mirror of
https://git.suyu.dev/suyu/suyu
synced 2024-11-04 22:37:53 +00:00
185 lines
4.8 KiB
C++
185 lines
4.8 KiB
C++
|
#include "input_common/motion_input.h"
|
||
|
|
||
|
namespace InputCommon {
|
||
|
|
||
|
MotionInput::MotionInput(f32 new_kp, f32 new_ki, f32 new_kd) : kp(new_kp), ki(new_ki), kd(new_kd) {
|
||
|
accel = {};
|
||
|
gyro = {};
|
||
|
gyro_drift = {};
|
||
|
gyro_threshold = 0;
|
||
|
rotations = {};
|
||
|
|
||
|
quat.w = 0;
|
||
|
quat.xyz[0] = 0;
|
||
|
quat.xyz[1] = 0;
|
||
|
quat.xyz[2] = -1;
|
||
|
|
||
|
real_error = {};
|
||
|
integral_error = {};
|
||
|
derivative_error = {};
|
||
|
|
||
|
reset_counter = 0;
|
||
|
reset_enabled = true;
|
||
|
}
|
||
|
|
||
|
void MotionInput::SetAcceleration(Common::Vec3f acceleration) {
|
||
|
accel = acceleration;
|
||
|
}
|
||
|
|
||
|
void MotionInput::SetGyroscope(Common::Vec3f gyroscope) {
|
||
|
gyro = gyroscope - gyro_drift;
|
||
|
if (gyro.Length2() < gyro_threshold) {
|
||
|
gyro = {};
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void MotionInput::SetQuaternion(Common::Quaternion<f32> quaternion) {
|
||
|
quat = quaternion;
|
||
|
}
|
||
|
|
||
|
void MotionInput::SetGyroDrift(Common::Vec3f drift) {
|
||
|
drift = gyro_drift;
|
||
|
}
|
||
|
|
||
|
void MotionInput::SetGyroThreshold(f32 threshold) {
|
||
|
gyro_threshold = threshold;
|
||
|
}
|
||
|
|
||
|
void MotionInput::EnableReset(bool reset) {
|
||
|
reset_enabled = reset;
|
||
|
}
|
||
|
|
||
|
void MotionInput::ResetRotations() {
|
||
|
rotations = {};
|
||
|
}
|
||
|
|
||
|
bool MotionInput::IsMoving(f32 sensitivity) {
|
||
|
return gyro.Length2() >= sensitivity || accel.Length() <= 0.9f || accel.Length() >= 1.1f;
|
||
|
}
|
||
|
|
||
|
bool MotionInput::IsCalibrated(f32 sensitivity) {
|
||
|
return real_error.Length() > sensitivity;
|
||
|
}
|
||
|
|
||
|
void MotionInput::UpdateRotation(u64 elapsed_time) {
|
||
|
rotations += gyro * elapsed_time;
|
||
|
}
|
||
|
|
||
|
void MotionInput::UpdateOrientation(u64 elapsed_time) {
|
||
|
// Short name local variable for readability
|
||
|
f32 q1 = quat.w, q2 = quat.xyz[0], q3 = quat.xyz[1], q4 = quat.xyz[2];
|
||
|
f32 sample_period = elapsed_time / 1000000.0f;
|
||
|
|
||
|
auto normal_accel = accel.Normalized();
|
||
|
auto rad_gyro = gyro * 3.1415926535f;
|
||
|
rad_gyro.z = -rad_gyro.z;
|
||
|
|
||
|
// Ignore drift correction if acceleration is not present
|
||
|
if (normal_accel.Length() == 1.0f) {
|
||
|
f32 ax = -normal_accel.x;
|
||
|
f32 ay = normal_accel.y;
|
||
|
f32 az = -normal_accel.z;
|
||
|
f32 vx, vy, vz;
|
||
|
Common::Vec3f new_real_error;
|
||
|
|
||
|
// Estimated direction of gravity
|
||
|
vx = 2.0f * (q2 * q4 - q1 * q3);
|
||
|
vy = 2.0f * (q1 * q2 + q3 * q4);
|
||
|
vz = q1 * q1 - q2 * q2 - q3 * q3 + q4 * q4;
|
||
|
|
||
|
// Error is cross product between estimated direction and measured direction of gravity
