Lime3DS/src/core/hle/service/soc_u.cpp
Weiyi Wang b163502744
Core: pass down Core::System reference to all services (#4272)
* Core: pass down Core::System reference to all services

This has to be done at once due to unified interface used by HLE/LLE switcher

* apt: eliminate Core::System::GetInstance

* gpu_gsp: eliminate Core::System::GetInstance in service

* hid: eliminate Core::System::GetInstance

* nwm: eliminate Core::System::GetInstance

* err_f: eliminate Core::System::GetInstance
2018-10-05 10:59:43 -04:00

918 lines
28 KiB
C++

// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <cstring>
#include <vector>
#include "common/assert.h"
#include "common/bit_field.h"
#include "common/common_types.h"
#include "common/logging/log.h"
#include "common/scope_exit.h"
#include "core/core.h"
#include "core/hle/ipc_helpers.h"
#include "core/hle/kernel/shared_memory.h"
#include "core/hle/result.h"
#include "core/hle/service/soc_u.h"
#ifdef _WIN32
#include <winsock2.h>
#include <ws2tcpip.h>
// MinGW does not define several errno constants
#ifndef _MSC_VER
#define EBADMSG 104
#define ENODATA 120
#define ENOMSG 122
#define ENOSR 124
#define ENOSTR 125
#define ETIME 137
#endif // _MSC_VER
#else
#include <cerrno>
#include <fcntl.h>
#include <netdb.h>
#include <netinet/in.h>
#include <poll.h>
#include <sys/socket.h>
#include <unistd.h>
#endif
#ifdef _WIN32
#define WSAEAGAIN WSAEWOULDBLOCK
#define WSAEMULTIHOP -1 // Invalid dummy value
#define ERRNO(x) WSA##x
#define GET_ERRNO WSAGetLastError()
#define poll(x, y, z) WSAPoll(x, y, z);
#else
#define ERRNO(x) x
#define GET_ERRNO errno
#define closesocket(x) close(x)
#endif
namespace Service::SOC {
const s32 SOCKET_ERROR_VALUE = -1;
/// Holds the translation from system network errors to 3DS network errors
static const std::unordered_map<int, int> error_map = {{
{E2BIG, 1},
{ERRNO(EACCES), 2},
{ERRNO(EADDRINUSE), 3},
{ERRNO(EADDRNOTAVAIL), 4},
{ERRNO(EAFNOSUPPORT), 5},
{ERRNO(EAGAIN), 6},
{ERRNO(EALREADY), 7},
{ERRNO(EBADF), 8},
{EBADMSG, 9},
{EBUSY, 10},
{ECANCELED, 11},
{ECHILD, 12},
{ERRNO(ECONNABORTED), 13},
{ERRNO(ECONNREFUSED), 14},
{ERRNO(ECONNRESET), 15},
{EDEADLK, 16},
{ERRNO(EDESTADDRREQ), 17},
{EDOM, 18},
{ERRNO(EDQUOT), 19},
{EEXIST, 20},
{ERRNO(EFAULT), 21},
{EFBIG, 22},
{ERRNO(EHOSTUNREACH), 23},
{EIDRM, 24},
{EILSEQ, 25},
{ERRNO(EINPROGRESS), 26},
{ERRNO(EINTR), 27},
{ERRNO(EINVAL), 28},
{EIO, 29},
{ERRNO(EISCONN), 30},
{EISDIR, 31},
{ERRNO(ELOOP), 32},
{ERRNO(EMFILE), 33},
{EMLINK, 34},
{ERRNO(EMSGSIZE), 35},
#ifdef EMULTIHOP
{ERRNO(EMULTIHOP), 36},
#endif
{ERRNO(ENAMETOOLONG), 37},
{ERRNO(ENETDOWN), 38},
{ERRNO(ENETRESET), 39},
{ERRNO(ENETUNREACH), 40},
{ENFILE, 41},
{ERRNO(ENOBUFS), 42},
#ifdef ENODATA
{ENODATA, 43},
#endif
{ENODEV, 44},
{ENOENT, 45},
{ENOEXEC, 46},
{ENOLCK, 47},
{ENOLINK, 48},
{ENOMEM, 49},
{ENOMSG, 50},
{ERRNO(ENOPROTOOPT), 51},
{ENOSPC, 52},
#ifdef ENOSR
{ENOSR, 53},
#endif
#ifdef ENOSTR
{ENOSTR, 54},
#endif
{ENOSYS, 55},
{ERRNO(ENOTCONN), 56},
{ENOTDIR, 57},
{ERRNO(ENOTEMPTY), 58},
{ERRNO(ENOTSOCK), 59},
{ENOTSUP, 60},
{ENOTTY, 61},
{ENXIO, 62},
{ERRNO(EOPNOTSUPP), 63},
{EOVERFLOW, 64},
{EPERM, 65},
