suyu/src/video_core/engines/maxwell_3d.cpp

846 lines
35 KiB
C++
Raw Normal View History

// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <cinttypes>
#include <cstring>
#include "common/assert.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "video_core/debug_utils/debug_utils.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/memory_manager.h"
#include "video_core/rasterizer_interface.h"
#include "video_core/textures/texture.h"
namespace Tegra::Engines {
/// First register id that is actually a Macro call.
constexpr u32 MacroRegistersStart = 0xE00;
Maxwell3D::Maxwell3D(Core::System& system, VideoCore::RasterizerInterface& rasterizer,
MemoryManager& memory_manager)
2019-04-22 23:27:36 +00:00
: system{system}, rasterizer{rasterizer}, memory_manager{memory_manager},
macro_interpreter{*this}, upload_state{memory_manager, regs.upload} {
InitDirtySettings();
InitializeRegisterDefaults();
}
void Maxwell3D::InitializeRegisterDefaults() {
// Initializes registers to their default values - what games expect them to be at boot. This is
// for certain registers that may not be explicitly set by games.
// Reset all registers to zero
std::memset(&regs, 0, sizeof(regs));
// Depth range near/far is not always set, but is expected to be the default 0.0f, 1.0f. This is
// needed for ARMS.
for (auto& viewport : regs.viewports) {
viewport.depth_range_near = 0.0f;
viewport.depth_range_far = 1.0f;
}
// Doom and Bomberman seems to use the uninitialized registers and just enable blend
// so initialize blend registers with sane values
regs.blend.equation_rgb = Regs::Blend::Equation::Add;
regs.blend.factor_source_rgb = Regs::Blend::Factor::One;
regs.blend.factor_dest_rgb = Regs::Blend::Factor::Zero;
regs.blend.equation_a = Regs::Blend::Equation::Add;
regs.blend.factor_source_a = Regs::Blend::Factor::One;
regs.blend.factor_dest_a = Regs::Blend::Factor::Zero;
for (auto& blend : regs.independent_blend) {
blend.equation_rgb = Regs::Blend::Equation::Add;
blend.factor_source_rgb = Regs::Blend::Factor::One;
blend.factor_dest_rgb = Regs::Blend::Factor::Zero;
blend.equation_a = Regs::Blend::Equation::Add;
blend.factor_source_a = Regs::Blend::Factor::One;
blend.factor_dest_a = Regs::Blend::Factor::Zero;
}
regs.stencil_front_op_fail = Regs::StencilOp::Keep;
regs.stencil_front_op_zfail = Regs::StencilOp::Keep;
regs.stencil_front_op_zpass = Regs::StencilOp::Keep;
regs.stencil_front_func_func = Regs::ComparisonOp::Always;
regs.stencil_front_func_mask = 0xFFFFFFFF;
regs.stencil_front_mask = 0xFFFFFFFF;
regs.stencil_two_side_enable = 1;
regs.stencil_back_op_fail = Regs::StencilOp::Keep;
regs.stencil_back_op_zfail = Regs::StencilOp::Keep;
regs.stencil_back_op_zpass = Regs::StencilOp::Keep;
regs.stencil_back_func_func = Regs::ComparisonOp::Always;
regs.stencil_back_func_mask = 0xFFFFFFFF;
regs.stencil_back_mask = 0xFFFFFFFF;
regs.depth_test_func = Regs::ComparisonOp::Always;
regs.cull.front_face = Regs::Cull::FrontFace::CounterClockWise;
regs.cull.cull_face = Regs::Cull::CullFace::Back;
// TODO(Rodrigo): Most games do not set a point size. I think this is a case of a
// register carrying a default value. Assume it's OpenGL's default (1).
regs.point_size = 1.0f;
// TODO(bunnei): Some games do not initialize the color masks (e.g. Sonic Mania). Assuming a
// default of enabled fixes rendering here.
for (auto& color_mask : regs.color_mask) {
color_mask.R.Assign(1);
color_mask.G.Assign(1);
color_mask.B.Assign(1);
color_mask.A.Assign(1);
}
// Commercial games seem to assume this value is enabled and nouveau sets this value manually.
regs.rt_separate_frag_data = 1;
// Some games (like Super Mario Odyssey) assume that SRGB is enabled.
