// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include #include #include #include "common/assert.h" #include "common/common_types.h" #include "common/logging/log.h" #include "core/core.h" #include "core/hle/kernel/config_mem.h" #include "core/hle/kernel/memory.h" #include "core/hle/kernel/process.h" #include "core/hle/kernel/shared_page.h" #include "core/hle/kernel/vm_manager.h" #include "core/hle/result.h" #include "core/memory.h" #include "core/settings.h" //////////////////////////////////////////////////////////////////////////////////////////////////// namespace Kernel { /// Size of the APPLICATION, SYSTEM and BASE memory regions (respectively) for each system /// memory configuration type. static const u32 memory_region_sizes[8][3] = { // Old 3DS layouts {0x04000000, 0x02C00000, 0x01400000}, // 0 {/* This appears to be unused. */}, // 1 {0x06000000, 0x00C00000, 0x01400000}, // 2 {0x05000000, 0x01C00000, 0x01400000}, // 3 {0x04800000, 0x02400000, 0x01400000}, // 4 {0x02000000, 0x04C00000, 0x01400000}, // 5 // New 3DS layouts {0x07C00000, 0x06400000, 0x02000000}, // 6 {0x0B200000, 0x02E00000, 0x02000000}, // 7 }; namespace MemoryMode { enum N3DSMode : u8 { Mode6 = 1, Mode7 = 2, Mode6_2 = 3, }; } void KernelSystem::MemoryInit(u32 mem_type, u8 n3ds_mode) { ASSERT(mem_type != 1); const bool is_new_3ds = Settings::values.is_new_3ds; u32 reported_mem_type = mem_type; if (is_new_3ds) { if (n3ds_mode == MemoryMode::Mode6 || n3ds_mode == MemoryMode::Mode6_2) { mem_type = 6; reported_mem_type = 6; } else if (n3ds_mode == MemoryMode::Mode7) { mem_type = 7; reported_mem_type = 7; } else { // On the N3ds, all O3ds configurations (<=5) are forced to 6 instead. mem_type = 6; } } // The kernel allocation regions (APPLICATION, SYSTEM and BASE) are laid out in sequence, with // the sizes specified in the memory_region_sizes table. VAddr base = 0; for (int i = 0; i < 3; ++i) { memory_regions[i]->Reset(base, memory_region_sizes[mem_type][i]); base += memory_regions[i]->size; } // We must've allocated the entire FCRAM by the end ASSERT(base == (is_new_3ds ? Memory::FCRAM_N3DS_SIZE : Memory::FCRAM_SIZE)); config_mem_handler = std::make_shared(); auto& config_mem = config_mem_handler->GetConfigMem(); config_mem.app_mem_type = reported_mem_type; config_mem.app_mem_alloc = memory_region_sizes[reported_mem_type][0]; config_mem.sys_mem_alloc = memory_regions[1]->size; config_mem.base_mem_alloc = memory_regions[2]->size; shared_page_handler = std::make_shared(timing); } std::shared_ptr KernelSystem::GetMemoryRegion(MemoryRegion region) { switch (region) { case MemoryRegion::APPLICATION: return memory_regions[0]; case MemoryRegion::SYSTEM: return memory_regions[1]; case MemoryRegion::BASE: return memory_regions[2]; default: UNREACHABLE(); } } void KernelSystem::HandleSpecialMapping(VMManager& address_space, const AddressMapping& mapping) { using namespace Memory; struct MemoryArea { VAddr vaddr_base; PAddr paddr_base; u32 size; }; // The order of entries in this array is important. The VRAM and IO VAddr ranges overlap, and // VRAM must be tried first. static constexpr MemoryArea memory_areas[] = { {VRAM_VADDR, VRAM_PADDR, VRAM_SIZE}, {IO_AREA_VADDR, IO_AREA_PADDR, IO_AREA_SIZE}, {DSP_RAM_VADDR, DSP_RAM_PADDR, DSP_RAM_SIZE}, {N3DS_EXTRA_RAM_VADDR, N3DS_EXTRA_RAM_PADDR, N3DS_EXTRA_RAM_SIZE - 0x20000}, }; VAddr mapping_limit = mapping.address + mapping.size; if (mapping_limit < mapping.address) { LOG_CRITICAL(Loader, "Mapping size overflowed: address=0x{:08X} size=0x{:X}", mapping.address, mapping.size); return; } auto area = std::find_if(std::begin(memory_areas), std::end(memory_areas), [&](const auto& area) { return mapping.address >= area.vaddr_base && mapping_limit <= area.vaddr_base + area.size; }); if (area == std::end(memory_areas)) { LOG_ERROR(Loader, "Unhandled special mapping: address=0x{:08X} size=0x{:X}" " read_only={} unk_flag={}", mapping.address, mapping.size, mapping.read_only, mapping.unk_flag); return; } u32 offset_into_region = mapping.address - area->vaddr_base; if (area->paddr_base == IO_AREA_PADDR) { LOG_ERROR(Loader, "MMIO mappings are not supported yet. phys_addr=0x{:08X}", area->paddr_base + offset_into_region); return; } auto target_pointer = memory.GetPhysicalRef(area->paddr_base + offset_into_region); // TODO(yuriks): This flag seems to have some other effect, but it's unknown what MemoryState memory_state = mapping.unk_flag ? MemoryState::Static : MemoryState::IO; auto vma = address_space.MapBackingMemory(mapping.address, target_pointer, mapping.size, memory_state) .Unwrap(); address_space.Reprotect(vma, mapping.read_only ? VMAPermission::Read : VMAPermission::ReadWrite); } void KernelSystem::MapSharedPages(VMManager& address_space) { auto cfg_mem_vma = address_space .MapBackingMemory(Memory::CONFIG_MEMORY_VADDR, {config_mem_handler}, Memory::CONFIG_MEMORY_SIZE, MemoryState::Shared) .Unwrap(); address_space.Reprotect(cfg_mem_vma, VMAPermission::Read); auto shared_page_vma = address_space .MapBackingMemory(Memory::SHARED_PAGE_VADDR, {shared_page_handler}, Memory::SHARED_PAGE_SIZE, MemoryState::Shared) .Unwrap(); address_space.Reprotect(shared_page_vma, VMAPermission::Read); } void MemoryRegionInfo::Reset(u32 base, u32 size) { ASSERT(!is_locked); this->base = base; this->size = size; used = 0; free_blocks.clear(); // mark the entire region as free free_blocks.insert(Interval::right_open(base, base + size)); } MemoryRegionInfo::IntervalSet MemoryRegionInfo::HeapAllocate(u32 size) { ASSERT(!is_locked); IntervalSet result; u32 rest = size; // Try allocating from the higher address for (auto iter = free_blocks.rbegin(); iter != free_blocks.rend(); ++iter) { ASSERT(iter->bounds() == boost::icl::interval_bounds::right_open()); if (iter->upper() - iter->lower() >= rest) { // Requested size is fulfilled with this block result += Interval(iter->upper() - rest, iter->upper()); rest = 0; break; } result += *iter; rest -= iter->upper() - iter->lower(); } if (rest != 0) { // There is no enough free space return {}; } free_blocks -= result; used += size; return result; } bool MemoryRegionInfo::LinearAllocate(u32 offset, u32 size) { ASSERT(!is_locked); Interval interval(offset, offset + size); if (!boost::icl::contains(free_blocks, interval)) { // The requested range is already allocated return false; } free_blocks -= interval; used += size; return true; } std::optional MemoryRegionInfo::LinearAllocate(u32 size) { ASSERT(!is_locked); // Find the first sufficient continuous block from the lower address for (const auto& interval : free_blocks) { ASSERT(interval.bounds() == boost::icl::interval_bounds::right_open()); if (interval.upper() - interval.lower() >= size) { Interval allocated(interval.lower(), interval.lower() + size); free_blocks -= allocated; used += size; return allocated.lower(); } } // No sufficient block found return std::nullopt; } void MemoryRegionInfo::Free(u32 offset, u32 size) { if (is_locked) { return; } Interval interval(offset, offset + size); ASSERT(!boost::icl::intersects(free_blocks, interval)); // must be allocated blocks free_blocks += interval; used -= size; } void MemoryRegionInfo::Unlock() { is_locked = false; } } // namespace Kernel