{EPIPE, 66},
{EPROTO, 67},
{ERRNO(EPROTONOSUPPORT), 68},
{ERRNO(EPROTOTYPE), 69},
{ERANGE, 70},
{EROFS, 71},
{ESPIPE, 72},
{ESRCH, 73},
{ERRNO(ESTALE), 74},
#ifdef ETIME
{ETIME, 75},
#endif
{ERRNO(ETIMEDOUT), 76},
}};
/// Converts a network error from platform-specific to 3ds-specific
static int TranslateError(int error) {
auto found = error_map.find(error);
if (found != error_map.end())
return -found->second;
return error;
}
/// Holds the translation from system network socket options to 3DS network socket options
/// Note: -1 = No effect/unavailable
static const std::unordered_map<int, int> sockopt_map = {{
{0x0004, SO_REUSEADDR},
{0x0080, -1},
{0x0100, -1},
{0x1001, SO_SNDBUF},
{0x1002, SO_RCVBUF},
{0x1003, -1},
#ifdef _WIN32
/// Unsupported in WinSock2
{0x1004, -1},
#else
{0x1004, SO_RCVLOWAT},
#endif
{0x1008, SO_TYPE},
{0x1009, SO_ERROR},
}};
/// Converts a socket option from 3ds-specific to platform-specific
static int TranslateSockOpt(int console_opt_name) {
auto found = sockopt_map.find(console_opt_name);
if (found != sockopt_map.end()) {
return found->second;
}
return console_opt_name;
}
/// Structure to represent the 3ds' pollfd structure, which is different than most implementations
struct CTRPollFD {
u32 fd; ///< Socket handle
union Events {
u32 hex; ///< The complete value formed by the flags
BitField<0, 1, u32> pollin;
BitField<1, 1, u32> pollpri;
BitField<2, 1, u32> pollhup;
BitField<3, 1, u32> pollerr;
BitField<4, 1, u32> pollout;
BitField<5, 1, u32> pollnval;
Events& operator=(const Events& other) {
hex = other.hex;
return *this;
}
/// Translates the resulting events of a Poll operation from platform-specific to 3ds
/// specific
static Events TranslateTo3DS(u32 input_event) {
Events ev = {};
if (input_event & POLLIN)
ev.pollin.Assign(1);
if (input_event & POLLPRI)
ev.pollpri.Assign(1);
if (input_event & POLLHUP)
ev.pollhup.Assign(1);
if (input_event & POLLERR)
ev.pollerr.Assign(1);
if (input_event & POLLOUT)
ev.pollout.Assign(1);
if (input_event & POLLNVAL)
ev.pollnval.Assign(1);
return ev;
}
/// Translates the resulting events of a Poll operation from 3ds specific to platform
/// specific
static u32 TranslateToPlatform(Events input_event) {
u32 ret = 0;
if (input_event.pollin)
ret |= POLLIN;
if (input_event.pollpri)
ret |= POLLPRI;
if (input_event.pollhup)
ret |= POLLHUP;
if (input_event.pollerr)
ret |= POLLERR;
if (input_event.pollout)
ret |= POLLOUT;
if (input_event.pollnval)
ret |= POLLNVAL;
return ret;
}
};
Events events; ///< Events to poll for (input)
Events revents; ///< Events received (output)
/// Converts a platform-specific pollfd to a 3ds specific structure
static CTRPollFD FromPlatform(pollfd const& fd) {
CTRPollFD result;
result.events.hex = Events::TranslateTo3DS(fd.events).hex;
result.revents.hex = Events::TranslateTo3DS(fd.revents).hex;
result.fd = static_cast<u32>(fd.fd);
return result;
}
/// Converts a 3ds specific pollfd to a platform-specific structure
static pollfd ToPlatform(CTRPollFD const& fd) {
pollfd result;
result.events = Events::TranslateToPlatform(fd.events);
result.revents = Events::TranslateToPlatform(fd.revents);
result.fd = fd.fd;