regs.framebuffer_srgb = 1;
mme_inline[MAXWELL3D_REG_INDEX(draw.vertex_end_gl)] = true;
mme_inline[MAXWELL3D_REG_INDEX(draw.vertex_begin_gl)] = true;
mme_inline[MAXWELL3D_REG_INDEX(vertex_buffer.count)] = true;
mme_inline[MAXWELL3D_REG_INDEX(index_array.count)] = true;
}
#define DIRTY_REGS_POS(field_name) (offsetof(Maxwell3D::DirtyRegs, field_name))
void Maxwell3D::InitDirtySettings() {
const auto set_block = [this](const u32 start, const u32 range, const u8 position) {
2019-07-15 14:24:01 +00:00
const auto start_itr = dirty_pointers.begin() + start;
const auto end_itr = start_itr + range;
std::fill(start_itr, end_itr, position);
};
2019-07-15 14:24:01 +00:00
dirty.regs.fill(true);
// Init Render Targets
constexpr u32 registers_per_rt = sizeof(regs.rt[0]) / sizeof(u32);
constexpr u32 rt_start_reg = MAXWELL3D_REG_INDEX(rt);
constexpr u32 rt_end_reg = rt_start_reg + registers_per_rt * 8;
u32 rt_dirty_reg = DIRTY_REGS_POS(render_target);
for (u32 rt_reg = rt_start_reg; rt_reg < rt_end_reg; rt_reg += registers_per_rt) {
set_block(rt_reg, registers_per_rt, rt_dirty_reg);
rt_dirty_reg++;
}
constexpr u32 depth_buffer_flag = DIRTY_REGS_POS(depth_buffer);
dirty_pointers[MAXWELL3D_REG_INDEX(zeta_enable)] = depth_buffer_flag;
dirty_pointers[MAXWELL3D_REG_INDEX(zeta_width)] = depth_buffer_flag;
dirty_pointers[MAXWELL3D_REG_INDEX(zeta_height)] = depth_buffer_flag;
constexpr u32 registers_in_zeta = sizeof(regs.zeta) / sizeof(u32);
constexpr u32 zeta_reg = MAXWELL3D_REG_INDEX(zeta);
set_block(zeta_reg, registers_in_zeta, depth_buffer_flag);
// Init Vertex Arrays
constexpr u32 vertex_array_start = MAXWELL3D_REG_INDEX(vertex_array);
constexpr u32 vertex_array_size = sizeof(regs.vertex_array[0]) / sizeof(u32);
constexpr u32 vertex_array_end = vertex_array_start + vertex_array_size * Regs::NumVertexArrays;
u32 va_reg = DIRTY_REGS_POS(vertex_array);
u32 vi_reg = DIRTY_REGS_POS(vertex_instance);
for (u32 vertex_reg = vertex_array_start; vertex_reg < vertex_array_end;
vertex_reg += vertex_array_size) {
set_block(vertex_reg, 3, va_reg);
// The divisor concerns vertex array instances
dirty_pointers[vertex_reg + 3] = vi_reg;
va_reg++;
vi_reg++;
}
constexpr u32 vertex_limit_start = MAXWELL3D_REG_INDEX(vertex_array_limit);
constexpr u32 vertex_limit_size = sizeof(regs.vertex_array_limit[0]) / sizeof(u32);
constexpr u32 vertex_limit_end = vertex_limit_start + vertex_limit_size * Regs::NumVertexArrays;
va_reg = DIRTY_REGS_POS(vertex_array);
for (u32 vertex_reg = vertex_limit_start; vertex_reg < vertex_limit_end;
vertex_reg += vertex_limit_size) {
set_block(vertex_reg, vertex_limit_size, va_reg);
va_reg++;
}
constexpr u32 vertex_instance_start = MAXWELL3D_REG_INDEX(instanced_arrays);
constexpr u32 vertex_instance_size =
sizeof(regs.instanced_arrays.is_instanced[0]) / sizeof(u32);
constexpr u32 vertex_instance_end =
vertex_instance_start + vertex_instance_size * Regs::NumVertexArrays;
vi_reg = DIRTY_REGS_POS(vertex_instance);
for (u32 vertex_reg = vertex_instance_start; vertex_reg < vertex_instance_end;
vertex_reg += vertex_instance_size) {
set_block(vertex_reg, vertex_instance_size, vi_reg);
vi_reg++;
}
set_block(MAXWELL3D_REG_INDEX(vertex_attrib_format), regs.vertex_attrib_format.size(),
DIRTY_REGS_POS(vertex_attrib_format));
// Init Shaders
constexpr u32 shader_registers_count =
sizeof(regs.shader_config[0]) * Regs::MaxShaderProgram / sizeof(u32);
set_block(MAXWELL3D_REG_INDEX(shader_config[0]), shader_registers_count,
DIRTY_REGS_POS(shaders));
// State
// Viewport
constexpr u32 viewport_dirty_reg = DIRTY_REGS_POS(viewport);
constexpr u32 viewport_start = MAXWELL3D_REG_INDEX(viewports);
constexpr u32 viewport_size = sizeof(regs.viewports) / sizeof(u32);
set_block(viewport_start, viewport_size, viewport_dirty_reg);
constexpr u32 view_volume_start = MAXWELL3D_REG_INDEX(view_volume_clip_control);
constexpr u32 view_volume_size = sizeof(regs.view_volume_clip_control) / sizeof(u32);
set_block(view_volume_start, view_volume_size, viewport_dirty_reg);
// Viewport transformation
constexpr u32 viewport_trans_start = MAXWELL3D_REG_INDEX(viewport_transform);
constexpr u32 viewport_trans_size = sizeof(regs.viewport_transform) / sizeof(u32);
