/** * Copyright (C) 2013 Citrus Emulator * * @file mem_map_funcs.cpp * @author ShizZy * @date 2013-09-18 * @brief Memory map R/W functions * * @section LICENSE * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details at * http://www.gnu.org/copyleft/gpl.html * * Official project repository can be found at: * http://code.google.com/p/gekko-gc-emu/ */ #include "common.h" #include "mem_map.h" namespace Memory { /* u8 *GetPointer(const u32 addr) { if ((addr & 0x3E000000) == 0x08000000) { return g_fcram + (addr & MEM_FCRAM_MASK); } else if ((addr & 0x3F800000) == 0x04000000) { return m_pVRAM + (addr & VRAM_MASK); } else if ((addr & 0x3F000000) >= 0x08000000 && (addr & 0x3F000000) < 0x08000000 + g_MemorySize) { return m_pRAM + (addr & g_MemoryMask); } else { ERROR_LOG(MEMMAP, "Unknown GetPointer %08x PC %08x LR %08x", addr, currentMIPS->pc, currentMIPS->r[MIPS_REG_RA]); static bool reported = false; if (!reported) { Reporting::ReportMessage("Unknown GetPointer %08x PC %08x LR %08x", addr, currentMIPS->pc, currentMIPS->r[MIPS_REG_RA]); reported = true; } if (!g_Config.bIgnoreBadMemAccess) { Core_EnableStepping(true); host->SetDebugMode(true); } return 0; } }*/ template inline void ReadFromHardware(T &var, const u32 addr) { // TODO: Figure out the fastest order of tests for both read and write (they are probably different). // TODO: Make sure this represents the mirrors in a correct way. // Could just do a base-relative read, too.... TODO if ((addr & 0x3E000000) == 0x08000000) { var = *((const T*)&g_fcram[addr & MEM_FCRAM_MASK]); } /*else if ((addr & 0x3F800000) == 0x04000000) { var = *((const T*)&m_pVRAM[addr & VRAM_MASK]); }*/ else { _assert_msg_(MEMMAP, false, "unknown hardware read"); // WARN_LOG(MEMMAP, "ReadFromHardware: Invalid addr %08x PC %08x LR %08x", addr, currentMIPS->pc, currentMIPS->r[MIPS_REG_RA]); } } template inline void WriteToHardware(u32 addr, const T data) { NOTICE_LOG(MEMMAP, "Test1 %08X", addr); // ExeFS:/.code is loaded here: if ((addr & 0xFFF00000) == 0x00100000) { // TODO(ShizZy): This is dumb... handle correctly. From 3DBrew: // http://3dbrew.org/wiki/Memory_layout#ARM11_User-land_memory_regions // The ExeFS:/.code is loaded here, executables must be loaded to the 0x00100000 region when // the exheader "special memory" flag is clear. The 0x03F00000-byte size restriction only // applies when this flag is clear. Executables are usually loaded to 0x14000000 when the // exheader "special memory" flag is set, however this address can be arbitrary. *(T*)&g_fcram[addr & MEM_FCRAM_MASK] = data; NOTICE_LOG(MEMMAP, "Test2"); // Heap mapped by ControlMemory: } else if ((addr & 0x3E000000) == 0x08000000) { // TODO(ShizZy): Writes to this virtual address should be put in physical memory at FCRAM + GSP // heap size... the following is writing to FCRAM + 0, which is actually supposed to be the // application's GSP heap *(T*)&g_fcram[addr & MEM_FCRAM_MASK] = data; } else if ((addr & 0xFF000000) == 0x14000000) { _assert_msg_(MEMMAP, false, "umimplemented write to GSP heap"); } else if ((addr & 0xFFF00000) == 0x1EC00000) { _assert_msg_(MEMMAP, false, "umimplemented write to IO registers"); } else if ((addr & 0xFF000000) == 0x1F000000) { _assert_msg_(MEMMAP, false, "umimplemented write to VRAM"); } else if ((addr & 0xFFF00000) == 0x1FF00000) { _assert_msg_(MEMMAP, false, "umimplemented write to DSP memory"); } else if ((addr & 0xFFFF0000) == 0x1FF80000) { _assert_msg_(MEMMAP, false, "umimplemented write to Configuration Memory"); } else if ((addr & 0xFFFFF000) == 0x1FF81000) { _assert_msg_(MEMMAP, false, "umimplemented write to shared page"); } else { _assert_msg_(MEMMAP, false, "unknown hardware write"); } } bool IsValidAddress(const u32 addr) { if ((addr & 0x3E000000) == 0x08000000) { return true; } else if ((addr & 0x3F800000) == 0x04000000) { return true; } else if ((addr & 0xBFFF0000) == 0x00010000) { return true; } else if ((addr & 0x3F000000) >= 0x08000000 && (addr & 0x3F000000) < 0x08000000 + MEM_FCRAM_MASK) { return true; } else { return false; } } u8 Read8(const u32 addr) { u8 _var = 0; ReadFromHardware(_var, addr); return (u8)_var; } u16 Read16(const u32 addr) { u16_le _var = 0; ReadFromHardware(_var, addr); return (u16)_var; } u32 Read32(const u32 addr) { u32_le _var = 0; ReadFromHardware(_var, addr); return _var; } u64 Read64(const u32 addr) { u64_le _var = 0; ReadFromHardware(_var, addr); return _var; } u32 Read8_ZX(const u32 addr) { return (u32)Read8(addr); } u32 Read16_ZX(const u32 addr) { return (u32)Read16(addr); } void Write8(const u32 addr, const u8 data) { WriteToHardware(addr, data); } void Write16(const u32 addr, const u16 data) { WriteToHardware(addr, data); } void Write32(const u32 addr, const u32 data) { WriteToHardware(addr, data); } void Write64(const u32 addr, const u64 data) { WriteToHardware(addr, data); } } // namespace