return result;
}
};
/// Union to represent the 3ds' sockaddr structure
union CTRSockAddr {
/// Structure to represent a raw sockaddr
struct {
u8 len; ///< The length of the entire structure, only the set fields count
u8 sa_family; ///< The address family of the sockaddr
u8 sa_data[0x1A]; ///< The extra data, this varies, depending on the address family
} raw;
/// Structure to represent the 3ds' sockaddr_in structure
struct CTRSockAddrIn {
u8 len; ///< The length of the entire structure
u8 sin_family; ///< The address family of the sockaddr_in
u16 sin_port; ///< The port associated with this sockaddr_in
u32 sin_addr; ///< The actual address of the sockaddr_in
} in;
/// Convert a 3DS CTRSockAddr to a platform-specific sockaddr
static sockaddr ToPlatform(CTRSockAddr const& ctr_addr) {
sockaddr result;
result.sa_family = ctr_addr.raw.sa_family;
memset(result.sa_data, 0, sizeof(result.sa_data));
// We can not guarantee ABI compatibility between platforms so we copy the fields manually
switch (result.sa_family) {
case AF_INET: {
sockaddr_in* result_in = reinterpret_cast<sockaddr_in*>(&result);
result_in->sin_port = ctr_addr.in.sin_port;
result_in->sin_addr.s_addr = ctr_addr.in.sin_addr;
memset(result_in->sin_zero, 0, sizeof(result_in->sin_zero));
break;
}
default:
ASSERT_MSG(false, "Unhandled address family (sa_family) in CTRSockAddr::ToPlatform");
break;
}
return result;
}
/// Convert a platform-specific sockaddr to a 3DS CTRSockAddr
static CTRSockAddr FromPlatform(sockaddr const& addr) {
CTRSockAddr result;
result.raw.sa_family = static_cast<u8>(addr.sa_family);
// We can not guarantee ABI compatibility between platforms so we copy the fields manually
switch (result.raw.sa_family) {
case AF_INET: {
sockaddr_in const* addr_in = reinterpret_cast<sockaddr_in const*>(&addr);
result.raw.len = sizeof(CTRSockAddrIn);
result.in.sin_port = addr_in->sin_port;
result.in.sin_addr = addr_in->sin_addr.s_addr;
break;
}
default:
ASSERT_MSG(false, "Unhandled address family (sa_family) in CTRSockAddr::ToPlatform");
break;
}
return result;
}
};
void SOC_U::CleanupSockets() {
for (auto sock : open_sockets)
closesocket(sock.second.socket_fd);
open_sockets.clear();
}
void SOC_U::Socket(Kernel::HLERequestContext& ctx) {
IPC::RequestParser rp(ctx, 0x02, 3, 2);
u32 domain = rp.Pop<u32>(); // Address family
u32 type = rp.Pop<u32>();
u32 protocol = rp.Pop<u32>();
rp.PopPID();
IPC::RequestBuilder rb = rp.MakeBuilder(2, 0);
// Only 0 is allowed according to 3dbrew, using 0 will let the OS decide which protocol to use
if (protocol != 0) {
rb.Push(UnimplementedFunction(ErrorModule::SOC)); // TODO(Subv): Correct error code
rb.Skip(1, false);
return;
}
if (domain != AF_INET) {
rb.Push(UnimplementedFunction(ErrorModule::SOC)); // TODO(Subv): Correct error code
rb.Skip(1, false);
return;
}
if (type != SOCK_DGRAM && type != SOCK_STREAM) {
rb.Push(UnimplementedFunction(ErrorModule::SOC)); // TODO(Subv): Correct error code
rb.Skip(1, false);
return;
}
u32 ret = static_cast<u32>(::socket(domain, type, protocol));
if ((s32)ret != SOCKET_ERROR_VALUE)
open_sockets[ret] = {ret, true};
if ((s32)ret == SOCKET_ERROR_VALUE)