set_block(viewport_trans_start, viewport_trans_size, DIRTY_REGS_POS(viewport_transform));
// Cullmode
constexpr u32 cull_mode_start = MAXWELL3D_REG_INDEX(cull);
constexpr u32 cull_mode_size = sizeof(regs.cull) / sizeof(u32);
set_block(cull_mode_start, cull_mode_size, DIRTY_REGS_POS(cull_mode));
// Screen y control
dirty_pointers[MAXWELL3D_REG_INDEX(screen_y_control)] = DIRTY_REGS_POS(screen_y_control);
// Primitive Restart
constexpr u32 primitive_restart_start = MAXWELL3D_REG_INDEX(primitive_restart);
constexpr u32 primitive_restart_size = sizeof(regs.primitive_restart) / sizeof(u32);
set_block(primitive_restart_start, primitive_restart_size, DIRTY_REGS_POS(primitive_restart));
// Depth Test
constexpr u32 depth_test_dirty_reg = DIRTY_REGS_POS(depth_test);
dirty_pointers[MAXWELL3D_REG_INDEX(depth_test_enable)] = depth_test_dirty_reg;
dirty_pointers[MAXWELL3D_REG_INDEX(depth_write_enabled)] = depth_test_dirty_reg;
dirty_pointers[MAXWELL3D_REG_INDEX(depth_test_func)] = depth_test_dirty_reg;
// Stencil Test
constexpr u32 stencil_test_dirty_reg = DIRTY_REGS_POS(stencil_test);
dirty_pointers[MAXWELL3D_REG_INDEX(stencil_enable)] = stencil_test_dirty_reg;
dirty_pointers[MAXWELL3D_REG_INDEX(stencil_front_func_func)] = stencil_test_dirty_reg;
dirty_pointers[MAXWELL3D_REG_INDEX(stencil_front_func_ref)] = stencil_test_dirty_reg;
dirty_pointers[MAXWELL3D_REG_INDEX(stencil_front_func_mask)] = stencil_test_dirty_reg;
dirty_pointers[MAXWELL3D_REG_INDEX(stencil_front_op_fail)] = stencil_test_dirty_reg;
dirty_pointers[MAXWELL3D_REG_INDEX(stencil_front_op_zfail)] = stencil_test_dirty_reg;
dirty_pointers[MAXWELL3D_REG_INDEX(stencil_front_op_zpass)] = stencil_test_dirty_reg;
dirty_pointers[MAXWELL3D_REG_INDEX(stencil_front_mask)] = stencil_test_dirty_reg;
dirty_pointers[MAXWELL3D_REG_INDEX(stencil_two_side_enable)] = stencil_test_dirty_reg;
dirty_pointers[MAXWELL3D_REG_INDEX(stencil_back_func_func)] = stencil_test_dirty_reg;
dirty_pointers[MAXWELL3D_REG_INDEX(stencil_back_func_ref)] = stencil_test_dirty_reg;
dirty_pointers[MAXWELL3D_REG_INDEX(stencil_back_func_mask)] = stencil_test_dirty_reg;
dirty_pointers[MAXWELL3D_REG_INDEX(stencil_back_op_fail)] = stencil_test_dirty_reg;
dirty_pointers[MAXWELL3D_REG_INDEX(stencil_back_op_zfail)] = stencil_test_dirty_reg;
dirty_pointers[MAXWELL3D_REG_INDEX(stencil_back_op_zpass)] = stencil_test_dirty_reg;
dirty_pointers[MAXWELL3D_REG_INDEX(stencil_back_mask)] = stencil_test_dirty_reg;
// Color Mask
constexpr u32 color_mask_dirty_reg = DIRTY_REGS_POS(color_mask);
dirty_pointers[MAXWELL3D_REG_INDEX(color_mask_common)] = color_mask_dirty_reg;
set_block(MAXWELL3D_REG_INDEX(color_mask), sizeof(regs.color_mask) / sizeof(u32),
color_mask_dirty_reg);
// Blend State
constexpr u32 blend_state_dirty_reg = DIRTY_REGS_POS(blend_state);
set_block(MAXWELL3D_REG_INDEX(blend_color), sizeof(regs.blend_color) / sizeof(u32),
blend_state_dirty_reg);
dirty_pointers[MAXWELL3D_REG_INDEX(independent_blend_enable)] = blend_state_dirty_reg;
set_block(MAXWELL3D_REG_INDEX(blend), sizeof(regs.blend) / sizeof(u32), blend_state_dirty_reg);
set_block(MAXWELL3D_REG_INDEX(independent_blend), sizeof(regs.independent_blend) / sizeof(u32),
blend_state_dirty_reg);
// Scissor State
constexpr u32 scissor_test_dirty_reg = DIRTY_REGS_POS(scissor_test);
set_block(MAXWELL3D_REG_INDEX(scissor_test), sizeof(regs.scissor_test) / sizeof(u32),
scissor_test_dirty_reg);
// Polygon Offset
constexpr u32 polygon_offset_dirty_reg = DIRTY_REGS_POS(polygon_offset);
dirty_pointers[MAXWELL3D_REG_INDEX(polygon_offset_fill_enable)] = polygon_offset_dirty_reg;
dirty_pointers[MAXWELL3D_REG_INDEX(polygon_offset_line_enable)] = polygon_offset_dirty_reg;
dirty_pointers[MAXWELL3D_REG_INDEX(polygon_offset_point_enable)] = polygon_offset_dirty_reg;
dirty_pointers[MAXWELL3D_REG_INDEX(polygon_offset_units)] = polygon_offset_dirty_reg;
dirty_pointers[MAXWELL3D_REG_INDEX(polygon_offset_factor)] = polygon_offset_dirty_reg;
dirty_pointers[MAXWELL3D_REG_INDEX(polygon_offset_clamp)] = polygon_offset_dirty_reg;
}
2019-08-25 04:08:35 +00:00
void Maxwell3D::CallMacroMethod(u32 method, std::size_t num_parameters, const u32* parameters) {
// Reset the current macro.
