// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include #include #include #include "common/assert.h" #include "common/common_types.h" #include "common/logging/log.h" #include "common/microprofile.h" #include "common/vector_math.h" #include "video_core/pica_state.h" #include "video_core/pica_types.h" #include "video_core/shader/shader.h" #include "video_core/shader/shader_interpreter.h" using nihstro::Instruction; using nihstro::OpCode; using nihstro::RegisterType; using nihstro::SourceRegister; using nihstro::SwizzlePattern; namespace Pica::Shader { struct CallStackElement { u32 final_address; // Address upon which we jump to return_address u32 return_address; // Where to jump when leaving scope u8 repeat_counter; // How often to repeat until this call stack element is removed u8 loop_increment; // Which value to add to the loop counter after an iteration // TODO: Should this be a signed value? Does it even matter? u32 loop_address; // The address where we'll return to after each loop iteration }; template static void RunInterpreter(const ShaderSetup& setup, UnitState& state, DebugData& debug_data, unsigned offset) { // TODO: Is there a maximal size for this? boost::container::static_vector call_stack; u32 program_counter = offset; state.conditional_code[0] = false; state.conditional_code[1] = false; auto call = [&program_counter, &call_stack](u32 offset, u32 num_instructions, u32 return_offset, u8 repeat_count, u8 loop_increment) { // -1 to make sure when incrementing the PC we end up at the correct offset program_counter = offset - 1; ASSERT(call_stack.size() < call_stack.capacity()); call_stack.push_back( {offset + num_instructions, return_offset, repeat_count, loop_increment, offset}); }; auto evaluate_condition = [&state](Instruction::FlowControlType flow_control) { using Op = Instruction::FlowControlType::Op; bool result_x = flow_control.refx.Value() == state.conditional_code[0]; bool result_y = flow_control.refy.Value() == state.conditional_code[1]; switch (flow_control.op) { case Op::Or: return result_x || result_y; case Op::And: return result_x && result_y; case Op::JustX: return result_x; case Op::JustY: return result_y; default: UNREACHABLE(); return false; } }; const auto& uniforms = setup.uniforms; const auto& swizzle_data = setup.swizzle_data; const auto& program_code = setup.program_code; // Placeholder for invalid inputs static float24 dummy_vec4_float24[4]; unsigned iteration = 0; bool exit_loop = false; while (!exit_loop) { if (!call_stack.empty()) { auto& top = call_stack.back(); if (program_counter == top.final_address) { state.address_registers[2] += top.loop_increment; if (top.repeat_counter-- == 0) { program_counter = top.return_address; call_stack.pop_back(); } else { program_counter = top.loop_address; } // TODO: Is "trying again" accurate to hardware? continue; } } const Instruction instr = {program_code[program_counter]}; const SwizzlePattern swizzle = {swizzle_data[instr.common.operand_desc_id]}; Record(debug_data, iteration, program_counter); if (iteration > 0) Record(debug_data, iteration - 1, program_counter); debug_data.max_offset = std::max(debug_data.max_offset, 1 + program_counter); auto LookupSourceRegister = [&](const SourceRegister& source_reg) -> const float24* { switch (source_reg.GetRegisterType()) { case RegisterType::Input: return &state.registers.input[source_reg.GetIndex()].x; case RegisterType::Temporary: return &state.registers.temporary[source_reg.GetIndex()].x; case RegisterType::FloatUniform: return &uniforms.f[source_reg.GetIndex()].x; default: return dummy_vec4_float24; } }; switch (instr.opcode.Value().GetInfo().type) { case OpCode::Type::Arithmetic: { const bool is_inverted = (0 != (instr.opcode.Value().GetInfo().subtype & OpCode::Info::SrcInversed)); const int address_offset = (instr.common.address_register_index == 0) ? 