ret = TranslateError(GET_ERRNO);
rb.Push(RESULT_SUCCESS);
rb.Push(ret);
}
void SOC_U::Bind(Kernel::HLERequestContext& ctx) {
IPC::RequestParser rp(ctx, 0x05, 2, 4);
u32 socket_handle = rp.Pop<u32>();
u32 len = rp.Pop<u32>();
rp.PopPID();
auto sock_addr_buf = rp.PopStaticBuffer();
CTRSockAddr ctr_sock_addr;
std::memcpy(&ctr_sock_addr, sock_addr_buf.data(), sizeof(CTRSockAddr));
sockaddr sock_addr = CTRSockAddr::ToPlatform(ctr_sock_addr);
s32 ret = ::bind(socket_handle, &sock_addr, std::max<u32>(sizeof(sock_addr), len));
if (ret != 0)
ret = TranslateError(GET_ERRNO);
IPC::RequestBuilder rb = rp.MakeBuilder(2, 0);
rb.Push(RESULT_SUCCESS);
rb.Push(ret);
}
void SOC_U::Fcntl(Kernel::HLERequestContext& ctx) {
IPC::RequestParser rp(ctx, 0x13, 3, 2);
u32 socket_handle = rp.Pop<u32>();
u32 ctr_cmd = rp.Pop<u32>();
u32 ctr_arg = rp.Pop<u32>();
rp.PopPID();
u32 posix_ret = 0; // TODO: Check what hardware returns for F_SETFL (unspecified by POSIX)
SCOPE_EXIT({
IPC::RequestBuilder rb = rp.MakeBuilder(2, 0);
rb.Push(RESULT_SUCCESS);
rb.Push(posix_ret);
});
if (ctr_cmd == 3) { // F_GETFL
#ifdef _WIN32
posix_ret = 0;
auto iter = open_sockets.find(socket_handle);
if (iter != open_sockets.end() && iter->second.blocking == false)
posix_ret |= 4; // O_NONBLOCK
#else
int ret = ::fcntl(socket_handle, F_GETFL, 0);
if (ret == SOCKET_ERROR_VALUE) {
posix_ret = TranslateError(GET_ERRNO);
return;
}
posix_ret = 0;
if (ret & O_NONBLOCK)
posix_ret |= 4; // O_NONBLOCK
#endif
} else if (ctr_cmd == 4) { // F_SETFL
#ifdef _WIN32
unsigned long tmp = (ctr_arg & 4 /* O_NONBLOCK */) ? 1 : 0;
int ret = ioctlsocket(socket_handle, FIONBIO, &tmp);
if (ret == SOCKET_ERROR_VALUE) {
posix_ret = TranslateError(GET_ERRNO);
return;
}
auto iter = open_sockets.find(socket_handle);
if (iter != open_sockets.end())
iter->second.blocking = (tmp == 0);
#else
int flags = ::fcntl(socket_handle, F_GETFL, 0);
if (flags == SOCKET_ERROR_VALUE) {
posix_ret = TranslateError(GET_ERRNO);
return;
}
flags &= ~O_NONBLOCK;
if (ctr_arg & 4) // O_NONBLOCK
flags |= O_NONBLOCK;
int ret = ::fcntl(socket_handle, F_SETFL, flags);
if (ret == SOCKET_ERROR_VALUE) {
posix_ret = TranslateError(GET_ERRNO);
return;
}
#endif
} else {
LOG_ERROR(Service_SOC, "Unsupported command ({}) in fcntl call", ctr_cmd);
posix_ret = TranslateError(EINVAL); // TODO: Find the correct error
return;
}
}
void SOC_U::Listen(Kernel::HLERequestContext& ctx) {
IPC::RequestParser rp(ctx, 0x03, 2, 2);
u32 socket_handle = rp.Pop<u32>();
u32 backlog = rp.Pop<u32>();
rp.PopPID();
s32 ret = ::listen(socket_handle, backlog);
if (ret != 0)
ret = TranslateError(GET_ERRNO);
IPC::RequestBuilder rb = rp.MakeBuilder(2, 0);
rb.Push(RESULT_SUCCESS);
rb.Push(ret);
}
void SOC_U::Accept(Kernel::HLERequestContext& ctx) {
// TODO(Subv): Calling this function on a blocking socket will block the emu thread,
// preventing graceful shutdown when closing the emulator, this can be fixed by always
// performing nonblocking operations and spinlock until the data is available
IPC::RequestParser rp(ctx, 0x04, 2, 2);
u32 socket_handle = rp.Pop<u32>();
socklen_t max_addr_len = static_cast<socklen_t>(rp.Pop<u32>());
rp.PopPID();