executing_macro = 0;
// Lookup the macro offset
2019-09-01 07:59:27 +00:00
const u32 entry = ((method - MacroRegistersStart) >> 1) % macro_positions.size();
// Execute the current macro.
2019-08-25 04:08:35 +00:00
macro_interpreter.Execute(macro_positions[entry], num_parameters, parameters);
if (mme_draw.current_mode != MMMEDrawMode::Undefined) {
FlushMMEInlineDraw();
}
}
void Maxwell3D::CallMethod(const GPU::MethodCall& method_call) {
auto debug_context = system.GetGPUDebugContext();
const u32 method = method_call.method;
2019-07-12 13:25:47 +00:00
if (method == cb_data_state.current) {
regs.reg_array[method] = method_call.argument;
ProcessCBData(method_call.argument);
return;
} else if (cb_data_state.current != null_cb_data) {
FinishCBData();
}
// It is an error to write to a register other than the current macro's ARG register before it
// has finished execution.
if (executing_macro != 0) {
ASSERT(method == executing_macro + 1);
}
// Methods after 0xE00 are special, they're actually triggers for some microcode that was
// uploaded to the GPU during initialization.
if (method >= MacroRegistersStart) {
// We're trying to execute a macro
if (executing_macro == 0) {
// A macro call must begin by writing the macro method's register, not its argument.
ASSERT_MSG((method % 2) == 0,
"Can't start macro execution by writing to the ARGS register");
executing_macro = method;
}
macro_params.push_back(method_call.argument);
// Call the macro when there are no more parameters in the command buffer
if (method_call.IsLastCall()) {
2019-08-25 04:08:35 +00:00
CallMacroMethod(executing_macro, macro_params.size(), macro_params.data());
macro_params.clear();
}
return;
}
ASSERT_MSG(method < Regs::NUM_REGS,
"Invalid Maxwell3D register, increase the size of the Regs structure");
if (debug_context) {
debug_context->OnEvent(Tegra::DebugContext::Event::MaxwellCommandLoaded, nullptr);
}
if (regs.reg_array[method] != method_call.argument) {
regs.reg_array[method] = method_call.argument;
2019-07-15 14:24:01 +00:00
const std::size_t dirty_reg = dirty_pointers[method];
if (dirty_reg) {
dirty.regs[dirty_reg] = true;
if (dirty_reg >= DIRTY_REGS_POS(vertex_array) &&
dirty_reg < DIRTY_REGS_POS(vertex_array_buffers)) {
dirty.vertex_array_buffers = true;
} else if (dirty_reg >= DIRTY_REGS_POS(vertex_instance) &&
dirty_reg < DIRTY_REGS_POS(vertex_instances)) {
dirty.vertex_instances = true;
} else if (dirty_reg >= DIRTY_REGS_POS(render_target) &&
dirty_reg < DIRTY_REGS_POS(render_settings)) {
dirty.render_settings = true;
}
}
}
switch (method) {
case MAXWELL3D_REG_INDEX(macros.data): {
ProcessMacroUpload(method_call.argument);
break;
}
case MAXWELL3D_REG_INDEX(macros.bind): {
ProcessMacroBind(method_call.argument);
break;
}
case MAXWELL3D_REG_INDEX(firmware[4]): {
ProcessFirmwareCall4();
break;
}
case MAXWELL3D_REG_INDEX(const_buffer.cb_data[0]):
case MAXWELL3D_REG_INDEX(const_buffer.cb_data[1]):
case MAXWELL3D_REG_INDEX(const_buffer.cb_data[2]):
case MAXWELL3D_REG_INDEX(const_buffer.cb_data[3]):
case MAXWELL3D_REG_INDEX(const_buffer.cb_data[4]):
case MAXWELL3D_REG_INDEX(const_buffer.cb_data[5]):
case MAXWELL3D_REG_INDEX(const_buffer.cb_data[6]):
case MAXWELL3D_REG_INDEX(const_buffer.cb_data[7]):
case MAXWELL3D_REG_INDEX(const_buffer.cb_data[8]):
case MAXWELL3D_REG_INDEX(const_buffer.cb_data[9]):
case MAXWELL3D_REG_INDEX(const_buffer.cb_data[10]):
case MAXWELL3D_REG_INDEX(const_buffer.cb_data[11]):
case MAXWELL3D_REG_INDEX(const_buffer.cb_data[12]):
case MAXWELL3D_REG_INDEX(const_buffer.cb_data[13]):