0 : state.address_registers[instr.common.address_register_index - 1]; const float24* src1_ = LookupSourceRegister(instr.common.GetSrc1(is_inverted) + (is_inverted ? 0 : address_offset)); const float24* src2_ = LookupSourceRegister(instr.common.GetSrc2(is_inverted) + (is_inverted ? address_offset : 0)); const bool negate_src1 = ((bool)swizzle.negate_src1 != false); const bool negate_src2 = ((bool)swizzle.negate_src2 != false); float24 src1[4] = { src1_[(int)swizzle.src1_selector_0.Value()], src1_[(int)swizzle.src1_selector_1.Value()], src1_[(int)swizzle.src1_selector_2.Value()], src1_[(int)swizzle.src1_selector_3.Value()], }; if (negate_src1) { src1[0] = -src1[0]; src1[1] = -src1[1]; src1[2] = -src1[2]; src1[3] = -src1[3]; } float24 src2[4] = { src2_[(int)swizzle.src2_selector_0.Value()], src2_[(int)swizzle.src2_selector_1.Value()], src2_[(int)swizzle.src2_selector_2.Value()], src2_[(int)swizzle.src2_selector_3.Value()], }; if (negate_src2) { src2[0] = -src2[0]; src2[1] = -src2[1]; src2[2] = -src2[2]; src2[3] = -src2[3]; } float24* dest = (instr.common.dest.Value() < 0x10) ? &state.registers.output[instr.common.dest.Value().GetIndex()][0] : (instr.common.dest.Value() < 0x20) ? &state.registers.temporary[instr.common.dest.Value().GetIndex()][0] : dummy_vec4_float24; debug_data.max_opdesc_id = std::max(debug_data.max_opdesc_id, 1 + instr.common.operand_desc_id); switch (instr.opcode.Value().EffectiveOpCode()) { case OpCode::Id::ADD: { Record(debug_data, iteration, src1); Record(debug_data, iteration, src2); Record(debug_data, iteration, dest); for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = src1[i] + src2[i]; } Record(debug_data, iteration, dest); break; } case OpCode::Id::MUL: { Record(debug_data, iteration, src1); Record(debug_data, iteration, src2); Record(debug_data, iteration, dest); for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = src1[i] * src2[i]; } Record(debug_data, iteration, dest); break; } case OpCode::Id::FLR: Record(debug_data, iteration, src1); Record(debug_data, iteration, dest); for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = float24::FromFloat32(std::floor(src1[i].ToFloat32())); } Record(debug_data, iteration, dest); break; case OpCode::Id::MAX: Record(debug_data, iteration, src1); Record(debug_data, iteration, src2); Record(debug_data, iteration, dest); for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; // NOTE: Exact form required to match NaN semantics to hardware: // max(0, NaN) -> NaN // max(NaN, 0) -> 0 dest[i] = (src1[i] > src2[i]) ? src1[i] : src2[i]; } Record(debug_data, iteration, dest); break; case OpCode::Id::MIN: Record(debug_data, iteration, src1); Record(debug_data, iteration, src2); Record(debug_data, iteration, dest); for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; // NOTE: Exact form required to match NaN semantics to hardware: // min(0, NaN) -> NaN // min(NaN, 0) -> 0 dest[i] = (src1[i] < src2[i]) ? src1[i] : src2[i]; } Record(debug_data, iteration, dest); break; case OpCode::Id::DP3: case OpCode::Id::DP4: case OpCode::Id::DPH: case OpCode::Id::DPHI: { Record(debug_data, iteration, src1); Record(debug_data, iteration, src2); Record(debug_data, iteration, dest); OpCode::Id opcode = instr.opcode.Value().EffectiveOpCode(); if (opcode == OpCode::Id::DPH || opcode == OpCode::Id::DPHI) src1[3] = float24::FromFloat32(1.0f); int num_components = (opcode == OpCode::Id::DP3) ? 