockaddr_in } in; /// Convert a 3DS CTRSockAddr to a platform-specific sockaddr static sockaddr ToPlatform(CTRSockAddr const& ctr_addr) { sockaddr result; result.sa_family = ctr_addr.raw.sa_family; memset(result.sa_data, 0, sizeof(result.sa_data)); // We can not guarantee ABI compatibility between platforms so we copy the fields manually switch (result.sa_family) { case AF_INET: { sockaddr_in* result_in = reinterpret_cast(&result); result_in->sin_port = ctr_addr.in.sin_port; result_in->sin_addr.s_addr = ctr_addr.in.sin_addr; memset(result_in->sin_zero, 0, sizeof(result_in->sin_zero)); break; } default: ASSERT_MSG(false, "Unhandled address family (sa_family) in CTRSockAddr::ToPlatform"); break; } return result; } /// Convert a platform-specific sockaddr to a 3DS CTRSockAddr static CTRSockAddr FromPlatform(sockaddr const& addr) { CTRSockAddr result; result.raw.sa_family = static_cast(addr.sa_family); // We can not guarantee ABI compatibility between platforms so we copy the fields manually switch (result.raw.sa_family) { case AF_INET: { sockaddr_in const* addr_in = reinterpret_cast(&addr); result.raw.len = sizeof(CTRSockAddrIn); result.in.sin_port = addr_in->sin_port; result.in.sin_addr = addr_in->sin_addr.s_addr; break; } default: ASSERT_MSG(false, "Unhandled address family (sa_family) in CTRSockAddr::ToPlatform"); break; } return result; } }; /// Holds info about the currently open sockets static std::unordered_map open_sockets; /// Close all open sockets static void CleanupSockets() { for (auto sock : open_sockets) closesocket(sock.second.socket_fd); open_sockets.clear(); } static void Socket(Interface* self) { u32* cmd_buffer = Kernel::GetCommandBuffer(); u32 domain = cmd_buffer[1]; // Address family u32 type = cmd_buffer[2]; u32 protocol = cmd_buffer[3]; // Only 0 is allowed according to 3dbrew, using 0 will let the OS decide which protocol to use if (protocol != 0) { cmd_buffer[1] = UnimplementedFunction(ErrorModule::SOC).raw; // TODO(Subv): Correct error code return; } if (domain != AF_INET) { cmd_buffer[1] = UnimplementedFunction(ErrorModule::SOC).raw; // TODO(Subv): Correct error code return; } if (type != SOCK_DGRAM && type != SOCK_STREAM) { cmd_buffer[1] = UnimplementedFunction(ErrorModule::SOC).raw; // TODO(Subv): Correct error code return; } u32 ret = static_cast(::socket(domain, type, protocol)); if ((s32)ret != SOCKET_ERROR_VALUE) open_sockets[ret] = {ret, true}; int result = 0; if ((s32)ret == SOCKET_ERROR_VALUE) ret = TranslateError(GET_ERRNO); cmd_buffer[0] = IPC::MakeHeader(2, 2, 0); cmd_buffer[1] = result; cmd_buffer[2] = ret; } static void Bind(Interface* self) { u32* cmd_buffer = Kernel::GetCommandBuffer(); u32 socket_handle = cmd_buffer[1]; u32 len = cmd_buffer[2]; // Virtual address of the sock_addr structure VAddr sock_addr_addr = cmd_buffer[6]; if (!Memory::IsValidVirtualAddress(sock_addr_addr)) { cmd_buffer[1] = -1; // TODO(Subv): Correct code return; } CTRSockAddr ctr_sock_addr; Memory::ReadBlock(sock_addr_addr, reinterpret_cast(&ctr_sock_addr), sizeof(CTRSockAddr)); sockaddr sock_addr = CTRSockAddr::ToPlatform(ctr_sock_addr); int ret = ::bind(socket_handle, &sock_addr, std::max(sizeof(sock_addr), len)); int result = 0; if (ret != 0) ret = TranslateError(GET_ERRNO); cmd_buffer[0] = IPC::MakeHeader(5, 2, 0); cmd_buffer[1] = result; cmd_buffer[2] = ret; } static void Fcntl(Interface* self) { u32* cmd_buffer = Kernel::GetCommandBuffer(); u32 socket_handle = cmd_buffer[1]; u32 ctr_cmd = cmd_buffer[2]; u32 ctr_arg = cmd_buffer[3]; int result = 0; u32 posix_ret = 0; // TODO: Check what hardware returns for F_SETFL (unspecified by POSIX) SCOPE_EXIT({ cmd_buffer[1] = result; cmd_buffer[2] = posix_ret; }); if (ctr_cmd == 3) { // F_GETFL #ifdef _WIN32 posix_ret = 0; auto iter = open_sockets.find(socket_handle); if (iter != open_sockets.end() && iter->second.blocking == false) posix_ret |= 4; // O_NONBLOCK #else int ret = ::fcntl(socket_handle, F_GETFL, 0); if (ret == SOCKET_ERROR_VALUE) { posix_ret = TranslateError(GET_ERRNO); return; } posix_ret = 0; if (ret & O_NONBLOCK) posix_ret |= 4; // O_NONBLOCK #endif } else if (ctr_cmd == 4) { // F_SETFL #ifdef _WIN32 unsigned long tmp = (ctr_arg & 4 /* O_NONBLOCK */) ? 1 : 0; int ret = ioctlsocket(socket_handle, FIONBIO, &tmp); if (ret == SOCKET_ERROR_VALUE) { posix_ret = TranslateError(GET_ERRNO); return; } auto iter = open_sockets.find(socket_handle); if (iter != open_sockets.end()) iter->second.blocking = (tmp == 0); #else int flags = ::fcntl(socket_handle, F_GETFL, 0); if (flags == SOCKET_ERROR_VALUE) { posix_ret = TranslateError(GET_ERRNO); return; } flags &= ~O_NONBLOCK; if (ctr_arg & 4) // O_NONBLOCK flags |= O_NONBLOCK; int ret = ::fcntl(socket_handle, F_SETFL, flags); if (ret == SOCKET_ERROR_VALUE) { posix_ret = TranslateError(GET_ERRNO); return; } #endif } else { LOG_ERROR(Service_SOC, "Unsupported command (%d) in fcntl call", ctr_cmd); posix_ret = TranslateError(EINVAL); // TODO: Find the correct error return; } } static void Listen(Interface* self) { u32* cmd_buffer = Kernel::GetCommandBuffer(); u32 socket_handle = cmd_buffer[1]; u32 backlog = cmd_buffer[2]; int ret = ::listen(socket_handle, backlog); int result = 0; if (ret != 0) ret = TranslateError(GET_ERRNO); cmd_buffer[0] = IPC::MakeHeader(3, 2, 0); cmd_buffer[1] = result; cmd_buffer[2] = ret; } static void Accept(Interface* self) { // TODO(Subv): Calling this function on a blocking socket will block the emu thread, // preventing graceful shutdown when closing the emulator, this can be fixed by always // performing nonblocking operations and spinlock until the data is available u32* cmd_buffer = Kernel::GetCommandBuffer(); u32 socket_handle = cmd_buffer[1]; socklen_t max_addr_len = static_cast(cmd_buffer[2]); sockaddr addr; socklen_t addr_len = sizeof(addr); u32 ret = static_cast(::accept(socket_handle, &addr, &addr_len)); if ((s32)ret != SOCKET_ERROR_VALUE) open_sockets[ret] = {ret, true}; int result = 0; if ((s32)ret == SOCKET_ERROR_VALUE) { ret = TranslateError(GET_ERRNO); } else { CTRSockAddr ctr_addr = CTRSockAddr::FromPlatform(addr); Memory::WriteBlock(cmd_buffer[0x104 >> 2], &ctr_addr, sizeof(ctr_addr)); } cmd_buffer[0] = IPC::MakeHeader(4, 2, 2); cmd_buffer[1] = result; cmd_buffer[2] = ret; cmd_buffer[3] = IPC::StaticBufferDesc(static_cast(max_addr_len), 0); } static void GetHostId(Interface* self) { u32* cmd_buffer = Kernel::GetCommandBuffer(); char name[128]; gethostname(name, sizeof(name)); addrinfo hints = {}; addrinfo* res; hints.ai_family = AF_INET; getaddrinfo(name, nullptr, &hints, &res); sockaddr_in* sock_addr = reinterpret_cast(res->ai_addr); in_addr* addr = &sock_addr->sin_addr; cmd_buffer[2] = addr->s_addr; cmd_buffer[1] = 0; freeaddrinfo(res); } static void Close(Interface* self) { u32* cmd_buffer = Kernel::GetCommandBuffer(); u32 socket_handle = cmd_buffer[1]; int ret = 0; open_sockets.erase(socket_handle); ret = closesocket(socket_handle); int result = 0; if (ret != 0) ret = TranslateError(GET_ERRNO); cmd_buffer[2] = ret; cmd_buffer[1] = result; } static void SendTo(Interface* self) { u32* cmd_buffer = Kernel::GetCommandBuffer(); u32 socket_handle = cmd_buffer[1]; u32 len = cmd_buffer[2]; u32 flags = cmd_buffer[3]; u32 addr_len = cmd_buffer[4]; VAddr input_buff_address = cmd_buffer[8]; if (!Memory::IsValidVirtualAddress(input_buff_address)) { cmd_buffer[1] = -1; // TODO(Subv): Find the right error code return; } // Memory address of the dest_addr structure VAddr dest_addr_addr = cmd_buffer[10]; if (!Memory::IsValidVirtualAddress(dest_addr_addr)) { cmd_buffer[1] = -1; // TODO(Subv): Find the right error code return; } std::vector input_buff(len); Memory::ReadBlock(input_buff_address, input_buff.data(), input_buff.size()); CTRSockAddr ctr_dest_addr; Memory::ReadBlock(dest_addr_addr, &ctr_dest_addr, sizeof(ctr_dest_addr)); int ret = -1; if (addr_len > 0) { sockaddr dest_addr = CTRSockAddr::ToPlatform(ctr_dest_addr); ret = ::sendto(socket_handle, reinterpret_cast(input_buff.data()), len, flags, &dest_addr, sizeof(dest_addr)); } else { ret = ::sendto(socket_handle, reinterpret_cast(input_buff.data()), len, flags, nullptr, 0); } int result = 0; if (ret == SOCKET_ERROR_VALUE) ret = TranslateError(GET_ERRNO); cmd_buffer[2] = ret; cmd_buffer[1] = result; } static void RecvFrom(Interface* self) { // TODO(Subv): Calling this function on a blocking socket will block the emu thread, // preventing graceful shutdown when closing the emulator, this can be fixed by always // performing nonblocking operations and spinlock until the data is available u32* cmd_buffer = Kernel::GetCommandBuffer(); u32 socket_handle = cmd_buffer[1]; u32 len = cmd_buffer[2]; u32 flags = cmd_buffer[3]; struct { u32 output_buffer_descriptor; u32 output_buffer_addr; u32 address_buffer_descriptor; u32 output_src_address_buffer; } buffer_parameters; std::memcpy(&buffer_parameters, &cmd_buffer[64], sizeof(buffer_parameters)); if (!Memory::IsValidVirtualAddress(buffer_parameters.output_buffer_addr)) { cmd_buffer[1] = -1; // TODO(Subv): Find the right error code return; } if (!Memory::IsValidVirtualAddress(buffer_parameters.output_src_address_buffer)) { cmd_buffer[1] = -1; // TODO(Subv): Find the right error code return; } std::vector output_buff(len); sockaddr src_addr; socklen_t src_addr_len = sizeof(src_addr); int ret = ::recvfrom(socket_handle, reinterpret_cast(output_buff.data()), len, flags, &src_addr, &src_addr_len); if (ret >= 0 && buffer_parameters.output_src_address_buffer != 0 && src_addr_len > 0) { CTRSockAddr ctr_src_addr = CTRSockAddr::FromPlatform(src_addr); Memory::WriteBlock(buffer_parameters.output_src_address_buffer, &ctr_src_addr, sizeof(ctr_src_addr)); } int result = 0; int total_received = ret; if (ret == SOCKET_ERROR_VALUE) { ret = TranslateError(GET_ERRNO); total_received = 0; } else { // Write only the data we received to avoid overwriting parts of the buffer with zeros Memory::WriteBlock(buffer_parameters.output_buffer_addr, output_buff.data(), total_received); } cmd_buffer[1] = result; cmd_buffer[2] = ret; cmd_buffer[3] = total_received; } static void Poll(Interface* self) { u32* cmd_buffer = Kernel::GetCommandBuffer(); u32 nfds = cmd_buffer[1]; int timeout = cmd_buffer[2]; VAddr input_fds_addr = cmd_buffer[6]; VAddr output_fds_addr = cmd_buffer[0x104 >> 2]; if (!Memory::IsValidVirtualAddress(input_fds_addr) || !Memory::IsValidVirtualAddress(output_fds_addr)) { cmd_buffer[1] = -1; // TODO(Subv): Find