// Copyright 2014 Citra Emulator Project / PPSSPP Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include #include "common/assert.h" #include "common/common_types.h" #include "common/logging/log.h" #include "common/math_util.h" #include "core/arm/arm_interface.h" #include "core/arm/skyeye_common/armstate.h" #include "core/core.h" #include "core/hle/kernel/errors.h" #include "core/hle/kernel/handle_table.h" #include "core/hle/kernel/kernel.h" #include "core/hle/kernel/memory.h" #include "core/hle/kernel/mutex.h" #include "core/hle/kernel/process.h" #include "core/hle/kernel/thread.h" #include "core/hle/result.h" #include "core/memory.h" namespace Kernel { bool Thread::ShouldWait(const Thread* thread) const { return status != ThreadStatus::Dead; } void Thread::Acquire(Thread* thread) { ASSERT_MSG(!ShouldWait(thread), "object unavailable!"); } u32 ThreadManager::NewThreadId() { return next_thread_id++; } Thread::Thread(KernelSystem& kernel) : WaitObject(kernel), context(kernel.GetThreadManager().NewContext()), thread_manager(kernel.GetThreadManager()) {} Thread::~Thread() {} Thread* ThreadManager::GetCurrentThread() const { return current_thread.get(); } void Thread::Stop() { // Cancel any outstanding wakeup events for this thread thread_manager.kernel.timing.UnscheduleEvent(thread_manager.ThreadWakeupEventType, thread_id); thread_manager.wakeup_callback_table.erase(thread_id); // Clean up thread from ready queue // This is only needed when the thread is termintated forcefully (SVC TerminateProcess) if (status == ThreadStatus::Ready) { thread_manager.ready_queue.remove(current_priority, this); } status = ThreadStatus::Dead; WakeupAllWaitingThreads(); // Clean up any dangling references in objects that this thread was waiting for for (auto& wait_object : wait_objects) { wait_object->RemoveWaitingThread(this); } wait_objects.clear(); // Release all the mutexes that this thread holds ReleaseThreadMutexes(this); // Mark the TLS slot in the thread's page as free. u32 tls_page = (tls_address - Memory::TLS_AREA_VADDR) / Memory::PAGE_SIZE; u32 tls_slot = ((tls_address - Memory::TLS_AREA_VADDR) % Memory::PAGE_SIZE) / Memory::TLS_ENTRY_SIZE; owner_process->tls_slots[tls_page].reset(tls_slot); } void ThreadManager::SwitchContext(Thread* new_thread) { Thread* previous_thread = GetCurrentThread(); Core::Timing& timing = kernel.timing; // Save context for previous thread if (previous_thread) { previous_thread->last_running_ticks = timing.GetTicks(); cpu->SaveContext(previous_thread->context); if (previous_thread->status == ThreadStatus::Running) { // This is only the case when a reschedule is triggered without the current thread // yielding execution (i.e. an event triggered, system core time-sliced, etc) ready_queue.push_front(previous_thread->current_priority, previous_thread); previous_thread->status = ThreadStatus::Ready; } } // Load context of new thread if (new_thread) { ASSERT_MSG(new_thread->status == ThreadStatus::Ready, "Thread must be ready to become running."); // Cancel any outstanding wakeup events for this thread timing.UnscheduleEvent(ThreadWakeupEventType, new_thread->thread_id); auto previous_process = kernel.GetCurrentProcess(); current_thread = SharedFrom(new_thread); ready_queue.remove(new_thread->current_priority, new_thread); new_thread->status = ThreadStatus::Running; if (previous_process.get() != current_thread->owner_process) { kernel.SetCurrentProcess(SharedFrom(current_thread->owner_process)); kernel.memory.SetCurrentPageTable( ¤t_thread->owner_process->vm_manager.page_table); } cpu->LoadContext(new_thread->context); cpu->SetCP15Register(CP15_THREAD_URO, new_thread->GetTLSAddress()); } else { current_thread = nullptr; // Note: We do not reset the current process and current page table when idling because // technically we haven't changed processes, our threads