3 : 4; float24 dot = std::inner_product(src1, src1 + num_components, src2, float24::FromFloat32(0.f)); for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = dot; } Record(debug_data, iteration, dest); break; } // Reciprocal case OpCode::Id::RCP: { Record(debug_data, iteration, src1); Record(debug_data, iteration, dest); float24 rcp_res = float24::FromFloat32(1.0f / src1[0].ToFloat32()); for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = rcp_res; } Record(debug_data, iteration, dest); break; } // Reciprocal Square Root case OpCode::Id::RSQ: { Record(debug_data, iteration, src1); Record(debug_data, iteration, dest); float24 rsq_res = float24::FromFloat32(1.0f / std::sqrt(src1[0].ToFloat32())); for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = rsq_res; } Record(debug_data, iteration, dest); break; } case OpCode::Id::MOVA: { Record(debug_data, iteration, src1); for (int i = 0; i < 2; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; // TODO: Figure out how the rounding is done on hardware state.address_registers[i] = static_cast(src1[i].ToFloat32()); } Record(debug_data, iteration, state.address_registers); break; } case OpCode::Id::MOV: { Record(debug_data, iteration, src1); Record(debug_data, iteration, dest); for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = src1[i]; } Record(debug_data, iteration, dest); break; } case OpCode::Id::SGE: case OpCode::Id::SGEI: Record(debug_data, iteration, src1); Record(debug_data, iteration, src2); Record(debug_data, iteration, dest); for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = (src1[i] >= src2[i]) ? float24::FromFloat32(1.0f) : float24::FromFloat32(0.0f); } Record(debug_data, iteration, dest); break; case OpCode::Id::SLT: case OpCode::Id::SLTI: Record(debug_data, iteration, src1); Record(debug_data, iteration, src2); Record(debug_data, iteration, dest); for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = (src1[i] < src2[i]) ? float24::FromFloat32(1.0f) : float24::FromFloat32(0.0f); } Record(debug_data, iteration, dest); break; case OpCode::Id::CMP: Record(debug_data, iteration, src1); Record(debug_data, iteration, src2); for (int i = 0; i < 2; ++i) { // TODO: Can you restrict to one compare via dest masking? auto compare_op = instr.common.compare_op; auto op = (i == 0) ? compare_op.x.Value() : compare_op.y.Value(); switch (op) { case Instruction::Common::CompareOpType::Equal: state.conditional_code[i] = (src1[i] == src2[i]); break; case Instruction::Common::CompareOpType::NotEqual: state.conditional_code[i] = (src1[i] != src2[i]); break; case Instruction::Common::CompareOpType::LessThan: state.conditional_code[i] = (src1[i] < src2[i]); break; case Instruction::Common::CompareOpType::LessEqual: state.conditional_code[i] = (src1[i] <= src2[i]); break; case Instruction::Common::CompareOpType::GreaterThan: state.conditional_code[i] = (src1[i] > src2[i]); break; case Instruction::Common::CompareOpType::GreaterEqual: state.conditional_code[i] = (src1[i] >= src2[i]); break; default: LOG_ERROR(HW_GPU, "Unknown compare mode {:x}", static_cast(op)); break; } } Record(debug_data, iteration, state.conditional_code); break; case OpCode::Id::EX2: { Record(debug_data, iteration, src1); Record(debug_data, iteration, dest); // EX2 only takes first component exp2 and writes it to all dest components float24 ex2_res = float24::FromFloat32(std::exp2(src1[0].ToFloat32())); for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = ex2_res; } Record(debug_data, iteration, dest); break; } case OpCode::Id::LG2: { Record(debug_data, iteration, src1); Record(debug_data, iteration, dest); // LG2 only takes the first