Lime3DS/src/core/hle/kernel/process.cpp
2020-02-13 17:38:18 +08:00

454 lines
17 KiB
C++

// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <memory>
#include <boost/serialization/array.hpp>
#include <boost/serialization/bitset.hpp>
#include "common/archives.h"
#include "common/assert.h"
#include "common/common_funcs.h"
#include "common/logging/log.h"
#include "common/serialization/boost_vector.hpp"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/memory.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/vm_manager.h"
#include "core/memory.h"
namespace Kernel {
template <class Archive>
void Process::serialize(Archive& ar, const unsigned int file_version)
{
ar & boost::serialization::base_object<Object>(*this);
ar & handle_table;
ar & codeset;
ar & resource_limit;
ar & svc_access_mask;
ar & handle_table_size;
ar & (boost::container::vector<AddressMapping, boost::container::dtl::static_storage_allocator<AddressMapping, 8> >&)address_mappings;
ar & flags.raw;
ar & kernel_version;
ar & ideal_processor;
ar & status;
ar & process_id;
ar & vm_manager;
ar & memory_used;
ar & memory_region;
ar & tls_slots;
}
SERIALIZE_IMPL(Process)
std::shared_ptr<CodeSet> KernelSystem::CreateCodeSet(std::string name, u64 program_id) {
auto codeset{std::make_shared<CodeSet>()};
codeset->Init(*this);
codeset->name = std::move(name);
codeset->program_id = program_id;
return codeset;
}
std::shared_ptr<Process> KernelSystem::CreateProcess(std::shared_ptr<CodeSet> code_set) {
auto process{std::make_shared<Process>()};
process->Init(*this);
process->codeset = std::move(code_set);
process->flags.raw = 0;
process->flags.memory_region.Assign(MemoryRegion::APPLICATION);
process->status = ProcessStatus::Created;
process->process_id = ++next_process_id;
process_list.push_back(process);
return process;
}
void Process::ParseKernelCaps(const u32* kernel_caps, std::size_t len) {
for (std::size_t i = 0; i < len; ++i) {
u32 descriptor = kernel_caps[i];
u32 type = descriptor >> 20;
if (descriptor == 0xFFFFFFFF) {
// Unused descriptor entry
continue;
} else if ((type & 0xF00) == 0xE00) { // 0x0FFF
// Allowed interrupts list
LOG_WARNING(Loader, "ExHeader allowed interrupts list ignored");
} else if ((type & 0xF80) == 0xF00) { // 0x07FF
// Allowed syscalls mask
unsigned int index = ((descriptor >> 24) & 7) * 24;
u32 bits = descriptor & 0xFFFFFF;
while (bits && index < svc_access_mask.size()) {
svc_access_mask.set(index, bits & 1);
++index;
bits >>= 1;
}
} else if ((type & 0xFF0) == 0xFE0) { // 0x00FF
// Handle table size
handle_table_size = descriptor & 0x3FF;
} else if ((type & 0xFF8) == 0xFF0) { // 0x007F
// Misc. flags
flags.raw = descriptor & 0xFFFF;
} else if ((type & 0xFFE) == 0xFF8) { // 0x001F
// Mapped memory range
if (i + 1 >= len || ((kernel_caps[i + 1] >> 20) & 0xFFE) != 0xFF8) {
LOG_WARNING(Loader, "Incomplete exheader memory range descriptor ignored.");
continue;
}
u32 end_desc = kernel_caps[i + 1];
++i; // Skip over the second descriptor on the next iteration
AddressMapping mapping;
mapping.address = descriptor << 12;
VAddr end_address = end_desc << 12;
if (mapping.address < end_address) {
mapping.size = end_address - mapping.address;
} else {
mapping.size = 0;
}
mapping.read_only = (descriptor & (1 << 20)) != 0;
mapping.unk_flag = (end_desc & (1 << 20)) != 0;
address_mappings.push_back(mapping);
} else if ((type & 0xFFF) == 0xFFE) { // 0x000F
// Mapped memory page
AddressMapping mapping;
mapping.address = descriptor << 12;
mapping.size = Memory::PAGE_SIZE;
mapping.read_only = false;
mapping.unk_flag = false;
address_mappings.push_back(mapping);
