suyu/src/audio_core/sink/cubeb_sink.cpp

655 lines
25 KiB
C++
Raw Normal View History

2022-07-16 22:48:45 +00:00
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <algorithm>
#include <atomic>
#include <span>
#include "audio_core/audio_core.h"
#include "audio_core/audio_event.h"
#include "audio_core/audio_manager.h"
#include "audio_core/sink/cubeb_sink.h"
#include "audio_core/sink/sink_stream.h"
#include "common/assert.h"
#include "common/fixed_point.h"
#include "common/logging/log.h"
#include "common/reader_writer_queue.h"
#include "common/ring_buffer.h"
#include "common/settings.h"
#include "core/core.h"
#ifdef _WIN32
#include <objbase.h>
#undef CreateEvent
#endif
namespace AudioCore::Sink {
/**
* Cubeb sink stream, responsible for sinking samples to hardware.
*/
class CubebSinkStream final : public SinkStream {
public:
/**
* Create a new sink stream.
*
* @param ctx_ - Cubeb context to create this stream with.
* @param device_channels_ - Number of channels supported by the hardware.
* @param system_channels_ - Number of channels the audio systems expect.
* @param output_device - Cubeb output device id.
* @param input_device - Cubeb input device id.
* @param name_ - Name of this stream.
* @param type_ - Type of this stream.
* @param system_ - Core system.
* @param event - Event used only for audio renderer, signalled on buffer consume.
*/
CubebSinkStream(cubeb* ctx_, const u32 device_channels_, const u32 system_channels_,
cubeb_devid output_device, cubeb_devid input_device, const std::string& name_,
const StreamType type_, Core::System& system_)
: ctx{ctx_}, type{type_}, system{system_} {
#ifdef _WIN32
CoInitializeEx(nullptr, COINIT_MULTITHREADED);
#endif
name = name_;
device_channels = device_channels_;
system_channels = system_channels_;
cubeb_stream_params params{};
params.rate = TargetSampleRate;
params.channels = device_channels;
params.format = CUBEB_SAMPLE_S16LE;
params.prefs = CUBEB_STREAM_PREF_NONE;
switch (params.channels) {
case 1:
params.layout = CUBEB_LAYOUT_MONO;
break;
case 2:
params.layout = CUBEB_LAYOUT_STEREO;
break;
case 6:
params.layout = CUBEB_LAYOUT_3F2_LFE;
break;
}
u32 minimum_latency{0};
const auto latency_error = cubeb_get_min_latency(ctx, &params, &minimum_latency);
if (latency_error != CUBEB_OK) {
LOG_CRITICAL(Audio_Sink, "Error getting minimum latency, error: {}", latency_error);
minimum_latency = 256U;
}
minimum_latency = std::max(minimum_latency, 256u);
playing_buffer.consumed = true;
LOG_DEBUG(Service_Audio,
"Opening cubeb stream {} type {} with: rate {} channels {} (system channels {}) "
"latency {}",
name, type, params.rate, params.channels, system_channels, minimum_latency);
auto init_error{0};
if (type == StreamType::In) {
init_error = cubeb_stream_init(ctx, &stream_backend, name.c_str(), input_device,
&params, output_device, nullptr, minimum_latency,
&CubebSinkStream::DataCallback,
&CubebSinkStream::StateCallback, this);
} else {
init_error = cubeb_stream_init(ctx, &stream_backend, name.c_str(), input_device,
nullptr, output_device, &params, minimum_latency,
&CubebSinkStream::DataCallback,
&CubebSinkStream::StateCallback, this);
}
if (init_error != CUBEB_OK) {
LOG_CRITICAL(Audio_Sink, "Error initializing cubeb stream, error: {}", init_error);
return;
}
}
/**
* Destroy the sink stream.
*/
~CubebSinkStream() override {
LOG_DEBUG(Service_Audio, "Destructing cubeb stream {}", name);
if (!ctx) {
return;
}
Finalize();
#ifdef _WIN32
CoUninitialize();
#endif
}
/**
* Finalize the sink stream.
*/
void Finalize() override {
Stop();
cubeb_stream_destroy(stream_backend);
}
/**
* Start the sink stream.
*
* @param resume - Set to true if this is resuming the stream a previously-active stream.
* Default false.
*/
void Start(const bool resume = false) override {
if (!ctx) {
return;
}
if (resume && was_playing) {
if (cubeb_stream_start(stream_backend) != CUBEB_OK) {
LOG_CRITICAL(Audio_Sink, "Error starting cubeb stream");
}
paused = false;
} else if (!resume) {
if (cubeb_stream_start(stream_backend) != CUBEB_OK) {
LOG_CRITICAL(Audio_Sink, "Error starting cubeb stream");
}
paused = false;
}
}
/**
* Stop the sink stream.
*/
void Stop() override {
if (!ctx) {
return;
}
if (cubeb_stream_stop(stream_backend) != CUBEB_OK) {
LOG_CRITICAL(Audio_Sink, "Error stopping cubeb stream");
}
was_playing.store(!paused);
paused = true;
}
/**
* Append a new buffer and its samples to a waiting queue to play.