sockaddr addr;
socklen_t addr_len = sizeof(addr);
u32 ret = static_cast<u32>(::accept(socket_handle, &addr, &addr_len));
if ((s32)ret != SOCKET_ERROR_VALUE)
open_sockets[ret] = {ret, true};
CTRSockAddr ctr_addr;
std::vector<u8> ctr_addr_buf(sizeof(ctr_addr));
if ((s32)ret == SOCKET_ERROR_VALUE) {
ret = TranslateError(GET_ERRNO);
} else {
ctr_addr = CTRSockAddr::FromPlatform(addr);
std::memcpy(ctr_addr_buf.data(), &ctr_addr, sizeof(ctr_addr));
}
IPC::RequestBuilder rb = rp.MakeBuilder(2, 2);
rb.Push(RESULT_SUCCESS);
rb.Push(ret);
rb.PushStaticBuffer(ctr_addr_buf, 0);
}
void SOC_U::GetHostId(Kernel::HLERequestContext& ctx) {
IPC::RequestParser rp(ctx, 0x16, 0, 0);
char name[128];
gethostname(name, sizeof(name));
addrinfo hints = {};
addrinfo* res;
hints.ai_family = AF_INET;
getaddrinfo(name, nullptr, &hints, &res);
sockaddr_in* sock_addr = reinterpret_cast<sockaddr_in*>(res->ai_addr);
in_addr* addr = &sock_addr->sin_addr;
IPC::RequestBuilder rb = rp.MakeBuilder(2, 0);
rb.Push(RESULT_SUCCESS);
rb.Push(static_cast<u32>(addr->s_addr));
freeaddrinfo(res);
}
void SOC_U::Close(Kernel::HLERequestContext& ctx) {
IPC::RequestParser rp(ctx, 0x0B, 1, 2);
u32 socket_handle = rp.Pop<u32>();
rp.PopPID();
s32 ret = 0;
open_sockets.erase(socket_handle);
ret = closesocket(socket_handle);
if (ret != 0)
ret = TranslateError(GET_ERRNO);
IPC::RequestBuilder rb = rp.MakeBuilder(2, 0);
rb.Push(RESULT_SUCCESS);
rb.Push(ret);
}
void SOC_U::SendTo(Kernel::HLERequestContext& ctx) {
IPC::RequestParser rp(ctx, 0x0A, 4, 6);
u32 socket_handle = rp.Pop<u32>();
u32 len = rp.Pop<u32>();
u32 flags = rp.Pop<u32>();
u32 addr_len = rp.Pop<u32>();
rp.PopPID();
auto input_buff = rp.PopStaticBuffer();
auto dest_addr_buff = rp.PopStaticBuffer();
s32 ret = -1;
if (addr_len > 0) {
CTRSockAddr ctr_dest_addr;
std::memcpy(&ctr_dest_addr, dest_addr_buff.data(), sizeof(ctr_dest_addr));
sockaddr dest_addr = CTRSockAddr::ToPlatform(ctr_dest_addr);
ret = ::sendto(socket_handle, reinterpret_cast<const char*>(input_buff.data()), len, flags,
&dest_addr, sizeof(dest_addr));
} else {
ret = ::sendto(socket_handle, reinterpret_cast<const char*>(input_buff.data()), len, flags,
nullptr, 0);
}
if (ret == SOCKET_ERROR_VALUE)
ret = TranslateError(GET_ERRNO);
IPC::RequestBuilder rb = rp.MakeBuilder(2, 0);
rb.Push(RESULT_SUCCESS);
rb.Push(ret);
}
void SOC_U::RecvFromOther(Kernel::HLERequestContext& ctx) {
IPC::RequestParser rp(ctx, 0x7, 4, 4);
u32 socket_handle = rp.Pop<u32>();
u32 len = rp.Pop<u32>();
u32 flags = rp.Pop<u32>();
u32 addr_len = rp.Pop<u32>();
rp.PopPID();
auto& buffer = rp.PopMappedBuffer();
CTRSockAddr ctr_src_addr;
std::vector<u8> output_buff(len);
std::vector<u8> addr_buff(sizeof(ctr_src_addr));
sockaddr src_addr;
socklen_t src_addr_len = sizeof(src_addr);
s32 ret = -1;
if (addr_len > 0) {
ret = ::recvfrom(socket_handle, reinterpret_cast<char*>(output_buff.data()), len, flags,
&src_addr, &src_addr_len);
if (ret >= 0 && src_addr_len > 0) {
ctr_src_addr = CTRSockAddr::FromPlatform(src_addr);
std::memcpy(addr_buff.data(), &ctr_src_addr, sizeof(ctr_src_addr));
}
} else {
ret = ::recvfrom(socket_handle, reinterpret_cast<char*>(output_buff.data()), len, flags,
