Lime3DS/src/audio_core/hle/hle.cpp

500 lines
17 KiB
C++

// Copyright 2017 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <boost/serialization/array.hpp>
#include <boost/serialization/base_object.hpp>
#include <boost/serialization/shared_ptr.hpp>
#include <boost/serialization/vector.hpp>
#include <boost/serialization/weak_ptr.hpp>
#include "audio_core/audio_types.h"
#include "audio_core/hle/common.h"
#include "audio_core/hle/decoder.h"
#include "audio_core/hle/faad2_decoder.h"
#include "audio_core/hle/hle.h"
#include "audio_core/hle/mixers.h"
#include "audio_core/hle/shared_memory.h"
#include "audio_core/hle/source.h"
#include "audio_core/sink.h"
#include "common/archives.h"
#include "common/assert.h"
#include "common/common_types.h"
#include "common/hash.h"
#include "common/logging/log.h"
#include "core/core.h"
#include "core/core_timing.h"
SERIALIZE_EXPORT_IMPL(AudioCore::DspHle)
using InterruptType = Service::DSP::InterruptType;
namespace AudioCore {
DspHle::DspHle()
: DspHle(Core::System::GetInstance(), Core::System::GetInstance().Memory(),
Core::System::GetInstance().CoreTiming()) {}
DspHle::DspHle(Core::System& system) : DspHle(system, system.Memory(), system.CoreTiming()) {}
template <class Archive>
void DspHle::serialize(Archive& ar, const unsigned int) {
ar& boost::serialization::base_object<DspInterface>(*this);
ar&* impl.get();
}
SERIALIZE_IMPL(DspHle)
// The value below is the "perfect" mathematical ratio of ARM11 cycles per audio frame, samples per
// frame * teaklite cycles per sample * 2 ARM11 cycles/teaklite cycle
// (160 * 4096 * 2) = (1310720)
//
// This value has been verified against a rough hardware test with hardware and LLE
static constexpr u64 audio_frame_ticks = samples_per_frame * 4096 * 2ull; ///< Units: ARM11 cycles
struct DspHle::Impl final {
public:
explicit Impl(DspHle& parent, Memory::MemorySystem& memory, Core::Timing& timing);
~Impl();
DspState GetDspState() const;
u16 RecvData(u32 register_number);
bool RecvDataIsReady(u32 register_number) const;
std::vector<u8> PipeRead(DspPipe pipe_number, std::size_t length);
std::size_t GetPipeReadableSize(DspPipe pipe_number) const;
void PipeWrite(DspPipe pipe_number, std::span<const u8> buffer);
std::array<u8, Memory::DSP_RAM_SIZE>& GetDspMemory();
void SetInterruptHandler(
std::function<void(Service::DSP::InterruptType type, DspPipe pipe)> handler);
private:
void ResetPipes();
void WriteU16(DspPipe pipe_number, u16 value);
void AudioPipeWriteStructAddresses();
std::size_t CurrentRegionIndex() const;
HLE::SharedMemory& ReadRegion();
HLE::SharedMemory& WriteRegion();
StereoFrame16 GenerateCurrentFrame();
bool Tick();
void AudioTickCallback(s64 cycles_late);
DspState dsp_state = DspState::Off;
std::array<std::vector<u8>, num_dsp_pipe> pipe_data{};
HLE::DspMemory dsp_memory;
std::array<HLE::Source, HLE::num_sources> sources{{
HLE::Source(0), HLE::Source(1), HLE::Source(2), HLE::Source(3), HLE::Source(4),
HLE::Source(5), HLE::Source(6), HLE::Source(7), HLE::Source(8), HLE::Source(9),
HLE::Source(10), HLE::Source(11), HLE::Source(12), HLE::Source(13), HLE::Source(14),
HLE::Source(15), HLE::Source(16), HLE::Source(17), HLE::Source(18), HLE::Source(19),
HLE::Source(20), HLE::Source(21), HLE::Source(22), HLE::Source(23),
}};
HLE::Mixers mixers{};
DspHle& parent;
Core::Timing& core_timing;
Core::TimingEventType* tick_event{};
std::unique_ptr<HLE::DecoderBase> decoder{};
std::function<void(Service::DSP::InterruptType type, DspPipe pipe)> interrupt_handler{};
template <class Archive>
void serialize(Archive& ar, const unsigned int) {
ar& dsp_state;
ar& pipe_data;
ar& dsp_memory.raw_memory;
ar& sources;
ar& mixers;