component log2 and writes it to all dest components float24 lg2_res = float24::FromFloat32(std::log2(src1[0].ToFloat32())); for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = lg2_res; } Record(debug_data, iteration, dest); break; } default: LOG_ERROR(HW_GPU, "Unhandled arithmetic instruction: 0x{:02x} ({}): 0x{:08x}", (int)instr.opcode.Value().EffectiveOpCode(), instr.opcode.Value().GetInfo().name, instr.hex); DEBUG_ASSERT(false); break; } break; } case OpCode::Type::MultiplyAdd: { if ((instr.opcode.Value().EffectiveOpCode() == OpCode::Id::MAD) || (instr.opcode.Value().EffectiveOpCode() == OpCode::Id::MADI)) { const SwizzlePattern& swizzle = *reinterpret_cast( &swizzle_data[instr.mad.operand_desc_id]); bool is_inverted = (instr.opcode.Value().EffectiveOpCode() == OpCode::Id::MADI); const int address_offset = (instr.mad.address_register_index == 0) ? 0 : state.address_registers[instr.mad.address_register_index - 1]; const float24* src1_ = LookupSourceRegister(instr.mad.GetSrc1(is_inverted)); const float24* src2_ = LookupSourceRegister(instr.mad.GetSrc2(is_inverted) + (!is_inverted * address_offset)); const float24* src3_ = LookupSourceRegister(instr.mad.GetSrc3(is_inverted) + (is_inverted * address_offset)); const bool negate_src1 = ((bool)swizzle.negate_src1 != false); const bool negate_src2 = ((bool)swizzle.negate_src2 != false); const bool negate_src3 = ((bool)swizzle.negate_src3 != false); float24 src1[4] = { src1_[(int)swizzle.src1_selector_0.Value()], src1_[(int)swizzle.src1_selector_1.Value()], src1_[(int)swizzle.src1_selector_2.Value()], src1_[(int)swizzle.src1_selector_3.Value()], }; if (negate_src1) { src1[0] = -src1[0]; src1[1] = -src1[1]; src1[2] = -src1[2]; src1[3] = -src1[3]; } float24 src2[4] = { src2_[(int)swizzle.src2_selector_0.Value()], src2_[(int)swizzle.src2_selector_1.Value()], src2_[(int)swizzle.src2_selector_2.Value()], src2_[(int)swizzle.src2_selector_3.Value()], }; if (negate_src2) { src2[0] = -src2[0]; src2[1] = -src2[1]; src2[2] = -src2[2]; src2[3] = -src2[3]; } float24 src3[4] = { src3_[(int)swizzle.src3_selector_0.Value()], src3_[(int)swizzle.src3_selector_1.Value()], src3_[(int)swizzle.src3_selector_2.Value()], src3_[(int)swizzle.src3_selector_3.Value()], }; if (negate_src3) { src3[0] = -src3[0]; src3[1] = -src3[1]; src3[2] = -src3[2]; src3[3] = -src3[3]; } float24* dest = (instr.mad.dest.Value() < 0x10) ? &state.registers.output[instr.mad.dest.Value().GetIndex()][0] : (instr.mad.dest.Value() < 0x20) ? &state.registers.temporary[instr.mad.dest.Value().GetIndex()][0] : dummy_vec4_float24; Record(debug_data, iteration, src1); Record(debug_data, iteration, src2); Record(debug_data, iteration, src3); Record(debug_data, iteration, dest); for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = src1[i] * src2[i] + src3[i]; } Record(debug_data, iteration, dest); } else { LOG_ERROR(HW_GPU, "Unhandled multiply-add instruction: 0x{:02x} ({}): 0x{:08x}", (int)instr.opcode.Value().EffectiveOpCode(), instr.opcode.Value().GetInfo().name, instr.hex); } break; } default: { // Handle each instruction on its own switch (instr.opcode.Value()) { case OpCode::Id::END: exit_loop = true; break; case OpCode::Id::JMPC: Record(debug_data, iteration, state.conditional_code); if (evaluate_condition(instr.flow_control)) { program_counter = instr.flow_control.dest_offset - 1; } break; case OpCode::Id::JMPU: Record( debug_data, iteration, uniforms.b[instr.flow_control.bool_uniform_id]); if (uniforms.b[instr.flow_control.bool_uniform_id] == !