NULL, 0);
addr_buff.resize(0);
}
if (ret == SOCKET_ERROR_VALUE) {
ret = TranslateError(GET_ERRNO);
} else {
buffer.Write(output_buff.data(), 0, ret);
}
IPC::RequestBuilder rb = rp.MakeBuilder(2, 4);
rb.Push(RESULT_SUCCESS);
rb.Push(ret);
rb.PushStaticBuffer(addr_buff, 0);
rb.PushMappedBuffer(buffer);
}
void SOC_U::RecvFrom(Kernel::HLERequestContext& ctx) {
// TODO(Subv): Calling this function on a blocking socket will block the emu thread,
// preventing graceful shutdown when closing the emulator, this can be fixed by always
// performing nonblocking operations and spinlock until the data is available
IPC::RequestParser rp(ctx, 0x08, 4, 2);
u32 socket_handle = rp.Pop<u32>();
u32 len = rp.Pop<u32>();
u32 flags = rp.Pop<u32>();
u32 addr_len = rp.Pop<u32>();
rp.PopPID();
CTRSockAddr ctr_src_addr;
std::vector<u8> output_buff(len);
std::vector<u8> addr_buff(sizeof(ctr_src_addr));
sockaddr src_addr;
socklen_t src_addr_len = sizeof(src_addr);
s32 ret = -1;
if (addr_len > 0) {
// Only get src adr if input adr available
ret = ::recvfrom(socket_handle, reinterpret_cast<char*>(output_buff.data()), len, flags,
&src_addr, &src_addr_len);
if (ret >= 0 && src_addr_len > 0) {
ctr_src_addr = CTRSockAddr::FromPlatform(src_addr);
std::memcpy(addr_buff.data(), &ctr_src_addr, sizeof(ctr_src_addr));
}
} else {
ret = ::recvfrom(socket_handle, reinterpret_cast<char*>(output_buff.data()), len, flags,
NULL, 0);
addr_buff.resize(0);
}
s32 total_received = ret;
if (ret == SOCKET_ERROR_VALUE) {
ret = TranslateError(GET_ERRNO);
total_received = 0;
}
// Write only the data we received to avoid overwriting parts of the buffer with zeros
output_buff.resize(total_received);
IPC::RequestBuilder rb = rp.MakeBuilder(3, 4);
rb.Push(RESULT_SUCCESS);
rb.Push(ret);
rb.Push(total_received);
rb.PushStaticBuffer(output_buff, 0);
rb.PushStaticBuffer(addr_buff, 1);
}
void SOC_U::Poll(Kernel::HLERequestContext& ctx) {
IPC::RequestParser rp(ctx, 0x14, 2, 4);
u32 nfds = rp.Pop<u32>();
s32 timeout = rp.Pop<s32>();
rp.PopPID();
auto input_fds = rp.PopStaticBuffer();
std::vector<CTRPollFD> ctr_fds(nfds);
std::memcpy(ctr_fds.data(), input_fds.data(), nfds * sizeof(CTRPollFD));
// The 3ds_pollfd and the pollfd structures may be different (Windows/Linux have different
// sizes)
// so we have to copy the data
std::vector<pollfd> platform_pollfd(nfds);
std::transform(ctr_fds.begin(), ctr_fds.end(), platform_pollfd.begin(), CTRPollFD::ToPlatform);
s32 ret = ::poll(platform_pollfd.data(), nfds, timeout);
// Now update the output pollfd structure
std::transform(platform_pollfd.begin(), platform_pollfd.end(), ctr_fds.begin(),
CTRPollFD::FromPlatform);
std::vector<u8> output_fds(nfds * sizeof(CTRPollFD));
std::memcpy(output_fds.data(), ctr_fds.data(), nfds * sizeof(CTRPollFD));
if (ret == SOCKET_ERROR_VALUE)
ret = TranslateError(GET_ERRNO);
IPC::RequestBuilder rb = rp.MakeBuilder(2, 2);
rb.Push(RESULT_SUCCESS);
rb.Push(ret);
rb.PushStaticBuffer(output_fds, 0);
}
void SOC_U::GetSockName(Kernel::HLERequestContext& ctx) {
IPC::RequestParser rp(ctx, 0x17, 2, 2);
u32 socket_handle = rp.Pop<u32>();