// interrupt_handler is reregistered when loading state from DSP_DSP
}
friend class boost::serialization::access;
};
static std::vector<std::function<std::unique_ptr<HLE::DecoderBase>(Memory::MemorySystem&)>>
decoder_backends = {
[](Memory::MemorySystem& memory) -> std::unique_ptr<HLE::DecoderBase> {
return std::make_unique<HLE::FAAD2Decoder>(memory);
},
};
DspHle::Impl::Impl(DspHle& parent_, Memory::MemorySystem& memory, Core::Timing& timing)
: parent(parent_), core_timing(timing) {
dsp_memory.raw_memory.fill(0);
for (auto& source : sources) {
source.SetMemory(memory);
}
for (auto& factory : decoder_backends) {
decoder = factory(memory);
if (decoder && decoder->IsValid()) {
break;
}
}
if (!decoder || !decoder->IsValid()) {
LOG_WARNING(Audio_DSP,
"Unable to load any decoders, this could cause missing audio in some games");
decoder = std::make_unique<HLE::NullDecoder>();
}
tick_event =
core_timing.RegisterEvent("AudioCore::DspHle::tick_event", [this](u64, s64 cycles_late) {
this->AudioTickCallback(cycles_late);
});
core_timing.ScheduleEvent(audio_frame_ticks, tick_event);
}
DspHle::Impl::~Impl() {
core_timing.UnscheduleEvent(tick_event, 0);
}
DspState DspHle::Impl::GetDspState() const {
return dsp_state;
}
u16 DspHle::Impl::RecvData(u32 register_number) {
ASSERT_MSG(register_number == 0, "Unknown register_number {}", register_number);
// Application reads this after requesting DSP shutdown, to verify the DSP has indeed shutdown
// or slept.
switch (GetDspState()) {
case AudioCore::DspState::On:
return 0;
case AudioCore::DspState::Off:
case AudioCore::DspState::Sleeping:
return 1;
default:
UNREACHABLE();
break;
}
}
bool DspHle::Impl::RecvDataIsReady(u32 register_number) const {
ASSERT_MSG(register_number == 0, "Unknown register_number {}", register_number);
return true;
}
std::vector<u8> DspHle::Impl::PipeRead(DspPipe pipe_number, std::size_t length) {
const std::size_t pipe_index = static_cast<std::size_t>(pipe_number);
if (pipe_index >= num_dsp_pipe) {
LOG_ERROR(Audio_DSP, "pipe_number = {} invalid", pipe_index);
return {};
}
if (length > UINT16_MAX) { // Can only read at most UINT16_MAX from the pipe
LOG_ERROR(Audio_DSP, "length of {} greater than max of {}", length, UINT16_MAX);
return {};
}
std::vector<u8>& data = pipe_data[pipe_index];
if (length > data.size()) {
LOG_WARNING(
Audio_DSP,
"pipe_number = {} is out of data, application requested read of {} but {} remain",
pipe_index, length, data.size());
length = static_cast<u32>(data.size());
}
if (length == 0)
return {};
std::vector<u8> ret(data.begin(), data.begin() + length);
data.erase(data.begin(), data.begin() + length);
return ret;
}
size_t DspHle::Impl::GetPipeReadableSize(DspPipe pipe_number) const {
const std::size_t pipe_index = static_cast<std::size_t>(pipe_number);
if (pipe_index >= num_dsp_pipe) {
LOG_ERROR(Audio_DSP, "pipe_number = {} invalid", pipe_index);
return 0;
}
return pipe_data[pipe_index].size();
}
void DspHle::Impl::PipeWrite(DspPipe pipe_number, std::span<const u8> buffer) {
switch (pipe_number) {
case DspPipe::Audio: {
if (buffer.size() != 4) {
LOG_ERROR(Audio_DSP, "DspPipe::Audio: Unexpected buffer length {} was written",
buffer.size());
return;
}
enum class StateChange {
Initialize = 0,
Shutdown = 1,
Wakeup = 2,
Sleep = 3,
};
// The difference between Initialize and Wakeup is that Input state is maintained
// when sleeping but isn't when turning it off and on again. (TODO: Implement this.)
// Waking up from sleep garbles some of the structs in the memory region. (TODO:
// Implement this.) Applications store away the state of these structs before
// sleeping and reset it back after wakeup on behalf of the DSP.