|
||
|
new_real_error.x = ay * vz - az * vy;
|
||
|
new_real_error.y = az * vx - ax * vz;
|
||
|
new_real_error.x = ax * vy - ay * vx;
|
||
|
|
||
|
derivative_error = new_real_error - real_error;
|
||
|
real_error = new_real_error;
|
||
|
|
||
|
// Prevent integral windup
|
||
|
if (ki != 0.0f) {
|
||
|
integral_error += real_error;
|
||
|
} else {
|
||
|
integral_error = {};
|
||
|
}
|
||
|
|
||
|
// Apply feedback terms
|
||
|
rad_gyro += kp * real_error;
|
||
|
rad_gyro += ki * integral_error;
|
||
|
rad_gyro += kd * derivative_error;
|
||
|
}
|
||
|
|
||
|
f32 gx = rad_gyro.y;
|
||
|
f32 gy = rad_gyro.x;
|
||
|
f32 gz = rad_gyro.z;
|
||
|
|
||
|
// Integrate rate of change of quaternion
|
||
|
f32 pa, pb, pc;
|
||
|
pa = q2;
|
||
|
pb = q3;
|
||
|
pc = q4;
|
||
|
q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * sample_period);
|
||
|
q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * sample_period);
|
||
|
q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * sample_period);
|
||
|
q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * sample_period);
|
||
|
|
||
|
quat.w = q1;
|
||
|
quat.xyz[0] = q2;
|
||
|
quat.xyz[1] = q3;
|
||
|
quat.xyz[2] = q4;
|
||
|
quat = quat.Normalized();
|
||
|
}
|
||
|
|
||
|
std::array<Common::Vec3f, 3> MotionInput::GetOrientation() {
|
||
|
std::array<Common::Vec3f, 3> orientation = {};
|
||
|
Common::Quaternion<float> quad;
|
||
|
|
||
|
quad.w = -quat.xyz[2];
|
||
|
quad.xyz[0] = -quat.xyz[1];
|
||
|
quad.xyz[1] = -quat.xyz[0];
|
||
|
quad.xyz[2] = -quat.w;
|
||
|
|
||
|
std::array<float, 16> matrix4x4 = quad.ToMatrix();
|
||
|
|
||
|
orientation[0] = Common::Vec3f(matrix4x4[0], matrix4x4[1], matrix4x4[2]);
|
||
|
orientation[1] = Common::Vec3f(matrix4x4[4], matrix4x4[5], matrix4x4[6]);
|
||
|
orientation[2] = Common::Vec3f(matrix4x4[8], matrix4x4[9], matrix4x4[10]);
|
||
|
|
||
|
return orientation;
|
||
|
}
|
||
|
|
||
|
Common::Vec3f MotionInput::GetAcceleration() {
|
||
|
return accel;
|
||
|
}
|
||
|
|
||
|
Common::Vec3f MotionInput::GetGyroscope() {
|
||
|
return gyro;
|
||
|
}
|
||
|
|
||
|
Common::Quaternion<f32> MotionInput::GetQuaternion() {
|
||
|
return quat;
|
||
|
}
|
||
|
|
||
|
Common::Vec3f MotionInput::GetRotations() {
|
||
|
return rotations;
|
||
|
}
|
||
|
|
||
|
void MotionInput::resetOrientation() {
|
||
|
if (!reset_enabled) {
|
||
|
return;
|
||
|
}
|
||
|
if (!IsMoving(0.5f) && accel.z <= -0.9f) {
|
||
|
++reset_counter;
|
||
|
if (reset_counter > 900) {
|
||
|
// TODO: calculate quaternion from gravity vector
|
||
|
quat.w = 0;
|
||
|
quat.xyz[0] = 0;
|
||
|
quat.xyz[1] = 0;
|
||
|
quat.xyz[2] = -1;
|
||
|
integral_error = {};
|
||
|
reset_counter = 0;
|
||
|
}
|
||
|
} else {
|
||
|
reset_counter = 0;
|
||
|
}
|
||
|
}
|
||
|
} // namespace InputCommon
|