correct error code. return; } std::vector ctr_fds(nfds); Memory::ReadBlock(input_fds_addr, ctr_fds.data(), nfds * sizeof(CTRPollFD)); // The 3ds_pollfd and the pollfd structures may be different (Windows/Linux have different // sizes) // so we have to copy the data std::vector platform_pollfd(nfds); std::transform(ctr_fds.begin(), ctr_fds.end(), platform_pollfd.begin(), CTRPollFD::ToPlatform); int ret = ::poll(platform_pollfd.data(), nfds, timeout); // Now update the output pollfd structure std::transform(platform_pollfd.begin(), platform_pollfd.end(), ctr_fds.begin(), CTRPollFD::FromPlatform); Memory::WriteBlock(output_fds_addr, ctr_fds.data(), nfds * sizeof(CTRPollFD)); int result = 0; if (ret == SOCKET_ERROR_VALUE) ret = TranslateError(GET_ERRNO); cmd_buffer[1] = result; cmd_buffer[2] = ret; } static void GetSockName(Interface* self) { u32* cmd_buffer = Kernel::GetCommandBuffer(); u32 socket_handle = cmd_buffer[1]; // Memory address of the ctr_dest_addr structure VAddr ctr_dest_addr_addr = cmd_buffer[0x104 >> 2]; sockaddr dest_addr; socklen_t dest_addr_len = sizeof(dest_addr); int ret = ::getsockname(socket_handle, &dest_addr, &dest_addr_len); if (ctr_dest_addr_addr != 0 && Memory::IsValidVirtualAddress(ctr_dest_addr_addr)) { CTRSockAddr ctr_dest_addr = CTRSockAddr::FromPlatform(dest_addr); Memory::WriteBlock(ctr_dest_addr_addr, &ctr_dest_addr, sizeof(ctr_dest_addr)); } else { cmd_buffer[1] = -1; // TODO(Subv): Verify error return; } int result = 0; if (ret != 0) ret = TranslateError(GET_ERRNO); cmd_buffer[2] = ret; cmd_buffer[1] = result; } static void Shutdown(Interface* self) { u32* cmd_buffer = Kernel::GetCommandBuffer(); u32 socket_handle = cmd_buffer[1]; int how = cmd_buffer[2]; int ret = ::shutdown(socket_handle, how); int result = 0; if (ret != 0) ret = TranslateError(GET_ERRNO); cmd_buffer[2] = ret; cmd_buffer[1] = result; } static void GetPeerName(Interface* self) { u32* cmd_buffer = Kernel::GetCommandBuffer(); u32 socket_handle = cmd_buffer[1]; // Memory address of the ctr_dest_addr structure VAddr ctr_dest_addr_addr = cmd_buffer[0x104 >> 2]; sockaddr dest_addr; socklen_t dest_addr_len = sizeof(dest_addr); int ret = ::getpeername(socket_handle, &dest_addr, &dest_addr_len); if (ctr_dest_addr_addr != 0 && Memory::IsValidVirtualAddress(ctr_dest_addr_addr)) { CTRSockAddr ctr_dest_addr = CTRSockAddr::FromPlatform(dest_addr); Memory::WriteBlock(ctr_dest_addr_addr, &ctr_dest_addr, sizeof(ctr_dest_addr)); } else { cmd_buffer[1] = -1; return; } int result = 0; if (ret != 0) ret = TranslateError(GET_ERRNO); cmd_buffer[2] = ret; cmd_buffer[1] = result; } static void Connect(Interface* self) { // TODO(Subv): Calling this function on a blocking socket will block the emu thread, // preventing graceful shutdown when closing the emulator, this can be fixed by always // performing nonblocking operations and spinlock until the data is available u32* cmd_buffer = Kernel::GetCommandBuffer(); u32 socket_handle = cmd_buffer[1]; // Memory address of the ctr_input_addr structure VAddr ctr_input_addr_addr = cmd_buffer[6]; if (!Memory::IsValidVirtualAddress(ctr_input_addr_addr)) { cmd_buffer[1] = -1; // TODO(Subv): Verify error return; } CTRSockAddr ctr_input_addr; Memory::ReadBlock(ctr_input_addr_addr, &ctr_input_addr, sizeof(ctr_input_addr)); sockaddr input_addr = CTRSockAddr::ToPlatform(ctr_input_addr); int ret = ::connect(socket_handle, &input_addr, sizeof(input_addr)); int result = 0; if (ret != 