case MAXWELL3D_REG_INDEX(const_buffer.cb_data[14]):
case MAXWELL3D_REG_INDEX(const_buffer.cb_data[15]): {
2019-07-12 13:25:47 +00:00
StartCBData(method);
break;
}
case MAXWELL3D_REG_INDEX(cb_bind[0].raw_config): {
ProcessCBBind(Regs::ShaderStage::Vertex);
break;
}
case MAXWELL3D_REG_INDEX(cb_bind[1].raw_config): {
ProcessCBBind(Regs::ShaderStage::TesselationControl);
break;
}
case MAXWELL3D_REG_INDEX(cb_bind[2].raw_config): {
ProcessCBBind(Regs::ShaderStage::TesselationEval);
break;
}
case MAXWELL3D_REG_INDEX(cb_bind[3].raw_config): {
ProcessCBBind(Regs::ShaderStage::Geometry);
break;
}
case MAXWELL3D_REG_INDEX(cb_bind[4].raw_config): {
ProcessCBBind(Regs::ShaderStage::Fragment);
break;
}
case MAXWELL3D_REG_INDEX(draw.vertex_end_gl): {
DrawArrays();
break;
}
case MAXWELL3D_REG_INDEX(clear_buffers): {
ProcessClearBuffers();
break;
}
case MAXWELL3D_REG_INDEX(query.query_get): {
ProcessQueryGet();
break;
}
case MAXWELL3D_REG_INDEX(condition.mode): {
ProcessQueryCondition();
break;
}
case MAXWELL3D_REG_INDEX(sync_info): {
ProcessSyncPoint();
break;
}
2019-04-22 23:27:36 +00:00
case MAXWELL3D_REG_INDEX(exec_upload): {
upload_state.ProcessExec(regs.exec_upload.linear != 0);
break;
}
case MAXWELL3D_REG_INDEX(data_upload): {
2019-04-23 12:02:24 +00:00
const bool is_last_call = method_call.IsLastCall();
2019-04-22 23:27:36 +00:00
upload_state.ProcessData(method_call.argument, is_last_call);
if (is_last_call) {
dirty.OnMemoryWrite();
2019-04-22 23:27:36 +00:00
}
break;
}
default:
break;
}
if (debug_context) {
debug_context->OnEvent(Tegra::DebugContext::Event::MaxwellCommandProcessed, nullptr);
}
}
void Maxwell3D::CallMethodFromMME(const GPU::MethodCall& method_call) {
const u32 method = method_call.method;
if (mme_inline[method]) {
regs.reg_array[method] = method_call.argument;
if (method == MAXWELL3D_REG_INDEX(vertex_buffer.count) ||
method == MAXWELL3D_REG_INDEX(index_array.count)) {
const MMMEDrawMode expected_mode = method == MAXWELL3D_REG_INDEX(vertex_buffer.count)
? MMMEDrawMode::Array
: MMMEDrawMode::Indexed;
const u32 count = method_call.argument;
while (true) {
if (mme_draw.current_mode == MMMEDrawMode::Undefined) {
if (mme_draw.gl_begin_consume) {
mme_draw.current_mode = expected_mode;
mme_draw.current_count = count;
mme_draw.instance_count = 1;
mme_draw.gl_begin_consume = false;
mme_draw.gl_end_count = 0;
}
break;
} else {
if (mme_draw.current_mode == expected_mode && count == mme_draw.current_count &&
mme_draw.instance_mode && mme_draw.gl_begin_consume) {
mme_draw.instance_count++;
mme_draw.gl_begin_consume = false;
break;
} else {
FlushMMEInlineDraw();
}
}
}
} else if (method == MAXWELL3D_REG_INDEX(draw.vertex_begin_gl)) {
mme_draw.instance_mode =
(regs.draw.instance_next != 0) || (regs.draw.instance_cont != 0);
mme_draw.gl_begin_consume = true;
} else {
mme_draw.gl_end_count++;
}
} else {
if (mme_draw.current_mode != MMMEDrawMode::Undefined) {
FlushMMEInlineDraw();
}
CallMethod(method_call);
}
}
void Maxwell3D::FlushMMEInlineDraw() {
LOG_DEBUG(HW_GPU, "called, topology={}, count={}", static_cast<u32>(regs.draw.topology.Value()),
regs.vertex_buffer.count);
ASSERT_MSG(!(regs.index_array.count && regs.vertex_buffer.count), "Both indexed and direct?");
ASSERT(mme_draw.instance_count == mme_draw.gl_end_count);
auto debug_context = system.GetGPUDebugContext();
if (debug_context) {
debug_context->OnEvent(Tegra::DebugContext::Event::IncomingPrimitiveBatch, nullptr);
}
// Both instance configuration registers can not be set at the same time.
