// Copyright 2016 Dolphin Emulator Project / 2017 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include #include #include #include #include "common/file_util.h" #include "core/core.h" #include "core/core_timing.h" // Numbers are chosen randomly to make sure the correct one is given. static constexpr std::array CB_IDS{{42, 144, 93, 1026, UINT64_C(0xFFFF7FFFF7FFFF)}}; static constexpr int MAX_SLICE_LENGTH = 20000; // Copied from CoreTiming internals static std::bitset callbacks_ran_flags; static u64 expected_callback = 0; static s64 lateness = 0; template void CallbackTemplate(u64 userdata, s64 cycles_late) { static_assert(IDX < CB_IDS.size(), "IDX out of range"); callbacks_ran_flags.set(IDX); REQUIRE(CB_IDS[IDX] == userdata); REQUIRE(CB_IDS[IDX] == expected_callback); REQUIRE(lateness == cycles_late); } static void AdvanceAndCheck(Core::Timing& timing, u32 idx, int downcount, int expected_lateness = 0, int cpu_downcount = 0) { callbacks_ran_flags = 0; expected_callback = CB_IDS[idx]; lateness = expected_lateness; timing.AddTicks(timing.GetDowncount() - cpu_downcount); // Pretend we executed X cycles of instructions. timing.Advance(); REQUIRE(decltype(callbacks_ran_flags)().set(idx) == callbacks_ran_flags); REQUIRE(downcount == timing.GetDowncount()); } TEST_CASE("CoreTiming[BasicOrder]", "[core]") { Core::Timing timing; Core::TimingEventType* cb_a = timing.RegisterEvent("callbackA", CallbackTemplate<0>); Core::TimingEventType* cb_b = timing.RegisterEvent("callbackB", CallbackTemplate<1>); Core::TimingEventType* cb_c = timing.RegisterEvent("callbackC", CallbackTemplate<2>); Core::TimingEventType* cb_d = timing.RegisterEvent("callbackD", CallbackTemplate<3>); Core::TimingEventType* cb_e = timing.RegisterEvent("callbackE", CallbackTemplate<4>); // Enter slice 0 timing.Advance(); // D -> B -> C -> A -> E timing.ScheduleEvent(1000, cb_a, CB_IDS[0]); REQUIRE(1000 == timing.GetDowncount()); timing.ScheduleEvent(500, cb_b, CB_IDS[1]); REQUIRE(500 == timing.GetDowncount()); timing.ScheduleEvent(800, cb_c, CB_IDS[2]); REQUIRE(500 == timing.GetDowncount()); timing.ScheduleEvent(100, cb_d, CB_IDS[3]); REQUIRE(100 == timing.GetDowncount()); timing.ScheduleEvent(1200, cb_e, CB_IDS[4]); REQUIRE(100 == timing.GetDowncount()); AdvanceAndCheck(timing, 3, 400); AdvanceAndCheck(timing, 1, 300); AdvanceAndCheck(timing, 2, 200); AdvanceAndCheck(timing, 0, 200); AdvanceAndCheck(timing, 4, MAX_SLICE_LENGTH); } TEST_CASE("CoreTiming[Threadsave]", "[core]") { Core::Timing timing; Core::TimingEventType* cb_a = timing.RegisterEvent("callbackA", CallbackTemplate<0>); Core::TimingEventType* cb_b = timing.RegisterEvent("callbackB", CallbackTemplate<1>); Core::TimingEventType* cb_c = timing.RegisterEvent("callbackC", CallbackTemplate<2>); Core::TimingEventType* cb_d = timing.RegisterEvent("callbackD", CallbackTemplate<3>); Core::TimingEventType* cb_e = timing.RegisterEvent("callbackE", CallbackTemplate<4>); // Enter slice 0 timing.Advance(); // D -> B -> C -> A -> E timing.ScheduleEventThreadsafe(1000, cb_a, CB_IDS[0]); // Manually force since ScheduleEventThreadsafe doesn't call it timing.ForceExceptionCheck(1000); REQUIRE(1000 == timing.GetDowncount()); timing.ScheduleEventThreadsafe(500, cb_b, CB_IDS[1]); // Manually force since ScheduleEventThreadsafe doesn't call it timing.ForceExceptionCheck(500); REQUIRE(500 == timing.GetDowncount()); timing.ScheduleEventThreadsafe(800, cb_c, CB_IDS[2]); // Manually force since ScheduleEventThreadsafe doesn't call it timing.ForceExceptionCheck(800); REQUIRE(500 == timing.GetDowncount()); timing.ScheduleEventThreadsafe(100, cb_d, CB_IDS[3]); // Manually force since ScheduleEventThreadsafe doesn't call it timing.ForceExceptionCheck(100); REQUIRE(100 == timing.GetDowncount()); timing.ScheduleEventThreadsafe(1200, cb_e, CB_IDS[4]); // Manually