0) ret = TranslateError(GET_ERRNO); cmd_buffer[0] = IPC::MakeHeader(6, 2, 0); cmd_buffer[1] = result; cmd_buffer[2] = ret; } static void InitializeSockets(Interface* self) { // TODO(Subv): Implement #ifdef _WIN32 WSADATA data; WSAStartup(MAKEWORD(2, 2), &data); #endif u32* cmd_buffer = Kernel::GetCommandBuffer(); cmd_buffer[0] = IPC::MakeHeader(1, 1, 0); cmd_buffer[1] = RESULT_SUCCESS.raw; } static void ShutdownSockets(Interface* self) { // TODO(Subv): Implement CleanupSockets(); u32* cmd_buffer = Kernel::GetCommandBuffer(); cmd_buffer[1] = 0; } static void GetSockOpt(Interface* self) { u32* cmd_buffer = Kernel::GetCommandBuffer(); u32 socket_handle = cmd_buffer[1]; u32 level = cmd_buffer[2]; int optname = TranslateSockOpt(cmd_buffer[3]); socklen_t optlen = (socklen_t)cmd_buffer[4]; int ret = 0; int err = 0; if (optname < 0) { #ifdef _WIN32 err = WSAEINVAL; #else err = EINVAL; #endif } else { // 0x100 = static buffer offset (bytes) // + 0x4 = 2nd pointer (u32) position // >> 2 = convert to u32 offset instead of byte offset (cmd_buffer = u32*) char* optval = reinterpret_cast(Memory::GetPointer(cmd_buffer[0x104 >> 2])); err = ::getsockopt(socket_handle, level, optname, optval, &optlen); if (err == SOCKET_ERROR_VALUE) { err = TranslateError(GET_ERRNO); } } cmd_buffer[0] = IPC::MakeHeader(0x11, 4, 2); cmd_buffer[1] = ret; cmd_buffer[2] = err; cmd_buffer[3] = optlen; } static void SetSockOpt(Interface* self) { u32* cmd_buffer = Kernel::GetCommandBuffer(); u32 socket_handle = cmd_buffer[1]; u32 level = cmd_buffer[2]; int optname = TranslateSockOpt(cmd_buffer[3]); int ret = 0; int err = 0; if (optname < 0) { #ifdef _WIN32 err = WSAEINVAL; #else err = EINVAL; #endif } else { socklen_t optlen = static_cast(cmd_buffer[4]); const char* optval = reinterpret_cast(Memory::GetPointer(cmd_buffer[8])); err = static_cast(::setsockopt(socket_handle, level, optname, optval, optlen)); if (err == SOCKET_ERROR_VALUE) { err = TranslateError(GET_ERRNO); } } cmd_buffer[0] = IPC::MakeHeader(0x12, 4, 4); cmd_buffer[1] = ret; cmd_buffer[2] = err; } const Interface::FunctionInfo FunctionTable[] = { {0x00010044, InitializeSockets, "InitializeSockets"}, {0x000200C2, Socket, "Socket"}, {0x00030082, Listen, "Listen"}, {0x00040082, Accept, "Accept"}, {0x00050084, Bind, "Bind"}, {0x00060084, Connect, "Connect"}, {0x00070104, nullptr, "recvfrom_other"}, {0x00080102, RecvFrom, "RecvFrom"}, {0x00090106, nullptr, "sendto_other"}, {0x000A0106, SendTo, "SendTo"}, {0x000B0042, Close, "Close"}, {0x000C0082, Shutdown, "Shutdown"}, {0x000D0082, nullptr, "GetHostByName"}, {0x000E00C2, nullptr, "GetHostByAddr"}, {0x000F0106, nullptr, "GetAddrInfo"}, {0x00100102, nullptr, "GetNameInfo"}, {0x00110102, GetSockOpt, "GetSockOpt"}, {0x00120104, SetSockOpt, "SetSockOpt"}, {0x001300C2, Fcntl, "Fcntl"}, {0x00140084, Poll, "Poll"}, {0x00150042, nullptr, "SockAtMark"}, {0x00160000, GetHostId, "GetHostId"}, {0x00170082, GetSockName, "GetSockName"}, {0x00180082, GetPeerName, "GetPeerName"}, {0x00190000, ShutdownSockets, "ShutdownSockets"}, {0x001A00C0, nullptr, "GetNetworkOpt"}, {0x001B0040, nullptr, "ICMPSocket"}, {0x001C0104, nullptr, "ICMPPing"}, {0x001D0040, nullptr, "ICMPCancel"}, {0x001E0040, nullptr, "ICMPClose"}, {0x001F0040, nullptr, "GetResolverInfo"}, {0x00210002, nullptr, "CloseSockets"}, {0x00230040, nullptr, "AddGlobalSocket"}, }; SOC_U::SOC_U() { Register(FunctionTable); } SOC_U::~SOC_U() { CleanupSockets(); } } // namespace SOC } // namespace Service