} else if ((type & 0xFE0) == 0xFC0) { // 0x01FF
// Kernel version
kernel_version = descriptor & 0xFFFF;
int minor = kernel_version & 0xFF;
int major = (kernel_version >> 8) & 0xFF;
LOG_INFO(Loader, "ExHeader kernel version: {}.{}", major, minor);
} else {
LOG_ERROR(Loader, "Unhandled kernel caps descriptor: 0x{:08X}", descriptor);
}
}
}
void Process::Run(s32 main_thread_priority, u32 stack_size) {
memory_region = kernel.GetMemoryRegion(flags.memory_region);
auto MapSegment = [&](CodeSet::Segment& segment, VMAPermission permissions,
MemoryState memory_state) {
HeapAllocate(segment.addr, segment.size, permissions, memory_state, true);
kernel.memory.WriteBlock(*this, segment.addr, codeset->memory.data() + segment.offset,
segment.size);
};
// Map CodeSet segments
MapSegment(codeset->CodeSegment(), VMAPermission::ReadExecute, MemoryState::Code);
MapSegment(codeset->RODataSegment(), VMAPermission::Read, MemoryState::Code);
MapSegment(codeset->DataSegment(), VMAPermission::ReadWrite, MemoryState::Private);
// Allocate and map stack
HeapAllocate(Memory::HEAP_VADDR_END - stack_size, stack_size, VMAPermission::ReadWrite,
MemoryState::Locked, true);
// Map special address mappings
kernel.MapSharedPages(vm_manager);
for (const auto& mapping : address_mappings) {
kernel.HandleSpecialMapping(vm_manager, mapping);
}
status = ProcessStatus::Running;
vm_manager.LogLayout(Log::Level::Debug);
Kernel::SetupMainThread(kernel, codeset->entrypoint, main_thread_priority, SharedFrom(this));
}
VAddr Process::GetLinearHeapAreaAddress() const {
// Starting from system version 8.0.0 a new linear heap layout is supported to allow usage of
// the extra RAM in the n3DS.
return kernel_version < 0x22C ? Memory::LINEAR_HEAP_VADDR : Memory::NEW_LINEAR_HEAP_VADDR;
}
VAddr Process::GetLinearHeapBase() const {
return GetLinearHeapAreaAddress() + memory_region->base;
}
VAddr Process::GetLinearHeapLimit() const {
return GetLinearHeapBase() + memory_region->size;
}
ResultVal<VAddr> Process::HeapAllocate(VAddr target, u32 size, VMAPermission perms,
MemoryState memory_state, bool skip_range_check) {
LOG_DEBUG(Kernel, "Allocate heap target={:08X}, size={:08X}", target, size);
if (target < Memory::HEAP_VADDR || target + size > Memory::HEAP_VADDR_END ||
target + size < target) {
if (!skip_range_check) {
LOG_ERROR(Kernel, "Invalid heap address");
return ERR_INVALID_ADDRESS;
}
}
auto vma = vm_manager.FindVMA(target);
if (vma->second.type != VMAType::Free || vma->second.base + vma->second.size < target + size) {
LOG_ERROR(Kernel, "Trying to allocate already allocated memory");
return ERR_INVALID_ADDRESS_STATE;
}
auto allocated_fcram = memory_region->HeapAllocate(size);
if (allocated_fcram.empty()) {
LOG_ERROR(Kernel, "Not enough space");
return ERR_OUT_OF_HEAP_MEMORY;
}
// Maps heap block by block
VAddr interval_target = target;
for (const auto& interval : allocated_fcram) {
u32 interval_size = interval.upper() - interval.lower();
LOG_DEBUG(Kernel, "Allocated FCRAM region lower={:08X}, upper={:08X}", interval.lower(),
interval.upper());
std::fill(kernel.memory.GetFCRAMPointer(interval.lower()),
kernel.memory.GetFCRAMPointer(interval.upper()), 0);
auto vma = vm_manager.MapBackingMemory(interval_target,
kernel.memory.GetFCRAMPointer(interval.lower()),
interval_size, memory_state);
ASSERT(vma.Succeeded());
vm_manager.Reprotect(vma.Unwrap(), perms);
interval_target += interval_size;
}
memory_used += size;
resource_limit->current_commit += size;
return MakeResult<VAddr>(target);
}
ResultCode Process::HeapFree(VAddr target, u32 size) {
LOG_DEBUG(Kernel, "Free heap target={:08X}, size={:08X}", target, size);
