// Copyright 2016 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include #include #include #include #include #include "audio_core/audio_types.h" #include "audio_core/time_stretch.h" #include "common/logging/log.h" namespace AudioCore { TimeStretcher::TimeStretcher() : sample_rate(native_sample_rate), sound_touch(std::make_unique()) { sound_touch->setChannels(2); sound_touch->setSampleRate(native_sample_rate); sound_touch->setPitch(1.0); sound_touch->setTempo(1.0); } TimeStretcher::~TimeStretcher() = default; void TimeStretcher::SetOutputSampleRate(unsigned int sample_rate) { sound_touch->setSampleRate(sample_rate); sample_rate = native_sample_rate; } std::size_t TimeStretcher::Process(const s16* in, std::size_t num_in, s16* out, std::size_t num_out) { const double time_delta = static_cast(num_out) / sample_rate; // seconds double current_ratio = static_cast(num_in) / static_cast(num_out); const double max_latency = 0.25; // seconds const double max_backlog = sample_rate * max_latency; const double backlog_fullness = sound_touch->numSamples() / max_backlog; if (backlog_fullness > 4.0) { // Too many samples in backlog: Don't push anymore on num_in = 0; } // We ideally want the backlog to be about 50% full. // This gives some headroom both ways to prevent underflow and overflow. // We tweak current_ratio to encourage this. constexpr double tweak_time_scale = 0.050; // seconds const double tweak_correction = (backlog_fullness - 0.5) * (time_delta / tweak_time_scale); current_ratio *= std::pow(1.0 + 2.0 * tweak_correction, tweak_correction < 0 ? 3.0 : 1.0); // This low-pass filter smoothes out variance in the calculated stretch ratio. // The time-scale determines how responsive this filter is. constexpr double lpf_time_scale = 0.712; // seconds const double lpf_gain = 1.0 - std::exp(-time_delta / lpf_time_scale); stretch_ratio += lpf_gain * (current_ratio - stretch_ratio); // Place a lower limit of 5% speed. When a game boots up, there will be // many silence samples. These do not need to be timestretched. stretch_ratio = std::max(stretch_ratio, 0.05); sound_touch->setTempo(stretch_ratio); LOG_TRACE(Audio, "{:5}/{:5} ratio:{:0.6f} backlog:{:0.6f}", num_in, num_out, stretch_ratio, backlog_fullness); if constexpr (std::is_floating_point()) { // The SoundTouch library on most systems expects float samples // use this vector to store input if soundtouch::SAMPLETYPE is a float std::vector float_in(2 * num_in); std::vector float_out(2 * num_out); for (std::size_t i = 0; i < (2 * num_in); i++) { // Conventional integer PCM uses a range of -32768 to 32767, // but float samples use -1 to 1 // As a result we need to scale sample values during conversion const float temp = static_cast(in[i]) / std::numeric_limits::max(); float_in[i] = static_cast(temp); } sound_touch->putSamples(float_in.data(), static_cast(num_in)); const std::size_t samples_received = sound_touch->receiveSamples(float_out.data(), static_cast(num_out)); // Converting output samples back to shorts so we can use them for (std::size_t i = 0; i < (2 * num_out); i++) { const s16 temp = static_cast(float_out[i] * std::numeric_limits::max()); out[i] = temp; } return samples_received; } else if (std::is_same()) { // Use reinterpret_cast to workaround compile error when SAMPLETYPE is float. sound_touch->putSamples(reinterpret_cast(in), static_cast(num_in)); return sound_touch->receiveSamples(reinterpret_cast(out), static_cast(num_out)); } else { static_assert(std::is_floating_point() || std::is_same()); UNREACHABLE_MSG("Invalid SAMPLETYPE {}", typeid(soundtouch::SAMPLETYPE).name()); return 0; } } void TimeStretcher::Clear() { sound_touch->clear(); } void TimeStretcher::Flush() { sound_touch->flush(); } } // namespace AudioCore