are just paused. } } Thread* ThreadManager::PopNextReadyThread() { Thread* next; Thread* thread = GetCurrentThread(); if (thread && thread->status == ThreadStatus::Running) { // We have to do better than the current thread. // This call returns null when that's not possible. next = ready_queue.pop_first_better(thread->current_priority); if (!next) { // Otherwise just keep going with the current thread next = thread; } } else { next = ready_queue.pop_first(); } return next; } void ThreadManager::WaitCurrentThread_Sleep() { Thread* thread = GetCurrentThread(); thread->status = ThreadStatus::WaitSleep; } void ThreadManager::ExitCurrentThread() { Thread* thread = GetCurrentThread(); thread->Stop(); thread_list.erase(std::remove_if(thread_list.begin(), thread_list.end(), [thread](const auto& p) { return p.get() == thread; }), thread_list.end()); } void ThreadManager::ThreadWakeupCallback(u64 thread_id, s64 cycles_late) { std::shared_ptr thread = SharedFrom(wakeup_callback_table.at(thread_id)); if (thread == nullptr) { LOG_CRITICAL(Kernel, "Callback fired for invalid thread {:08X}", thread_id); return; } if (thread->status == ThreadStatus::WaitSynchAny || thread->status == ThreadStatus::WaitSynchAll || thread->status == ThreadStatus::WaitArb || thread->status == ThreadStatus::WaitHleEvent) { // Invoke the wakeup callback before clearing the wait objects if (thread->wakeup_callback) thread->wakeup_callback(ThreadWakeupReason::Timeout, thread, nullptr); // Remove the thread from each of its waiting objects' waitlists for (auto& object : thread->wait_objects) object->RemoveWaitingThread(thread.get()); thread->wait_objects.clear(); } thread->ResumeFromWait(); } void Thread::WakeAfterDelay(s64 nanoseconds) { // Don't schedule a wakeup if the thread wants to wait forever if (nanoseconds == -1) return; thread_manager.kernel.timing.ScheduleEvent(nsToCycles(nanoseconds), thread_manager.ThreadWakeupEventType, thread_id); } void Thread::ResumeFromWait() { ASSERT_MSG(wait_objects.empty(), "Thread is waking up while waiting for objects"); switch (status) { case ThreadStatus::WaitSynchAll: case ThreadStatus::WaitSynchAny: case ThreadStatus::WaitHleEvent: case ThreadStatus::WaitArb: case ThreadStatus::WaitSleep: case ThreadStatus::WaitIPC: break; case ThreadStatus::Ready: // The thread's wakeup callback must have already been cleared when the thread was first // awoken. ASSERT(wakeup_callback == nullptr); // If the thread is waiting on multiple wait objects, it might be awoken more than once // before actually resuming. We can ignore subsequent wakeups if the thread status has // already been set to ThreadStatus::Ready. return; case ThreadStatus::Running: DEBUG_ASSERT_MSG(false, "Thread with object id {} has already resumed.", GetObjectId()); return; case ThreadStatus::Dead: // This should never happen, as threads must complete before being stopped. DEBUG_ASSERT_MSG(false, "Thread with object id {} cannot be resumed because it's DEAD.", GetObjectId()); return; } wakeup_callback = nullptr; thread_manager.ready_queue.push_back(current_priority, this); status = ThreadStatus::Ready; thread_manager.kernel.PrepareReschedule(); } void ThreadManager::DebugThreadQueue() { Thread* thread = GetCurrentThread(); if (!thread) { LOG_DEBUG(Kernel, "Current: NO CURRENT THREAD"); } else { LOG_DEBUG(Kernel, "0x{:02X} {} (current)", thread->current_priority, GetCurrentThread()->GetObjectId()); } for (auto& t : thread_list) { u32 priority = ready_queue.contains(t.get()); if (priority != -1) { LOG_DEBUG(Kernel, "0x{:02X} {}", priority, t->GetObjectId()); } } } /** * Finds a free location for the TLS section of a thread. * @param tls_slots The TLS page array of the thread's owner process. * Returns a tuple of (page, slot, alloc_needed) where: * page: The index of the first allocated TLS page that has free slots. * slot: The index of the first free slot in the indicated page. * alloc_needed: Whether there's a need to allocate a new TLS page (All pages are full). */ static std::tuple GetFreeThreadLocalSlot( const std::vector>& tls_slots) { // Iterate over all the allocated pages, and try to find one where not all slots are used. for (std::size_t page = 0; page < tls_slots.size(); ++page) { const auto& page_tls_slots = tls_slots[page]; if (!page_tls_slots.all()) { // We found a page with at least one free slot, find which slot it is for (std::size_t slot = 0; slot < page_tls_slots.size(); ++slot) { if (!page_tls_slots.test(slot)) { return std::make_tuple(page, slot, false); } } } } return std::make_tuple(0, 0, true); } /** * Resets a thread context, making it ready to be scheduled and run by the CPU * @param context Thread context to reset * @param stack_top Address of the top of the stack * @param entry_point Address of entry point for execution * @param arg User argument for thread */ static void ResetThreadContext(const std::unique_ptr& context, u32 stack_top, u32 entry_point, u32 arg) { context->Reset(); context->SetCpuRegister(0, arg); context->SetProgramCounter(entry_point); context->SetStackPointer(stack_top); context->SetCpsr(USER32MODE | ((entry_point & 1) << 5)); // Usermode and THUMB mode } ResultVal> KernelSystem::CreateThread(std::string name, VAddr entry_point, u32 priority, u32 arg, s32 processor_id, VAddr stack_top, Process& owner_process) { // Check if priority is in ranged. Lowest priority -> highest priority id. if (priority > ThreadPrioLowest) { LOG_ERROR(Kernel_SVC, "Invalid thread priority: {}", priority); return ERR_OUT_OF_RANGE; } if (processor_id > ThreadProcessorIdMax) { LOG_ERROR(Kernel_SVC, "Invalid processor id: {}", processor_id); return ERR_OUT_OF_RANGE_KERNEL; } // TODO(yuriks): Other checks, returning 0xD9001BEA if (!Memory::IsValidVirtualAddress(owner_process, entry_point)) { LOG_ERROR(Kernel_SVC, "(name={}): invalid entry {:08x}", name, entry_point); // TODO: Verify error return ResultCode(ErrorDescription::InvalidAddress, ErrorModule::Kernel, ErrorSummary::InvalidArgument, ErrorLevel::Permanent); } auto thread{std::make_shared(*this)}; thread_manager->thread_list.push_back(thread); thread_manager->ready_queue.prepare(priority); thread->thread_id = thread_manager->NewThreadId(); thread->status = ThreadStatus::Dormant; thread->entry_point = entry_point; thread->stack_top = stack_top; thread->nominal_priority = thread->current_priority = priority; thread->last_running_ticks = timing.GetTicks(); thread->processor_id = processor_id; thread->wait_objects.clear(); thread->wait_address = 0; thread->name = std::move(name); thread_manager->wakeup_callback_table[thread->thread_id] = thread.get(); thread->owner_process = &owner_process; // Find the next available TLS index, and mark it as used auto& tls_slots = owner_process.tls_slots; auto [available_page, available_slot, needs_allocation] = GetFreeThreadLocalSlot(tls_slots); if (needs_allocation) { // There are no already-allocated pages with free slots, lets allocate a new one. // TLS pages are allocated from the BASE region in the linear heap. MemoryRegionInfo* memory_region = GetMemoryRegion(MemoryRegion::BASE); // Allocate some memory from the end of the linear heap for this region. auto offset = memory_region->LinearAllocate(Memory::PAGE_SIZE); if (!offset) { LOG_ERROR(Kernel_SVC, "Not enough space in region to allocate a new TLS page for thread"); return ERR_OUT_OF_MEMORY; } owner_process.memory_used += Memory::PAGE_SIZE; tls_slots.emplace_back(0); // The page is completely available at the start available_page = tls_slots.size() - 1; available_slot = 0; // Use the first slot in the new page auto& vm_manager = owner_process.vm_manager; // Map the page to the current process' address