// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include #include #include #include "common/assert.h" #include "common/common_types.h" #include "common/logging/log.h" #include "common/microprofile.h" #include "common/vector_math.h" #include "video_core/pica/shader_setup.h" #include "video_core/pica/shader_unit.h" #include "video_core/pica_types.h" #include "video_core/shader/shader_interpreter.h" using nihstro::Instruction; using nihstro::OpCode; using nihstro::RegisterType; using nihstro::SourceRegister; using nihstro::SwizzlePattern; namespace Pica::Shader { struct IfStackElement { u32 else_address; u32 end_address; }; struct CallStackElement { u32 end_address; u32 return_address; }; struct LoopStackElement { u32 entry_address; u32 end_address; u8 loop_downcounter; u8 address_increment; u8 previous_aL; }; template static void RunInterpreter(const ShaderSetup& setup, ShaderUnit& state, DebugData& debug_data, unsigned entry_point) { boost::circular_buffer if_stack(8); boost::circular_buffer call_stack(4); boost::circular_buffer loop_stack(4); u32 program_counter = entry_point; state.conditional_code[0] = false; state.conditional_code[1] = false; const auto do_if = [&](Instruction instr, bool condition) { if (condition) { if_stack.push_back({ .else_address = instr.flow_control.dest_offset, .end_address = instr.flow_control.dest_offset + instr.flow_control.num_instructions, }); } else { program_counter = instr.flow_control.dest_offset - 1; } }; const auto do_call = [&](Instruction instr) { call_stack.push_back({ .end_address = instr.flow_control.dest_offset + instr.flow_control.num_instructions, .return_address = program_counter + 1, }); program_counter = instr.flow_control.dest_offset - 1; }; const auto do_loop = [&](Instruction instr, const Common::Vec4& loop_param) { const u8 previous_aL = static_cast(state.address_registers[2]); loop_stack.push_back({ .entry_address = program_counter + 1, .end_address = instr.flow_control.dest_offset + 1, .loop_downcounter = loop_param.x, .address_increment = loop_param.z, .previous_aL = previous_aL, }); state.address_registers[2] = loop_param.y; }; auto evaluate_condition = [&state](Instruction::FlowControlType flow_control) { using Op = Instruction::FlowControlType::Op; bool result_x = flow_control.refx.Value() == state.conditional_code[0]; bool result_y = flow_control.refy.Value() == state.conditional_code[1]; switch (flow_control.op) { case Op::Or: return result_x || result_y; case Op::And: return result_x && result_y; case Op::JustX: return result_x; case Op::JustY: return result_y; default: UNREACHABLE(); return false; } }; const auto& uniforms = setup.uniforms; const auto& swizzle_data = setup.swizzle_data; const auto& program_code = setup.program_code; // Constants for handling invalid inputs static f24 dummy_vec4_float24_zeros[4] = {f24::Zero(), f24::Zero(), f24::Zero(), f24::Zero()}; static f24 dummy_vec4_float24_ones[4] = {f24::One(), f24::One(), f24::One(), f24::One()}; u32 iteration = 0; bool should_stop = false; while (!should_stop) { bool is_break = false; const u32 old_program_counter = program_counter; const Instruction instr = {program_code[program_counter]}; const SwizzlePattern swizzle = {swizzle_data[instr.common.operand_desc_id]}; Record(debug_data, iteration, program_counter); if (iteration > 0) Record(debug_data, iteration - 1, program_counter); debug_data.max_offset = std::max(debug_data.max_offset, 1 + program_counter); auto LookupSourceRegister = [&](const SourceRegister& source_reg, int address_register_index) -> const f24* { int index = source_reg.GetIndex(); switch (source_reg.GetRegisterType()) { case RegisterType::Input: return &state.input[index].x; case RegisterType::Temporary: return &state.temporary[index].x; case RegisterType::FloatUniform: if (address_register_index != 0) { int offset = state.address_registers[address_register_index - 1]; if (offset < std::numeric_limits::min() || offset > std::numeric_limits::max()) [[unlikely]] { offset = 0; } index = (index + offset) & 0x7F; // If the index is above 96, the result is all one. if (index >= 96) [[unlikely]] { return dummy_vec4_float24_ones; } } return &uniforms.f[index].x; default: return dummy_vec4_float24_zeros; } }; switch (instr.opcode.Value().GetInfo().type) { case OpCode::Type::Arithmetic: { const bool is_inverted = (0 != (instr.opcode.Value().GetInfo().subtype & OpCode::Info::SrcInversed)); const f24* src1_ = LookupSourceRegister(instr.common.GetSrc1(is_inverted), !is_inverted * instr.common.address_register_index); const f24* src2_ = LookupSourceRegister(instr.common.GetSrc2(is_inverted), is_inverted * instr.common.address_register_index); const bool negate_src1 = swizzle.negate_src1.Value() != 0; const bool negate_src2 = swizzle.negate_src2.Value() != 0; f24 src1[4] = { src1_[(int)swizzle.src1_selector_0.Value()], src1_[(int)swizzle.src1_selector_1.Value()], src1_[(int)swizzle.src1_selector_2.Value()], src1_[(int)swizzle.src1_selector_3.Value()], }; if (negate_src1) { src1[0] = -src1[0]; src1[1] = -src1[1]; src1[2] = -src1[2]; src1[3] = -src1[3]; } f24 src2[4] = { src2_[(int)swizzle.src2_selector_0.Value()], src2_[(int)swizzle.src2_selector_1.Value()], src2_[(int)swizzle.src2_selector_2.Value()], src2_[(int)swizzle.src2_selector_3.Value()], }; if (negate_src2) { src2[0] = -src2[0]; src2[1] = -src2[1]; src2[2] = -src2[2]; src2[3] = -src2[3]; } f24* dest = (instr.common.dest.Value() < 0x10) ? &state.output[instr.common.dest.Value().GetIndex()][0] : (instr.common.dest.Value() < 0x20) ? &state.temporary[instr.common.dest.Value().GetIndex()][0] : dummy_vec4_float24_zeros; debug_data.max_opdesc_id = std::max(debug_data.max_opdesc_id, 1 + instr.common.operand_desc_id); switch (instr.opcode.Value().EffectiveOpCode()) { case OpCode::Id::ADD: { Record(debug_data, iteration, src1); Record(debug_data, iteration, src2); Record(debug_data, iteration, dest); for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = src1[i] + src2[i]; } Record(debug_data, iteration, dest); break; } case OpCode::Id::MUL: { Record(debug_data, iteration, src1); Record(debug_data, iteration, src2); Record(debug_data, iteration, dest); for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = src1[i] * src2[i]; } Record(debug_data, iteration, dest); break; } case OpCode::Id::FLR: Record(debug_data, iteration, src1); Record(debug_data, iteration, dest); for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = f24::FromFloat32(std::floor(src1[i].ToFloat32())); } Record(debug_data, iteration, dest); break; case OpCode::Id::MAX: Record(debug_data, iteration, src1); Record(debug_data, iteration, src2); Record(debug_data, iteration, dest); for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; // NOTE: Exact form required to match NaN semantics to hardware: // max(0, NaN) -> NaN // max(NaN, 0) -> 0 dest[i] = (src1[i] > src2[i]) ? src1[i] : src2[i]; } Record(debug_data, iteration, dest); break; case OpCode::Id::MIN: Record(debug_data, iteration, src1); Record(debug_data, iteration, src2); Record(debug_data, iteration, dest); for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; // NOTE: Exact form required to match NaN semantics to hardware: // min(0, NaN) -> NaN // min(NaN, 0) -> 0 dest[i] = (src1[i] < src2[i]) ? src1[i] : src2[i]; } Record(debug_data, iteration, dest); break; case OpCode::Id::DP3: case OpCode::Id::DP4: case OpCode::Id::DPH: case OpCode::Id::DPHI: { Record(debug_data, iteration, src1); Record(debug_data, iteration, src2); Record(debug_data, iteration, dest); OpCode::Id opcode = instr.opcode.Value().EffectiveOpCode(); if (opcode == OpCode::Id::DPH || opcode == OpCode::Id::DPHI) src1[3] = f24::One(); int num_components = (opcode == OpCode::Id::DP3) ? 