ASSERT_MSG(!regs.draw.instance_next || !regs.draw.instance_cont,
"Illegal combination of instancing parameters");
const bool is_indexed = mme_draw.current_mode == MMMEDrawMode::Indexed;
rasterizer.DrawMultiBatch(is_indexed);
if (debug_context) {
debug_context->OnEvent(Tegra::DebugContext::Event::FinishedPrimitiveBatch, nullptr);
}
// TODO(bunnei): Below, we reset vertex count so that we can use these registers to determine if
// the game is trying to draw indexed or direct mode. This needs to be verified on HW still -
// it's possible that it is incorrect and that there is some other register used to specify the
// drawing mode.
if (is_indexed) {
regs.index_array.count = 0;
} else {
regs.vertex_buffer.count = 0;
}
mme_draw.current_mode = MMMEDrawMode::Undefined;
mme_draw.current_count = 0;
mme_draw.instance_count = 0;
mme_draw.instance_mode = false;
mme_draw.gl_begin_consume = false;
mme_draw.gl_end_count = 0;
}
void Maxwell3D::ProcessMacroUpload(u32 data) {
ASSERT_MSG(regs.macros.upload_address < macro_memory.size(),
"upload_address exceeded macro_memory size!");
macro_memory[regs.macros.upload_address++] = data;
}
void Maxwell3D::ProcessMacroBind(u32 data) {
2019-09-01 07:59:27 +00:00
macro_positions[regs.macros.entry++] = data;
}
void Maxwell3D::ProcessFirmwareCall4() {
LOG_WARNING(HW_GPU, "(STUBBED) called");
// Firmware call 4 is a blob that changes some registers depending on its parameters.
// These registers don't affect emulation and so are stubbed by setting 0xd00 to 1.
regs.reg_array[0xd00] = 1;
}
void Maxwell3D::ProcessQueryGet() {
const GPUVAddr sequence_address{regs.query.QueryAddress()};
// Since the sequence address is given as a GPU VAddr, we have to convert it to an application
// VAddr before writing.
// TODO(Subv): Support the other query units.
ASSERT_MSG(regs.query.query_get.unit == Regs::QueryUnit::Crop,
"Units other than CROP are unimplemented");
u64 result = 0;
// TODO(Subv): Support the other query variables
switch (regs.query.query_get.select) {
case Regs::QuerySelect::Zero:
// This seems to actually write the query sequence to the query address.
result = regs.query.query_sequence;
break;
default:
result = 1;
UNIMPLEMENTED_MSG("Unimplemented query select type {}",
static_cast<u32>(regs.query.query_get.select.Value()));
}
// TODO(Subv): Research and implement how query sync conditions work.
struct LongQueryResult {
u64_le value;
u64_le timestamp;
};
static_assert(sizeof(LongQueryResult) == 16, "LongQueryResult has wrong size");
switch (regs.query.query_get.mode) {
case Regs::QueryMode::Write:
case Regs::QueryMode::Write2: {
u32 sequence = regs.query.query_sequence;
if (regs.query.query_get.short_query) {
// Write the current query sequence to the sequence address.
// TODO(Subv): Find out what happens if you use a long query type but mark it as a short
// query.
memory_manager.Write<u32>(sequence_address, sequence);
} else {
// Write the 128-bit result structure in long mode. Note: We emulate an infinitely fast
// GPU, this command may actually take a while to complete in real hardware due to GPU
// wait queues.
LongQueryResult query_result{};
query_result.value = result;
// TODO(Subv): Generate a real GPU timestamp and write it here instead of CoreTiming
query_result.timestamp = system.CoreTiming().GetTicks();
memory_manager.WriteBlock(sequence_address, &query_result, sizeof(query_result));
}
break;
}
default:
UNIMPLEMENTED_MSG("Query mode {} not implemented",
2018-03-19 16:53:35 +00:00
static_cast<u32>(regs.query.query_get.mode.Value()));
}
}
void Maxwell3D::ProcessQueryCondition() {
const GPUVAddr condition_address{regs.condition.Address()};
switch (regs.condition.mode) {
case Regs::ConditionMode::Always: {
execute_on = true;
break;
}
case Regs::ConditionMode::Never: {
execute_on = false;
break;
}
case Regs::ConditionMode::ResNonZero: {
Regs::QueryCompare cmp;
memory_manager.ReadBlockUnsafe(condition_address, &cmp, sizeof(cmp));
execute_on = cmp.initial_sequence != 0U && cmp.initial_mode != 0U;
break;
}
case Regs::ConditionMode::Equal: {
Regs::QueryCompare cmp;
memory_manager.ReadBlockUnsafe(condition_address, &cmp, sizeof(cmp));
execute_on =
cmp.initial_sequence == cmp.current_sequence && cmp.initial_mode == cmp.current_mode;
break;
}
case Regs::ConditionMode::NotEqual: {
Regs::QueryCompare cmp;
memory_manager.ReadBlockUnsafe(condition_address, &cmp, sizeof(cmp));
execute_on =
cmp.initial_sequence != cmp.current_sequence || cmp.initial_mode != cmp.current_mode;
break;
}
default: {
UNIMPLEMENTED_MSG("Uninplemented Condition Mode!");
execute_on = true;
break;
}
}
}
void Maxwell3D::ProcessSyncPoint() {
const u32 sync_point = regs.sync_info.sync_point.Value();
const u32 increment = regs.sync_info.increment.Value();
[[maybe_unused]] const u32 cache_flush = regs.sync_info.unknown.Value();
if (increment) {
system.GPU().IncrementSyncPoint(sync_point);
}
}
void Maxwell3D::DrawArrays() {
2018-07-02 16:20:50 +00:00
LOG_DEBUG(HW_GPU, "called, topology={}, count={}", static_cast<u32>(regs.draw.topology.Value()),
regs.vertex_buffer.count);
ASSERT_MSG(!(regs.index_array.count && regs.vertex_buffer.count), "Both indexed and direct?");
auto debug_context = system.GetGPUDebugContext();
if (debug_context) {
debug_context->OnEvent(Tegra::DebugContext::Event::IncomingPrimitiveBatch, nullptr);
}
// Both instance configuration registers can not be set at the same time.