space. vm_manager.MapBackingMemory(Memory::TLS_AREA_VADDR + available_page * Memory::PAGE_SIZE, memory.GetFCRAMPointer(*offset), Memory::PAGE_SIZE, MemoryState::Locked); } // Mark the slot as used tls_slots[available_page].set(available_slot); thread->tls_address = Memory::TLS_AREA_VADDR + available_page * Memory::PAGE_SIZE + available_slot * Memory::TLS_ENTRY_SIZE; memory.ZeroBlock(owner_process, thread->tls_address, Memory::TLS_ENTRY_SIZE); // TODO(peachum): move to ScheduleThread() when scheduler is added so selected core is used // to initialize the context ResetThreadContext(thread->context, stack_top, entry_point, arg); thread_manager->ready_queue.push_back(thread->current_priority, thread.get()); thread->status = ThreadStatus::Ready; return MakeResult>(std::move(thread)); } void Thread::SetPriority(u32 priority) { ASSERT_MSG(priority <= ThreadPrioLowest && priority >= ThreadPrioHighest, "Invalid priority value."); // If thread was ready, adjust queues if (status == ThreadStatus::Ready) thread_manager.ready_queue.move(this, current_priority, priority); else thread_manager.ready_queue.prepare(priority); nominal_priority = current_priority = priority; } void Thread::UpdatePriority() { u32 best_priority = nominal_priority; for (auto& mutex : held_mutexes) { if (mutex->priority < best_priority) best_priority = mutex->priority; } BoostPriority(best_priority); } void Thread::BoostPriority(u32 priority) { // If thread was ready, adjust queues if (status == ThreadStatus::Ready) thread_manager.ready_queue.move(this, current_priority, priority); else thread_manager.ready_queue.prepare(priority); current_priority = priority; } std::shared_ptr SetupMainThread(KernelSystem& kernel, u32 entry_point, u32 priority, std::shared_ptr owner_process) { // Initialize new "main" thread auto thread_res = kernel.CreateThread("main", entry_point, priority, 0, owner_process->ideal_processor, Memory::HEAP_VADDR_END, *owner_process); std::shared_ptr thread = std::move(thread_res).Unwrap(); thread->context->SetFpscr(FPSCR_DEFAULT_NAN | FPSCR_FLUSH_TO_ZERO | FPSCR_ROUND_TOZERO | FPSCR_IXC); // 0x03C00010 // Note: The newly created thread will be run when the scheduler fires. return thread; } bool ThreadManager::HaveReadyThreads() { return ready_queue.get_first() != nullptr; } void ThreadManager::Reschedule() { Thread* cur = GetCurrentThread(); Thread* next = PopNextReadyThread(); if (cur && next) { LOG_TRACE(Kernel, "context switch {} -> {}", cur->GetObjectId(), next->GetObjectId()); } else if (cur) { LOG_TRACE(Kernel, "context switch {} -> idle", cur->GetObjectId()); } else if (next) { LOG_TRACE(Kernel, "context switch idle -> {}", next->GetObjectId()); } SwitchContext(next); } void Thread::SetWaitSynchronizationResult(ResultCode result) { context->SetCpuRegister(0, result.raw); } void Thread::SetWaitSynchronizationOutput(s32 output) { context->SetCpuRegister(1, output); } s32 Thread::GetWaitObjectIndex(const WaitObject* object) const { ASSERT_MSG(!wait_objects.empty(), "Thread is not waiting for anything"); const auto match = std::find_if(wait_objects.rbegin(), wait_objects.rend(), [object](const auto& p) { return p.get() == object; }); return static_cast(std::distance(match, wait_objects.rend()) - 1); } VAddr Thread::GetCommandBufferAddress() const { // Offset from the start of TLS at which the IPC command buffer begins. constexpr u32 command_header_offset = 0x80; return GetTLSAddress() + command_header_offset; } ThreadManager::ThreadManager(Kernel::KernelSystem& kernel) : kernel(kernel) { ThreadWakeupEventType = kernel.timing.RegisterEvent("ThreadWakeupCallback", [this](u64 thread_id, s64 cycle_late) { ThreadWakeupCallback(thread_id, cycle_late); }); } ThreadManager::~ThreadManager() { for (auto& t : thread_list) { t->Stop(); } } const std::vector>& ThreadManager::GetThreadList() { return thread_list; } } // namespace Kernel