(instr.flow_control.num_instructions & 1)) { program_counter = instr.flow_control.dest_offset - 1; } break; case OpCode::Id::CALL: call(instr.flow_control.dest_offset, instr.flow_control.num_instructions, program_counter + 1, 0, 0); break; case OpCode::Id::CALLU: Record( debug_data, iteration, uniforms.b[instr.flow_control.bool_uniform_id]); if (uniforms.b[instr.flow_control.bool_uniform_id]) { call(instr.flow_control.dest_offset, instr.flow_control.num_instructions, program_counter + 1, 0, 0); } break; case OpCode::Id::CALLC: Record(debug_data, iteration, state.conditional_code); if (evaluate_condition(instr.flow_control)) { call(instr.flow_control.dest_offset, instr.flow_control.num_instructions, program_counter + 1, 0, 0); } break; case OpCode::Id::NOP: break; case OpCode::Id::IFU: Record( debug_data, iteration, uniforms.b[instr.flow_control.bool_uniform_id]); if (uniforms.b[instr.flow_control.bool_uniform_id]) { call(program_counter + 1, instr.flow_control.dest_offset - program_counter - 1, instr.flow_control.dest_offset + instr.flow_control.num_instructions, 0, 0); } else { call(instr.flow_control.dest_offset, instr.flow_control.num_instructions, instr.flow_control.dest_offset + instr.flow_control.num_instructions, 0, 0); } break; case OpCode::Id::IFC: { // TODO: Do we need to consider swizzlers here? Record(debug_data, iteration, state.conditional_code); if (evaluate_condition(instr.flow_control)) { call(program_counter + 1, instr.flow_control.dest_offset - program_counter - 1, instr.flow_control.dest_offset + instr.flow_control.num_instructions, 0, 0); } else { call(instr.flow_control.dest_offset, instr.flow_control.num_instructions, instr.flow_control.dest_offset + instr.flow_control.num_instructions, 0, 0); } break; } case OpCode::Id::LOOP: { Common::Vec4 loop_param(uniforms.i[instr.flow_control.int_uniform_id].x, uniforms.i[instr.flow_control.int_uniform_id].y, uniforms.i[instr.flow_control.int_uniform_id].z, uniforms.i[instr.flow_control.int_uniform_id].w); state.address_registers[2] = loop_param.y; Record(debug_data, iteration, loop_param); call(program_counter + 1, instr.flow_control.dest_offset - program_counter, instr.flow_control.dest_offset + 1, loop_param.x, loop_param.z); break; } case OpCode::Id::EMIT: { GSEmitter* emitter = state.emitter_ptr; ASSERT_MSG(emitter, "Execute EMIT on VS"); emitter->Emit(state.registers.output); break; } case OpCode::Id::SETEMIT: { GSEmitter* emitter = state.emitter_ptr; ASSERT_MSG(emitter, "Execute SETEMIT on VS"); emitter->vertex_id = instr.setemit.vertex_id; emitter->prim_emit = instr.setemit.prim_emit != 0; emitter->winding = instr.setemit.winding != 0; break; } default: LOG_ERROR(HW_GPU, "Unhandled instruction: 0x{:02x} ({}): 0x{:08x}", (int)instr.opcode.Value().EffectiveOpCode(), instr.opcode.Value().GetInfo().name, instr.hex); break; } break; } } ++program_counter; ++iteration; } } void InterpreterEngine::SetupBatch(ShaderSetup& setup, unsigned int entry_point) { ASSERT(entry_point < MAX_PROGRAM_CODE_LENGTH); setup.engine_data.entry_point = entry_point; } MICROPROFILE_DECLARE(GPU_Shader); void InterpreterEngine::Run(const ShaderSetup& setup, UnitState& state) const { MICROPROFILE_SCOPE(GPU_Shader); DebugData dummy_debug_data; RunInterpreter(setup, state, dummy_debug_data, setup.engine_data.entry_point); } DebugData InterpreterEngine::ProduceDebugInfo(const ShaderSetup& setup, const AttributeBuffer& input, const ShaderRegs& config) const { UnitState state; DebugData debug_data; // Setup input register table state.registers.input.fill(Common::Vec4::AssignToAll(float24::Zero())); state.LoadInput(config, input); RunInterpreter(setup, state, debug_data, setup.engine_data.entry_point); return debug_data; } } // namespace Pica::Shader