3 : 4; f24 dot = std::inner_product(src1, src1 + num_components, src2, f24::Zero()); for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = dot; } Record(debug_data, iteration, dest); break; } // Reciprocal case OpCode::Id::RCP: { Record(debug_data, iteration, src1); Record(debug_data, iteration, dest); f24 rcp_res = f24::FromFloat32(1.0f / src1[0].ToFloat32()); for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = rcp_res; } Record(debug_data, iteration, dest); break; } // Reciprocal Square Root case OpCode::Id::RSQ: { Record(debug_data, iteration, src1); Record(debug_data, iteration, dest); f24 rsq_res = f24::FromFloat32(1.0f / std::sqrt(src1[0].ToFloat32())); for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = rsq_res; } Record(debug_data, iteration, dest); break; } case OpCode::Id::MOVA: { Record(debug_data, iteration, src1); for (int i = 0; i < 2; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; // TODO: Figure out how the rounding is done on hardware state.address_registers[i] = static_cast(src1[i].ToFloat32()); } Record(debug_data, iteration, state.address_registers); break; } case OpCode::Id::MOV: { Record(debug_data, iteration, src1); Record(debug_data, iteration, dest); for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = src1[i]; } Record(debug_data, iteration, dest); break; } case OpCode::Id::SGE: case OpCode::Id::SGEI: Record(debug_data, iteration, src1); Record(debug_data, iteration, src2); Record(debug_data, iteration, dest); for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = (src1[i] >= src2[i]) ? f24::One() : f24::Zero(); } Record(debug_data, iteration, dest); break; case OpCode::Id::SLT: case OpCode::Id::SLTI: Record(debug_data, iteration, src1); Record(debug_data, iteration, src2); Record(debug_data, iteration, dest); for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = (src1[i] < src2[i]) ? f24::One() : f24::Zero(); } Record(debug_data, iteration, dest); break; case OpCode::Id::CMP: Record(debug_data, iteration, src1); Record(debug_data, iteration, src2); for (int i = 0; i < 2; ++i) { // TODO: Can you restrict to one compare via dest masking? auto compare_op = instr.common.compare_op; auto op = (i == 0) ? compare_op.x.Value() : compare_op.y.Value(); switch (op) { case Instruction::Common::CompareOpType::Equal: state.conditional_code[i] = (src1[i] == src2[i]); break; case Instruction::Common::CompareOpType::NotEqual: state.conditional_code[i] = (src1[i] != src2[i]); break; case Instruction::Common::CompareOpType::LessThan: state.conditional_code[i] = (src1[i] < src2[i]); break; case Instruction::Common::CompareOpType::LessEqual: state.conditional_code[i] = (src1[i] <= src2[i]); break; case Instruction::Common::CompareOpType::GreaterThan: state.conditional_code[i] = (src1[i] > src2[i]); break; case Instruction::Common::CompareOpType::GreaterEqual: state.conditional_code[i] = (src1[i] >= src2[i]); break; default: LOG_ERROR(HW_GPU, "Unknown compare mode {:x}", static_cast(op)); break; } } Record(debug_data, iteration, state.conditional_code); break; case OpCode::Id::EX2: { Record(debug_data, iteration, src1); Record(debug_data, iteration, dest); // EX2 only takes first component exp2 and writes it to all dest components f24 ex2_res = f24::FromFloat32(std::exp2(src1[0].ToFloat32())); for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = ex2_res; } Record(debug_data, iteration, dest); break; } case OpCode::Id::LG2: { Record(debug_data, iteration, src1); Record(debug_data, iteration, dest); // LG2 only takes the first component log2 and writes it to all dest components f24 lg2_res = f24::FromFloat32(std::log2(src1[0].ToFloat32())); for (int i = 0; i < 4; ++i) { if (!swizzle.DestComponentEnabled(i)) continue; dest[i] = lg2_res; } Record(debug_data, iteration, dest); break; } default: LOG_ERROR(HW_GPU, "Unhandled