if (target < Memory::HEAP_VADDR || target + size > Memory::HEAP_VADDR_END ||
target + size < target) {
LOG_ERROR(Kernel, "Invalid heap address");
return ERR_INVALID_ADDRESS;
}
if (size == 0) {
return RESULT_SUCCESS;
}
// Free heaps block by block
CASCADE_RESULT(auto backing_blocks, vm_manager.GetBackingBlocksForRange(target, size));
for (const auto [backing_memory, block_size] : backing_blocks) {
memory_region->Free(kernel.memory.GetFCRAMOffset(backing_memory), block_size);
}
ResultCode result = vm_manager.UnmapRange(target, size);
ASSERT(result.IsSuccess());
memory_used -= size;
resource_limit->current_commit -= size;
return RESULT_SUCCESS;
}
ResultVal<VAddr> Process::LinearAllocate(VAddr target, u32 size, VMAPermission perms) {
LOG_DEBUG(Kernel, "Allocate linear heap target={:08X}, size={:08X}", target, size);
u32 physical_offset;
if (target == 0) {
auto offset = memory_region->LinearAllocate(size);
if (!offset) {
LOG_ERROR(Kernel, "Not enough space");
return ERR_OUT_OF_HEAP_MEMORY;
}
physical_offset = *offset;
target = physical_offset + GetLinearHeapAreaAddress();
} else {
if (target < GetLinearHeapBase() || target + size > GetLinearHeapLimit() ||
target + size < target) {
LOG_ERROR(Kernel, "Invalid linear heap address");
return ERR_INVALID_ADDRESS;
}
// Kernel would crash/return error when target doesn't meet some requirement.
// It seems that target is required to follow immediately after the allocated linear heap,
// or cover the entire hole if there is any.
// Right now we just ignore these checks because they are still unclear. Further more,
// games and homebrew only ever seem to pass target = 0 here (which lets the kernel decide
// the address), so this not important.
physical_offset = target - GetLinearHeapAreaAddress(); // relative to FCRAM
if (!memory_region->LinearAllocate(physical_offset, size)) {
LOG_ERROR(Kernel, "Trying to allocate already allocated memory");
return ERR_INVALID_ADDRESS_STATE;
}
}
u8* backing_memory = kernel.memory.GetFCRAMPointer(physical_offset);
std::fill(backing_memory, backing_memory + size, 0);
auto vma = vm_manager.MapBackingMemory(target, backing_memory, size, MemoryState::Continuous);
ASSERT(vma.Succeeded());
vm_manager.Reprotect(vma.Unwrap(), perms);
memory_used += size;
resource_limit->current_commit += size;
LOG_DEBUG(Kernel, "Allocated at target={:08X}", target);
return MakeResult<VAddr>(target);
}
ResultCode Process::LinearFree(VAddr target, u32 size) {
LOG_DEBUG(Kernel, "Free linear heap target={:08X}, size={:08X}", target, size);
if (target < GetLinearHeapBase() || target + size > GetLinearHeapLimit() ||
target + size < target) {
LOG_ERROR(Kernel, "Invalid linear heap address");
return ERR_INVALID_ADDRESS;
}
if (size == 0) {
return RESULT_SUCCESS;
}
ResultCode result = vm_manager.UnmapRange(target, size);
if (result.IsError()) {
LOG_ERROR(Kernel, "Trying to free already freed memory");
return result;
}
memory_used -= size;
resource_limit->current_commit -= size;
u32 physical_offset = target - GetLinearHeapAreaAddress(); // relative to FCRAM
memory_region->Free(physical_offset, size);
return RESULT_SUCCESS;
}
ResultCode Process::Map(VAddr target, VAddr source, u32 size, VMAPermission perms,
bool privileged) {
LOG_DEBUG(Kernel, "Map memory target={:08X}, source={:08X}, size={:08X}, perms={:08X}", target,
source, size, static_cast<u8>(perms));
if (source < Memory::HEAP_VADDR || source + size > Memory::HEAP_VADDR_END ||
source + size < source) {
LOG_ERROR(Kernel, "Invalid source address");
return ERR_INVALID_ADDRESS;
}
// TODO(wwylele): check target address range. Is it also restricted to heap region?