force since ScheduleEventThreadsafe doesn't call it timing.ForceExceptionCheck(1200); REQUIRE(100 == timing.GetDowncount()); AdvanceAndCheck(timing, 3, 400); AdvanceAndCheck(timing, 1, 300); AdvanceAndCheck(timing, 2, 200); AdvanceAndCheck(timing, 0, 200); AdvanceAndCheck(timing, 4, MAX_SLICE_LENGTH); } namespace SharedSlotTest { static unsigned int counter = 0; template void FifoCallback(u64 userdata, s64 cycles_late) { static_assert(ID < CB_IDS.size(), "ID out of range"); callbacks_ran_flags.set(ID); REQUIRE(CB_IDS[ID] == userdata); REQUIRE(ID == counter); REQUIRE(lateness == cycles_late); ++counter; } } // namespace SharedSlotTest TEST_CASE("CoreTiming[SharedSlot]", "[core]") { using namespace SharedSlotTest; Core::Timing timing; Core::TimingEventType* cb_a = timing.RegisterEvent("callbackA", FifoCallback<0>); Core::TimingEventType* cb_b = timing.RegisterEvent("callbackB", FifoCallback<1>); Core::TimingEventType* cb_c = timing.RegisterEvent("callbackC", FifoCallback<2>); Core::TimingEventType* cb_d = timing.RegisterEvent("callbackD", FifoCallback<3>); Core::TimingEventType* cb_e = timing.RegisterEvent("callbackE", FifoCallback<4>); timing.ScheduleEvent(1000, cb_a, CB_IDS[0]); timing.ScheduleEvent(1000, cb_b, CB_IDS[1]); timing.ScheduleEvent(1000, cb_c, CB_IDS[2]); timing.ScheduleEvent(1000, cb_d, CB_IDS[3]); timing.ScheduleEvent(1000, cb_e, CB_IDS[4]); // Enter slice 0 timing.Advance(); REQUIRE(1000 == timing.GetDowncount()); callbacks_ran_flags = 0; counter = 0; lateness = 0; timing.AddTicks(timing.GetDowncount()); timing.Advance(); REQUIRE(MAX_SLICE_LENGTH == timing.GetDowncount()); REQUIRE(0x1FULL == callbacks_ran_flags.to_ullong()); } TEST_CASE("CoreTiming[PredictableLateness]", "[core]") { Core::Timing timing; Core::TimingEventType* cb_a = timing.RegisterEvent("callbackA", CallbackTemplate<0>); Core::TimingEventType* cb_b = timing.RegisterEvent("callbackB", CallbackTemplate<1>); // Enter slice 0 timing.Advance(); timing.ScheduleEvent(100, cb_a, CB_IDS[0]); timing.ScheduleEvent(200, cb_b, CB_IDS[1]); AdvanceAndCheck(timing, 0, 90, 10, -10); // (100 - 10) AdvanceAndCheck(timing, 1, MAX_SLICE_LENGTH, 50, -50); } namespace ChainSchedulingTest { static int reschedules = 0; static void RescheduleCallback(Core::Timing& timing, u64 userdata, s64 cycles_late) { --reschedules; REQUIRE(reschedules >= 0); REQUIRE(lateness == cycles_late); if (reschedules > 0) timing.ScheduleEvent(1000, reinterpret_cast(userdata), userdata); } } // namespace ChainSchedulingTest TEST_CASE("CoreTiming[ChainScheduling]", "[core]") { using namespace ChainSchedulingTest; Core::Timing timing; Core::TimingEventType* cb_a = timing.RegisterEvent("callbackA", CallbackTemplate<0>); Core::TimingEventType* cb_b = timing.RegisterEvent("callbackB", CallbackTemplate<1>); Core::TimingEventType* cb_c = timing.RegisterEvent("callbackC", CallbackTemplate<2>); Core::TimingEventType* cb_rs = timing.RegisterEvent("callbackReschedule", [&timing](u64 userdata, s64 cycles_late) { RescheduleCallback(timing, userdata, cycles_late); }); // Enter slice 0 timing.Advance(); timing.ScheduleEvent(800, cb_a, CB_IDS[0]); timing.ScheduleEvent(1000, cb_b, CB_IDS[1]); timing.ScheduleEvent(2200, cb_c, CB_IDS[2]); timing.ScheduleEvent(1000, cb_rs, reinterpret_cast(cb_rs)); REQUIRE(800 == timing.GetDowncount()); reschedules = 3; AdvanceAndCheck(timing, 0, 200); // cb_a AdvanceAndCheck(timing, 1, 1000); // cb_b, cb_rs REQUIRE(2 == reschedules); timing.AddTicks(timing.GetDowncount()); timing.Advance(); // cb_rs REQUIRE(1 == reschedules); REQUIRE(200 == timing.GetDowncount()); AdvanceAndCheck(timing, 2, 800); // cb_c timing.AddTicks(timing.GetDowncount()); timing.Advance(); // cb_rs REQUIRE(0 == reschedules); REQUIRE(MAX_SLICE_LENGTH == timing.GetDowncount()); }