u32 max_addr_len = rp.Pop<u32>();
rp.PopPID();
sockaddr dest_addr;
socklen_t dest_addr_len = sizeof(dest_addr);
s32 ret = ::getsockname(socket_handle, &dest_addr, &dest_addr_len);
CTRSockAddr ctr_dest_addr = CTRSockAddr::FromPlatform(dest_addr);
std::vector<u8> dest_addr_buff(sizeof(ctr_dest_addr));
std::memcpy(dest_addr_buff.data(), &ctr_dest_addr, sizeof(ctr_dest_addr));
if (ret != 0)
ret = TranslateError(GET_ERRNO);
IPC::RequestBuilder rb = rp.MakeBuilder(2, 2);
rb.Push(RESULT_SUCCESS);
rb.Push(ret);
rb.PushStaticBuffer(dest_addr_buff, 0);
}
void SOC_U::Shutdown(Kernel::HLERequestContext& ctx) {
IPC::RequestParser rp(ctx, 0x0C, 2, 2);
u32 socket_handle = rp.Pop<u32>();
s32 how = rp.Pop<s32>();
rp.PopPID();
s32 ret = ::shutdown(socket_handle, how);
if (ret != 0)
ret = TranslateError(GET_ERRNO);
IPC::RequestBuilder rb = rp.MakeBuilder(2, 0);
rb.Push(RESULT_SUCCESS);
rb.Push(ret);
}
void SOC_U::GetPeerName(Kernel::HLERequestContext& ctx) {
IPC::RequestParser rp(ctx, 0x18, 2, 2);
u32 socket_handle = rp.Pop<u32>();
u32 max_addr_len = rp.Pop<u32>();
rp.PopPID();
sockaddr dest_addr;
socklen_t dest_addr_len = sizeof(dest_addr);
int ret = ::getpeername(socket_handle, &dest_addr, &dest_addr_len);
CTRSockAddr ctr_dest_addr = CTRSockAddr::FromPlatform(dest_addr);
std::vector<u8> dest_addr_buff(sizeof(ctr_dest_addr));
std::memcpy(dest_addr_buff.data(), &ctr_dest_addr, sizeof(ctr_dest_addr));
int result = 0;
if (ret != 0)
ret = TranslateError(GET_ERRNO);
IPC::RequestBuilder rb = rp.MakeBuilder(2, 2);
rb.Push(RESULT_SUCCESS);
rb.Push(ret);
rb.PushStaticBuffer(dest_addr_buff, 0);
}
void SOC_U::Connect(Kernel::HLERequestContext& ctx) {
// TODO(Subv): Calling this function on a blocking socket will block the emu thread,
// preventing graceful shutdown when closing the emulator, this can be fixed by always
// performing nonblocking operations and spinlock until the data is available
IPC::RequestParser rp(ctx, 0x06, 2, 4);
u32 socket_handle = rp.Pop<u32>();
u32 input_addr_len = rp.Pop<u32>();
rp.PopPID();
auto input_addr_buf = rp.PopStaticBuffer();
CTRSockAddr ctr_input_addr;
std::memcpy(&ctr_input_addr, input_addr_buf.data(), sizeof(ctr_input_addr));
sockaddr input_addr = CTRSockAddr::ToPlatform(ctr_input_addr);
s32 ret = ::connect(socket_handle, &input_addr, sizeof(input_addr));
if (ret != 0)
ret = TranslateError(GET_ERRNO);
IPC::RequestBuilder rb = rp.MakeBuilder(2, 0);
rb.Push(RESULT_SUCCESS);
rb.Push(ret);
}
void SOC_U::InitializeSockets(Kernel::HLERequestContext& ctx) {
// TODO(Subv): Implement
IPC::RequestParser rp(ctx, 0x01, 1, 4);
u32 memory_block_size = rp.Pop<u32>();
rp.PopPID();
rp.PopObject<Kernel::SharedMemory>();
IPC::RequestBuilder rb = rp.MakeBuilder(1, 0);
rb.Push(RESULT_SUCCESS);
}
void SOC_U::ShutdownSockets(Kernel::HLERequestContext& ctx) {
// TODO(Subv): Implement
IPC::RequestParser rp(ctx, 0x19, 0, 0);
CleanupSockets();
IPC::RequestBuilder rb = rp.MakeBuilder(1, 0);
rb.Push(RESULT_SUCCESS);
}
void SOC_U::GetSockOpt(Kernel::HLERequestContext& ctx) {
IPC::RequestParser rp(ctx, 0x11, 4, 2);
u32 socket_handle = rp.Pop<u32>();
u32 level = rp.Pop<u32>();
s32 optname = rp.Pop<s32>();