switch (static_cast<StateChange>(buffer[0])) {
case StateChange::Initialize:
LOG_INFO(Audio_DSP, "Application has requested initialization of DSP hardware");
ResetPipes();
AudioPipeWriteStructAddresses();
dsp_state = DspState::On;
break;
case StateChange::Shutdown:
LOG_INFO(Audio_DSP, "Application has requested shutdown of DSP hardware");
dsp_state = DspState::Off;
break;
case StateChange::Wakeup:
LOG_INFO(Audio_DSP, "Application has requested wakeup of DSP hardware");
ResetPipes();
AudioPipeWriteStructAddresses();
dsp_state = DspState::On;
break;
case StateChange::Sleep:
LOG_INFO(Audio_DSP, "Application has requested sleep of DSP hardware");
UNIMPLEMENTED();
AudioPipeWriteStructAddresses();
dsp_state = DspState::Sleeping;
break;
default:
LOG_ERROR(Audio_DSP,
"Application has requested unknown state transition of DSP hardware {}",
buffer[0]);
dsp_state = DspState::Off;
break;
}
return;
}
case DspPipe::Binary: {
// TODO(B3N30): Make this async, and signal the interrupt
HLE::BinaryMessage request{};
if (sizeof(request) != buffer.size()) {
LOG_CRITICAL(Audio_DSP, "got binary pipe with wrong size {}", buffer.size());
UNIMPLEMENTED();
return;
}
std::memcpy(&request, buffer.data(), buffer.size());
if (request.header.codec != HLE::DecoderCodec::DecodeAAC) {
LOG_CRITICAL(Audio_DSP, "got unknown codec {}", static_cast<u16>(request.header.codec));
UNIMPLEMENTED();
return;
}
std::optional<HLE::BinaryMessage> response = decoder->ProcessRequest(request);
if (response) {
const HLE::BinaryMessage& value = *response;
pipe_data[static_cast<u32>(pipe_number)].resize(sizeof(value));
std::memcpy(pipe_data[static_cast<u32>(pipe_number)].data(), &value, sizeof(value));
}
interrupt_handler(InterruptType::Pipe, DspPipe::Binary);
break;
}
default:
LOG_CRITICAL(Audio_DSP, "pipe_number = {} unimplemented",
static_cast<std::size_t>(pipe_number));
UNIMPLEMENTED();
return;
}
}
std::array<u8, Memory::DSP_RAM_SIZE>& DspHle::Impl::GetDspMemory() {
return dsp_memory.raw_memory;
}
void DspHle::Impl::SetInterruptHandler(
std::function<void(Service::DSP::InterruptType type, DspPipe pipe)> handler) {
interrupt_handler = handler;
}
void DspHle::Impl::ResetPipes() {
for (auto& data : pipe_data) {
data.clear();
}
dsp_state = DspState::Off;
}
void DspHle::Impl::WriteU16(DspPipe pipe_number, u16 value) {
const std::size_t pipe_index = static_cast<std::size_t>(pipe_number);
std::vector<u8>& data = pipe_data.at(pipe_index);
// Little endian
data.emplace_back(value & 0xFF);
data.emplace_back(value >> 8);
}
void DspHle::Impl::AudioPipeWriteStructAddresses() {
// These struct addresses are DSP dram addresses.
// See also: DSP_DSP::ConvertProcessAddressFromDspDram
static const std::array<u16, 15> struct_addresses = {
0x8000 + offsetof(HLE::SharedMemory, frame_counter) / 2,
0x8000 + offsetof(HLE::SharedMemory, source_configurations) / 2,
0x8000 + offsetof(HLE::SharedMemory, source_statuses) / 2,
0x8000 + offsetof(HLE::SharedMemory, adpcm_coefficients) / 2,
0x8000 + offsetof(HLE::SharedMemory, dsp_configuration) / 2,
0x8000 + offsetof(HLE::SharedMemory, dsp_status) / 2,
0x8000 + offsetof(HLE::SharedMemory, final_samples) / 2,
0x8000 + offsetof(HLE::SharedMemory, intermediate_mix_samples) / 2,
0x8000 + offsetof(HLE::SharedMemory, compressor) / 2,
0x8000 + offsetof(HLE::SharedMemory, dsp_debug) / 2,
0x8000 + offsetof(HLE::SharedMemory, unknown10) / 2,
0x8000 + offsetof(HLE::SharedMemory, unknown11) / 2,
0x8000 + offsetof(HLE::SharedMemory, unknown12) / 2,
0x8000 + offsetof(HLE::SharedMemory, unknown13) / 2,
0x8000 + offsetof(HLE::SharedMemory, unknown14) / 2,
};
// Begin with a u16 denoting the number of structs.
WriteU16(DspPipe::Audio, static_cast<u16>(struct_addresses.size()));
// Then write the struct addresses.
for (u16 addr : struct_addresses) {
WriteU16(DspPipe::Audio, addr);
}
// Signal that we have data on this pipe.
interrupt_handler(InterruptType::Pipe, DspPipe::Audio);
}
size_t DspHle::Impl::CurrentRegionIndex() const {
// The region with the higher frame counter is chosen unless there is wraparound.