ASSERT_MSG(!regs.draw.instance_next || !regs.draw.instance_cont,
"Illegal combination of instancing parameters");
if (regs.draw.instance_next) {
// Increment the current instance *before* drawing.
state.current_instance += 1;
} else if (!regs.draw.instance_cont) {
// Reset the current instance to 0.
state.current_instance = 0;
}
const bool is_indexed{regs.index_array.count && !regs.vertex_buffer.count};
rasterizer.DrawBatch(is_indexed);
if (debug_context) {
debug_context->OnEvent(Tegra::DebugContext::Event::FinishedPrimitiveBatch, nullptr);
}
// TODO(bunnei): Below, we reset vertex count so that we can use these registers to determine if
// the game is trying to draw indexed or direct mode. This needs to be verified on HW still -
// it's possible that it is incorrect and that there is some other register used to specify the
// drawing mode.
if (is_indexed) {
regs.index_array.count = 0;
} else {
regs.vertex_buffer.count = 0;
}
}
void Maxwell3D::ProcessCBBind(Regs::ShaderStage stage) {
// Bind the buffer currently in CB_ADDRESS to the specified index in the desired shader stage.
auto& shader = state.shader_stages[static_cast<std::size_t>(stage)];
auto& bind_data = regs.cb_bind[static_cast<std::size_t>(stage)];
ASSERT(bind_data.index < Regs::MaxConstBuffers);
auto& buffer = shader.const_buffers[bind_data.index];
buffer.enabled = bind_data.valid.Value() != 0;
buffer.address = regs.const_buffer.BufferAddress();
buffer.size = regs.const_buffer.cb_size;
}
void Maxwell3D::ProcessCBData(u32 value) {
2019-07-12 13:25:47 +00:00
const u32 id = cb_data_state.id;
2019-07-15 14:24:01 +00:00
cb_data_state.buffer[id][cb_data_state.counter] = value;
2019-07-12 13:25:47 +00:00
// Increment the current buffer position.
regs.const_buffer.cb_pos = regs.const_buffer.cb_pos + 4;
cb_data_state.counter++;
}
void Maxwell3D::StartCBData(u32 method) {
constexpr u32 first_cb_data = MAXWELL3D_REG_INDEX(const_buffer.cb_data[0]);
cb_data_state.start_pos = regs.const_buffer.cb_pos;
cb_data_state.id = method - first_cb_data;
cb_data_state.current = method;
cb_data_state.counter = 0;
ProcessCBData(regs.const_buffer.cb_data[cb_data_state.id]);
}
void Maxwell3D::FinishCBData() {
// Write the input value to the current const buffer at the current position.
const GPUVAddr buffer_address = regs.const_buffer.BufferAddress();
ASSERT(buffer_address != 0);
// Don't allow writing past the end of the buffer.