auto vma = vm_manager.FindVMA(target);
if (vma->second.type != VMAType::Free || vma->second.base + vma->second.size < target + size) {
LOG_ERROR(Kernel, "Trying to map to already allocated memory");
return ERR_INVALID_ADDRESS_STATE;
}
// Check range overlapping
if (source - target < size || target - source < size) {
if (privileged) {
if (source == target) {
// privileged Map allows identical source and target address, which simply changes
// the state and the permission of the memory
return vm_manager.ChangeMemoryState(source, size, MemoryState::Private,
VMAPermission::ReadWrite,
MemoryState::AliasCode, perms);
} else {
return ERR_INVALID_ADDRESS;
}
} else {
return ERR_INVALID_ADDRESS_STATE;
}
}
MemoryState source_state = privileged ? MemoryState::Locked : MemoryState::Aliased;
MemoryState target_state = privileged ? MemoryState::AliasCode : MemoryState::Alias;
VMAPermission source_perm = privileged ? VMAPermission::None : VMAPermission::ReadWrite;
// Mark source region as Aliased
CASCADE_CODE(vm_manager.ChangeMemoryState(source, size, MemoryState::Private,
VMAPermission::ReadWrite, source_state, source_perm));
CASCADE_RESULT(auto backing_blocks, vm_manager.GetBackingBlocksForRange(source, size));
VAddr interval_target = target;
for (const auto [backing_memory, block_size] : backing_blocks) {
auto target_vma =
vm_manager.MapBackingMemory(interval_target, backing_memory, block_size, target_state);
ASSERT(target_vma.Succeeded());
vm_manager.Reprotect(target_vma.Unwrap(), perms);
interval_target += block_size;
}
return RESULT_SUCCESS;
}
ResultCode Process::Unmap(VAddr target, VAddr source, u32 size, VMAPermission perms,
bool privileged) {
LOG_DEBUG(Kernel, "Unmap memory target={:08X}, source={:08X}, size={:08X}, perms={:08X}",
target, source, size, static_cast<u8>(perms));
if (source < Memory::HEAP_VADDR || source + size > Memory::HEAP_VADDR_END ||
source + size < source) {
LOG_ERROR(Kernel, "Invalid source address");
return ERR_INVALID_ADDRESS;
}
// TODO(wwylele): check target address range. Is it also restricted to heap region?
// TODO(wwylele): check that the source and the target are actually a pair created by Map
// Should return error 0xD8E007F5 in this case
if (source - target < size || target - source < size) {
if (privileged) {
if (source == target) {
// privileged Unmap allows identical source and target address, which simply changes
// the state and the permission of the memory
return vm_manager.ChangeMemoryState(source, size, MemoryState::AliasCode,
VMAPermission::None, MemoryState::Private,
perms);
} else {
return ERR_INVALID_ADDRESS;
}
} else {
return ERR_INVALID_ADDRESS_STATE;
}
}
MemoryState source_state = privileged ? MemoryState::Locked : MemoryState::Aliased;
CASCADE_CODE(vm_manager.UnmapRange(target, size));
// Change back source region state. Note that the permission is reprotected according to param
CASCADE_CODE(vm_manager.ChangeMemoryState(source, size, source_state, VMAPermission::None,
MemoryState::Private, perms));
return RESULT_SUCCESS;
}
Kernel::Process::Process() : kernel(*g_kernel), handle_table(*g_kernel), vm_manager(g_kernel->memory)
{
kernel.memory.RegisterPageTable(&vm_manager.page_table);
}
Kernel::Process::~Process() {
// Release all objects this process owns first so that their potential destructor can do clean
// up with this process before further destruction.
// TODO(wwylele): explicitly destroy or invalidate objects this process owns (threads, shared
// memory etc.) even if they are still referenced by other processes.
handle_table.Clear();
kernel.memory.UnregisterPageTable(&vm_manager.page_table);
}
std::shared_ptr<Process> KernelSystem::GetProcessById(u32 process_id) const {
auto itr = std::find_if(
process_list.begin(), process_list.end(),
[&](const std::shared_ptr<Process>& process) { return process->process_id == process_id; });
if (itr == process_list.end())
return nullptr;
return *itr;
}
} // namespace Kernel