// This function only returns a 0 or 1.
const u16 frame_counter_0 = dsp_memory.region_0.frame_counter;
const u16 frame_counter_1 = dsp_memory.region_1.frame_counter;
if (frame_counter_0 == 0xFFFFu && frame_counter_1 != 0xFFFEu) {
// Wraparound has occurred.
return 1;
}
if (frame_counter_1 == 0xFFFFu && frame_counter_0 != 0xFFFEu) {
// Wraparound has occurred.
return 0;
}
return (frame_counter_0 > frame_counter_1) ? 0 : 1;
}
HLE::SharedMemory& DspHle::Impl::ReadRegion() {
return CurrentRegionIndex() == 0 ? dsp_memory.region_0 : dsp_memory.region_1;
}
HLE::SharedMemory& DspHle::Impl::WriteRegion() {
return CurrentRegionIndex() != 0 ? dsp_memory.region_0 : dsp_memory.region_1;
}
StereoFrame16 DspHle::Impl::GenerateCurrentFrame() {
HLE::SharedMemory& read = ReadRegion();
HLE::SharedMemory& write = WriteRegion();
std::array<QuadFrame32, 3> intermediate_mixes = {};
// Generate intermediate mixes
for (std::size_t i = 0; i < HLE::num_sources; i++) {
write.source_statuses.status[i] =
sources[i].Tick(read.source_configurations.config[i], read.adpcm_coefficients.coeff[i]);
for (std::size_t mix = 0; mix < 3; mix++) {
sources[i].MixInto(intermediate_mixes[mix], mix);
}
}
// Generate final mix
write.dsp_status = mixers.Tick(read.dsp_configuration, read.intermediate_mix_samples,
write.intermediate_mix_samples, intermediate_mixes);
StereoFrame16 output_frame = mixers.GetOutput();
// Write current output frame to the shared memory region
for (std::size_t samplei = 0; samplei < output_frame.size(); samplei++) {
for (std::size_t channeli = 0; channeli < output_frame[0].size(); channeli++) {
write.final_samples.pcm16[samplei][channeli] = s16_le(output_frame[samplei][channeli]);
}
}
return output_frame;
}
bool DspHle::Impl::Tick() {
StereoFrame16 current_frame = {};
// TODO: Check dsp::DSP semaphore (which indicates emulated application has finished writing to
// shared memory region)
current_frame = GenerateCurrentFrame();
parent.OutputFrame(std::move(current_frame));
return GetDspState() == DspState::On;
}
void DspHle::Impl::AudioTickCallback(s64 cycles_late) {
if (Tick()) {
// TODO(merry): Signal all the other interrupts as appropriate.
interrupt_handler(InterruptType::Pipe, DspPipe::Audio);
}
// Reschedule recurrent event
core_timing.ScheduleEvent(audio_frame_ticks - cycles_late, tick_event);
}
DspHle::DspHle(Core::System& system, Memory::MemorySystem& memory, Core::Timing& timing)
: DspInterface(system), impl(std::make_unique<Impl>(*this, memory, timing)) {}
DspHle::~DspHle() = default;
u16 DspHle::RecvData(u32 register_number) {
return impl->RecvData(register_number);
}
bool DspHle::RecvDataIsReady(u32 register_number) const {
return impl->RecvDataIsReady(register_number);
}
void DspHle::SetSemaphore(u16 semaphore_value) {
// Do nothing in HLE
}
std::vector<u8> DspHle::PipeRead(DspPipe pipe_number, std::size_t length) {
return impl->PipeRead(pipe_number, length);
}
size_t DspHle::GetPipeReadableSize(DspPipe pipe_number) const {
return impl->GetPipeReadableSize(pipe_number);
}
void DspHle::PipeWrite(DspPipe pipe_number, std::span<const u8> buffer) {
impl->PipeWrite(pipe_number, buffer);
}
std::array<u8, Memory::DSP_RAM_SIZE>& DspHle::GetDspMemory() {
return impl->GetDspMemory();
}
void DspHle::SetInterruptHandler(
std::function<void(Service::DSP::InterruptType type, DspPipe pipe)> handler) {
impl->SetInterruptHandler(handler);
};
void DspHle::LoadComponent(std::span<const u8> component_data) {
// HLE doesn't need DSP program. Only log some info here
LOG_INFO(Service_DSP, "Firmware hash: {:#018x}",
Common::ComputeHash64(component_data.data(), component_data.size()));
// Some versions of the firmware have the location of DSP structures listed here.
if (component_data.size() > 0x37C) {
LOG_INFO(Service_DSP, "Structures hash: {:#018x}",
Common::ComputeHash64(component_data.data() + 0x340, 60));
}
}
void DspHle::UnloadComponent() {
// Do nothing
}
} // namespace AudioCore