2019-07-12 13:25:47 +00:00
ASSERT(regs.const_buffer.cb_pos <= regs.const_buffer.cb_size);
2019-07-12 13:25:47 +00:00
const GPUVAddr address{buffer_address + cb_data_state.start_pos};
const std::size_t size = regs.const_buffer.cb_pos - cb_data_state.start_pos;
2019-07-12 13:25:47 +00:00
const u32 id = cb_data_state.id;
2019-07-15 14:24:01 +00:00
memory_manager.WriteBlock(address, cb_data_state.buffer[id].data(), size);
dirty.OnMemoryWrite();
2019-07-12 13:25:47 +00:00
cb_data_state.id = null_cb_data;
cb_data_state.current = null_cb_data;
}
Texture::TICEntry Maxwell3D::GetTICEntry(u32 tic_index) const {
const GPUVAddr tic_address_gpu{regs.tic.TICAddress() + tic_index * sizeof(Texture::TICEntry)};
Texture::TICEntry tic_entry;
memory_manager.ReadBlockUnsafe(tic_address_gpu, &tic_entry, sizeof(Texture::TICEntry));
[[maybe_unused]] const auto r_type{tic_entry.r_type.Value()};
[[maybe_unused]] const auto g_type{tic_entry.g_type.Value()};
[[maybe_unused]] const auto b_type{tic_entry.b_type.Value()};
[[maybe_unused]] const auto a_type{tic_entry.a_type.Value()};
// TODO(Subv): Different data types for separate components are not supported
DEBUG_ASSERT(r_type == g_type && r_type == b_type && r_type == a_type);
return tic_entry;
}
Texture::TSCEntry Maxwell3D::GetTSCEntry(u32 tsc_index) const {
const GPUVAddr tsc_address_gpu{regs.tsc.TSCAddress() + tsc_index * sizeof(Texture::TSCEntry)};
Texture::TSCEntry tsc_entry;
memory_manager.ReadBlockUnsafe(tsc_address_gpu, &tsc_entry, sizeof(Texture::TSCEntry));
return tsc_entry;
}
std::vector<Texture::FullTextureInfo> Maxwell3D::GetStageTextures(Regs::ShaderStage stage) const {
std::vector<Texture::FullTextureInfo> textures;
auto& fragment_shader = state.shader_stages[static_cast<std::size_t>(stage)];
auto& tex_info_buffer = fragment_shader.const_buffers[regs.tex_cb_index];
ASSERT(tex_info_buffer.enabled && tex_info_buffer.address != 0);
GPUVAddr tex_info_buffer_end = tex_info_buffer.address + tex_info_buffer.size;
// Offset into the texture constbuffer where the texture info begins.
static constexpr std::size_t TextureInfoOffset = 0x20;
for (GPUVAddr current_texture = tex_info_buffer.address + TextureInfoOffset;
current_texture < tex_info_buffer_end; current_texture += sizeof(Texture::TextureHandle)) {
const Texture::TextureHandle tex_handle{memory_manager.Read<u32>(current_texture)};
Texture::FullTextureInfo tex_info{};
// TODO(Subv): Use the shader to determine which textures are actually accessed.
tex_info.index =
static_cast<u32>(current_texture - tex_info_buffer.address - TextureInfoOffset) /
sizeof(Texture::TextureHandle);
// Load the TIC data.
auto tic_entry = GetTICEntry(tex_handle.tic_id);
// TODO(Subv): Workaround for BitField's move constructor being deleted.
std::memcpy(&tex_info.tic, &tic_entry, sizeof(tic_entry));
// Load the TSC data
auto tsc_entry = GetTSCEntry(tex_handle.tsc_id);
// TODO(Subv): Workaround for BitField's move constructor being deleted.
std::memcpy(&tex_info.tsc, &tsc_entry, sizeof(tsc_entry));
textures.push_back(tex_info);
}
return textures;
}
Texture::FullTextureInfo Maxwell3D::GetTextureInfo(const Texture::TextureHandle tex_handle,
std::size_t offset) const {
Texture::FullTextureInfo tex_info{};
tex_info.index = static_cast<u32>(offset);
// Load the TIC data.
auto tic_entry = GetTICEntry(tex_handle.tic_id);
// TODO(Subv): Workaround for BitField's move constructor being deleted.
std::memcpy(&tex_info.tic, &tic_entry, sizeof(tic_entry));
// Load the TSC data
auto tsc_entry = GetTSCEntry(tex_handle.tsc_id);
// TODO(Subv): Workaround for BitField's move constructor being deleted.
std::memcpy(&tex_info.tsc, &tsc_entry, sizeof(tsc_entry));
return tex_info;
}
Texture::FullTextureInfo Maxwell3D::GetStageTexture(Regs::ShaderStage stage,
std::size_t offset) const {
const auto& shader = state.shader_stages[static_cast<std::size_t>(stage)];
const auto& tex_info_buffer = shader.const_buffers[regs.tex_cb_index];
ASSERT(tex_info_buffer.enabled && tex_info_buffer.address != 0);
const GPUVAddr tex_info_address =
tex_info_buffer.address + offset * sizeof(Texture::TextureHandle);
ASSERT(tex_info_address < tex_info_buffer.address + tex_info_buffer.size);
const Texture::TextureHandle tex_handle{memory_manager.Read<u32>(tex_info_address)};
return GetTextureInfo(tex_handle, offset);
}
u32 Maxwell3D::GetRegisterValue(u32 method) const {
ASSERT_MSG(method < Regs::NUM_REGS, "Invalid Maxwell3D register");
return regs.reg_array[method];
}
void Maxwell3D::ProcessClearBuffers() {
ASSERT(regs.clear_buffers.R == regs.clear_buffers.G &&
regs.clear_buffers.R == regs.clear_buffers.B &&
regs.clear_buffers.R == regs.clear_buffers.A);
rasterizer.Clear();
}
u32 Maxwell3D::AccessConstBuffer32(Regs::ShaderStage stage, u64 const_buffer, u64 offset) const {
const auto& shader_stage = state.shader_stages[static_cast<std::size_t>(stage)];
const auto& buffer = shader_stage.const_buffers[const_buffer];
u32 result;
std::memcpy(&result, memory_manager.GetPointer(buffer.address + offset), sizeof(u32));
return result;
}
} // namespace Tegra::Engines