arithmetic instruction: 0x{:02x} ({}): 0x{:08x}", (int)instr.opcode.Value().EffectiveOpCode(), instr.opcode.Value().GetInfo().name, instr.hex); DEBUG_ASSERT(false); break; } break; } case OpCode::Type::MultiplyAdd: { if ((instr.opcode.Value().EffectiveOpCode() == OpCode::Id::MAD) || (instr.opcode.Value().EffectiveOpCode() == OpCode::Id::MADI)) { const SwizzlePattern& mad_swizzle = *reinterpret_cast( &swizzle_data[instr.mad.operand_desc_id]); bool is_inverted = (instr.opcode.Value().EffectiveOpCode() == OpCode::Id::MADI); const f24* src1_ = LookupSourceRegister(instr.mad.GetSrc1(is_inverted), 0); const f24* src2_ = LookupSourceRegister(instr.mad.GetSrc2(is_inverted), !is_inverted * instr.mad.address_register_index); const f24* src3_ = LookupSourceRegister( instr.mad.GetSrc3(is_inverted), is_inverted * instr.mad.address_register_index); const bool negate_src1 = mad_swizzle.negate_src1.Value() != 0; const bool negate_src2 = mad_swizzle.negate_src2.Value() != 0; const bool negate_src3 = mad_swizzle.negate_src3.Value() != 0; f24 src1[4] = { src1_[(int)mad_swizzle.src1_selector_0.Value()], src1_[(int)mad_swizzle.src1_selector_1.Value()], src1_[(int)mad_swizzle.src1_selector_2.Value()], src1_[(int)mad_swizzle.src1_selector_3.Value()], }; if (negate_src1) { src1[0] = -src1[0]; src1[1] = -src1[1]; src1[2] = -src1[2]; src1[3] = -src1[3]; } f24 src2[4] = { src2_[(int)mad_swizzle.src2_selector_0.Value()], src2_[(int)mad_swizzle.src2_selector_1.Value()], src2_[(int)mad_swizzle.src2_selector_2.Value()], src2_[(int)mad_swizzle.src2_selector_3.Value()], }; if (negate_src2) { src2[0] = -src2[0]; src2[1] = -src2[1]; src2[2] = -src2[2]; src2[3] = -src2[3]; } f24 src3[4] = { src3_[(int)mad_swizzle.src3_selector_0.Value()], src3_[(int)mad_swizzle.src3_selector_1.Value()], src3_[(int)mad_swizzle.src3_selector_2.Value()], src3_[(int)mad_swizzle.src3_selector_3.Value()], }; if (negate_src3) { src3[0] = -src3[0]; src3[1] = -src3[1]; src3[2] = -src3[2]; src3[3] = -src3[3]; } f24* dest = (instr.mad.dest.Value() < 0x10) ? &state.output[instr.mad.dest.Value().GetIndex()][0] : (instr.mad.dest.Value() < 0x20) ? &state.temporary[instr.mad.dest.Value().GetIndex()][0] : dummy_vec4_float24_zeros; Record(debug_data, iteration, src1); Record(debug_data, iteration, src2); Record(debug_data, iteration, src3); Record(debug_data, iteration, dest); for (int i = 0; i < 4; ++i) { if (!mad_swizzle.DestComponentEnabled(i)) continue; dest[i] = src1[i] * src2[i] + src3[i]; } Record(debug_data, iteration, dest); } else { LOG_ERROR(HW_GPU, "Unhandled multiply-add instruction: 0x{:02x} ({}): 0x{:08x}", (int)instr.opcode.Value().EffectiveOpCode(), instr.opcode.Value().GetInfo().name, instr.hex); } break; } default: { // Handle each instruction on its own switch (instr.opcode.Value()) { case OpCode::Id::END: should_stop = true; break; case OpCode::Id::JMPC: Record(debug_data, iteration, state.conditional_code); if (evaluate_condition(instr.flow_control)) { program_counter = instr.flow_control.dest_offset - 1; } break; case OpCode::Id::JMPU: Record( debug_data, iteration, uniforms.b[instr.flow_control.bool_uniform_id]); if (uniforms.b[instr.flow_control.bool_uniform_id] == !(instr.flow_control.num_instructions & 1)) { program_counter = instr.flow_control.dest_offset - 1; } break; case OpCode::Id::CALL: do_call(instr); break; case OpCode::Id::CALLU: Record( debug_data, iteration, uniforms.b[instr.flow_control.bool_uniform_id]); if (uniforms.b[instr.flow_control.bool_uniform_id]) { do_call(instr); } break; case OpCode::Id::CALLC: Record(debug_data, iteration, state.conditional_code); if (evaluate_condition(instr.flow_control)) { do_call(instr); } break; case OpCode::Id::NOP: break; case OpCode::Id::IFU: { Record( debug_data, iteration, uniforms.b[instr.flow_control.bool_uniform_id]); const bool cond = uniforms.b[instr.flow_control.bool_uniform_id]; do_if(instr, cond); break; } case OpCode::Id::IFC: { // TODO: Do we need to consider swizzlers here? Record(debug_data, iteration, state.conditional_code); const bool cond = evaluate_condition(instr.flow_control); do_if(instr, cond); break; } case OpCode::Id::LOOP: { const Common::Vec4& loop_param = uniforms.i[instr.flow_control.int_uniform_id]; state.address_registers[2] = loop_param.y; Record(debug_data, iteration, loop_param); do_loop(instr, loop_param); Record(debug_data, iteration, state.address_registers); break; } case OpCode::Id::BREAK: { is_break = true; Record(debug_data, iteration, state.address_registers); break; } case OpCode::Id::BREAKC: { Record(debug_data, iteration, state.conditional_code); if (evaluate_condition(instr.flow_control)) { is_break = true; } Record(debug_data, iteration, state.address_registers); break; } case OpCode::Id::EMIT: { auto* emitter = state.emitter_ptr; ASSERT_MSG(emitter, "Execute EMIT on VS"); emitter->Emit(state.output); break; } case OpCode::Id::SETEMIT: { auto* emitter = state.emitter_ptr; ASSERT_MSG(emitter, "Execute SETEMIT on VS"); emitter->vertex_id = instr.setemit.vertex_id; emitter->prim_emit = instr.setemit.prim_emit != 0; emitter->winding = instr.setemit.winding != 0; break; } default: LOG_ERROR(HW_GPU, "Unhandled instruction: 0x{:02x} ({}): 0x{:08x}", (int)instr.opcode.Value().EffectiveOpCode(), instr.opcode.Value().GetInfo().name, instr.hex); break; } break; } } ++program_counter; ++iteration; // Stacks are checked in the order CALL -> IF -> LOOP. The CALL stack // can be popped multiple times per instruction. A JMP at the end of a // scope is never taken, this is why we compare against // old_program_counter + 1 here. u32 next_program_counter = old_program_counter + 1; for (u32 i = 0; i < 4; i++) { if (call_stack.empty() || call_stack.back().end_address != next_program_counter) break; // Hardware bug: when popping four CALL scopes at once, the last // one doesn't update the program counter if (i < 3) { program_counter = call_stack.back().return_address; next_program_counter = program_counter; } call_stack.pop_back(); } // The other two stacks can only pop one entry per instruction. They // are checked against the original program counter before any CALL // scopes were closed and they overwrite any previous program counter // updates. if (!if_stack.empty() && if_stack.back().else_address == old_program_counter + 1) { program_counter = if_stack.back().end_address; if_stack.pop_back(); } if (!loop_stack.empty() && (loop_stack.back().end_address == old_program_counter + 1 || is_break)) { auto& loop = loop_stack.back(); state.address_registers[2] += loop.address_increment; if (!is_break && loop.loop_downcounter--) { program_counter = loop.entry_address; } else { program_counter = loop.end_address; // Only restore previous value if there is a surrounding LOOP scope. if (loop_stack.size() > 1) state.address_registers[2] = loop.previous_aL; loop_stack.pop_back(); } } } } void InterpreterEngine::SetupBatch(ShaderSetup& setup, unsigned int entry_point) { ASSERT(entry_point < MAX_PROGRAM_CODE_LENGTH); setup.entry_point = entry_point; } MICROPROFILE_DEFINE(GPU_Shader, "GPU", "Shader", MP_RGB(50, 50, 240)); void InterpreterEngine::Run(const ShaderSetup& setup, ShaderUnit& state) const { MICROPROFILE_SCOPE(GPU_Shader); DebugData dummy_debug_data; RunInterpreter(setup, state, dummy_debug_data, setup.entry_point); } DebugData InterpreterEngine::ProduceDebugInfo(const ShaderSetup& setup, const AttributeBuffer& input, const ShaderRegs& config) const { ShaderUnit state; DebugData debug_data; // Setup input register table state.input.fill(Common::Vec4::AssignToAll(f24::Zero())); state.LoadInput(config, input); RunInterpreter(setup, state, debug_data, setup.entry_point); return debug_data; } } // namespace Pica::Shader