socklen_t optlen = static_cast<socklen_t>(rp.Pop<u32>());
rp.PopPID();
s32 err = 0;
std::vector<u8> optval(optlen);
if (optname < 0) {
#ifdef _WIN32
err = WSAEINVAL;
#else
err = EINVAL;
#endif
} else {
char* optval_data = reinterpret_cast<char*>(optval.data());
err = ::getsockopt(socket_handle, level, optname, optval_data, &optlen);
if (err == SOCKET_ERROR_VALUE) {
err = TranslateError(GET_ERRNO);
}
}
IPC::RequestBuilder rb = rp.MakeBuilder(3, 2);
rb.Push(RESULT_SUCCESS);
rb.Push(err);
rb.Push(static_cast<u32>(optlen));
rb.PushStaticBuffer(optval, 0);
}
void SOC_U::SetSockOpt(Kernel::HLERequestContext& ctx) {
IPC::RequestParser rp(ctx, 0x12, 4, 4);
u32 socket_handle = rp.Pop<u32>();
u32 level = rp.Pop<u32>();
s32 optname = rp.Pop<s32>();
socklen_t optlen = static_cast<socklen_t>(rp.Pop<u32>());
rp.PopPID();
auto optval = rp.PopStaticBuffer();
s32 err = 0;
if (optname < 0) {
#ifdef _WIN32
err = WSAEINVAL;
#else
err = EINVAL;
#endif
} else {
const char* optval_data = reinterpret_cast<const char*>(optval.data());
err = static_cast<u32>(::setsockopt(socket_handle, level, optname, optval_data,
static_cast<socklen_t>(optval.size())));
if (err == SOCKET_ERROR_VALUE) {
err = TranslateError(GET_ERRNO);
}
}
IPC::RequestBuilder rb = rp.MakeBuilder(2, 0);
rb.Push(RESULT_SUCCESS);
rb.Push(err);
}
SOC_U::SOC_U() : ServiceFramework("soc:U") {
static const FunctionInfo functions[] = {
{0x00010044, &SOC_U::InitializeSockets, "InitializeSockets"},
{0x000200C2, &SOC_U::Socket, "Socket"},
{0x00030082, &SOC_U::Listen, "Listen"},
{0x00040082, &SOC_U::Accept, "Accept"},
{0x00050084, &SOC_U::Bind, "Bind"},
{0x00060084, &SOC_U::Connect, "Connect"},
{0x00070104, &SOC_U::RecvFromOther, "recvfrom_other"},
{0x00080102, &SOC_U::RecvFrom, "RecvFrom"},
{0x00090106, nullptr, "sendto_other"},
{0x000A0106, &SOC_U::SendTo, "SendTo"},
{0x000B0042, &SOC_U::Close, "Close"},
{0x000C0082, &SOC_U::Shutdown, "Shutdown"},
{0x000D0082, nullptr, "GetHostByName"},
{0x000E00C2, nullptr, "GetHostByAddr"},
{0x000F0106, nullptr, "GetAddrInfo"},
{0x00100102, nullptr, "GetNameInfo"},
{0x00110102, &SOC_U::GetSockOpt, "GetSockOpt"},
{0x00120104, &SOC_U::SetSockOpt, "SetSockOpt"},
{0x001300C2, &SOC_U::Fcntl, "Fcntl"},
{0x00140084, &SOC_U::Poll, "Poll"},
{0x00150042, nullptr, "SockAtMark"},
{0x00160000, &SOC_U::GetHostId, "GetHostId"},
{0x00170082, &SOC_U::GetSockName, "GetSockName"},
{0x00180082, &SOC_U::GetPeerName, "GetPeerName"},
{0x00190000, &SOC_U::ShutdownSockets, "ShutdownSockets"},
{0x001A00C0, nullptr, "GetNetworkOpt"},
{0x001B0040, nullptr, "ICMPSocket"},
{0x001C0104, nullptr, "ICMPPing"},
{0x001D0040, nullptr, "ICMPCancel"},
{0x001E0040, nullptr, "ICMPClose"},
{0x001F0040, nullptr, "GetResolverInfo"},
{0x00210002, nullptr, "CloseSockets"},
{0x00230040, nullptr, "AddGlobalSocket"},
};
RegisterHandlers(functions);
#ifdef _WIN32
WSADATA data;
WSAStartup(MAKEWORD(2, 2), &data);
#endif
}
SOC_U::~SOC_U() {
CleanupSockets();
#ifdef _WIN32
WSACleanup();
#endif
}
void InstallInterfaces(Core::System& system) {
auto& service_manager = system.ServiceManager();
std::make_shared<SOC_U>()->InstallAsService(service_manager);
}
} // namespace Service::SOC