*
* @param buffer - Audio buffer information to be queued.
* @param samples - The s16 samples to be queue for playback.
*/
void AppendBuffer(::AudioCore::Sink::SinkBuffer& buffer, std::vector<s16>& samples) override {
if (type == StreamType::In) {
queue.enqueue(buffer);
queued_buffers++;
} else {
constexpr s32 min{std::numeric_limits<s16>::min()};
constexpr s32 max{std::numeric_limits<s16>::max()};
auto yuzu_volume{Settings::Volume()};
if (yuzu_volume > 1.0f) {
yuzu_volume = 0.6f + 20 * std::log10(yuzu_volume);
}
2022-07-16 22:48:45 +00:00
auto volume{system_volume * device_volume * yuzu_volume};
if (system_channels == 6 && device_channels == 2) {
// We're given 6 channels, but our device only outputs 2, so downmix.
constexpr std::array<f32, 4> down_mix_coeff{1.0f, 0.707f, 0.251f, 0.707f};
for (u32 read_index = 0, write_index = 0; read_index < samples.size();
read_index += system_channels, write_index += device_channels) {
const auto left_sample{
((Common::FixedPoint<49, 15>(
samples[read_index + static_cast<u32>(Channels::FrontLeft)]) *
down_mix_coeff[0] +
samples[read_index + static_cast<u32>(Channels::Center)] *
down_mix_coeff[1] +
samples[read_index + static_cast<u32>(Channels::LFE)] *
down_mix_coeff[2] +
samples[read_index + static_cast<u32>(Channels::BackLeft)] *
down_mix_coeff[3]) *
volume)
.to_int()};
const auto right_sample{
((Common::FixedPoint<49, 15>(
samples[read_index + static_cast<u32>(Channels::FrontRight)]) *
down_mix_coeff[0] +
samples[read_index + static_cast<u32>(Channels::Center)] *
down_mix_coeff[1] +
samples[read_index + static_cast<u32>(Channels::LFE)] *
down_mix_coeff[2] +
samples[read_index + static_cast<u32>(Channels::BackRight)] *
down_mix_coeff[3]) *
volume)
.to_int()};
samples[write_index + static_cast<u32>(Channels::FrontLeft)] =
static_cast<s16>(std::clamp(left_sample, min, max));
samples[write_index + static_cast<u32>(Channels::FrontRight)] =
static_cast<s16>(std::clamp(right_sample, min, max));
}
samples.resize(samples.size() / system_channels * device_channels);
} else if (system_channels == 2 && device_channels == 6) {
// We need moar samples! Not all games will provide 6 channel audio.
// TODO: Implement some upmixing here. Currently just passthrough, with other
// channels left as silence.
std::vector<s16> new_samples(samples.size() / system_channels * device_channels, 0);
for (u32 read_index = 0, write_index = 0; read_index < samples.size();
read_index += system_channels, write_index += device_channels) {
const auto left_sample{static_cast<s16>(std::clamp(
static_cast<s32>(
static_cast<f32>(
samples[read_index + static_cast<u32>(Channels::FrontLeft)]) *
volume),
min, max))};
new_samples[write_index + static_cast<u32>(Channels::FrontLeft)] = left_sample;
const auto right_sample{static_cast<s16>(std::clamp(
static_cast<s32>(
static_cast<f32>(
samples[read_index + static_cast<u32>(Channels::FrontRight)]) *
volume),
min, max))};
new_samples[write_index + static_cast<u32>(Channels::FrontRight)] =
right_sample;
}
samples = std::move(new_samples);
} else if (volume != 1.0f) {
for (u32 i = 0; i < samples.size(); i++) {
samples[i] = static_cast<s16>(std::clamp(
static_cast<s32>(static_cast<f32>(samples[i]) * volume), min, max));
}
}
samples_buffer.Push(samples);
queue.enqueue(buffer);
queued_buffers++;
}
}
/**
* Release a buffer. Audio In only, will fill a buffer with recorded samples.
*
* @param num_samples - Maximum number of samples to receive.
* @return Vector of recorded samples. May have fewer than num_samples.
*/
std::vector<s16> ReleaseBuffer(const u64 num_samples) override {
static constexpr s32 min = std::numeric_limits<s16>::min();
static constexpr s32 max = std::numeric_limits<s16>::max();
auto samples{samples_buffer.Pop(num_samples)};
// TODO: Up-mix to 6 channels if the game expects it.
// For audio input this is unlikely to ever be the case though.
// Incoming mic volume seems to always be very quiet, so multiply by an additional 8 here.
// TODO: Play with this and find something that works better.
auto volume{system_volume * device_volume * 8};
for (u32 i = 0; i < samples.size(); i++) {
samples[i] = static_cast<s16>(
std::clamp(static_cast<s32>(static_cast<f32>(samples[i]) * volume), min, max));
}
if (samples.size() < num_samples) {
samples.resize(num_samples, 0);
}
return samples;
}
/**
* Check if a certain buffer has been consumed (fully played).
*
* @param tag - Unique tag of a buffer to check for.
* @return True if the buffer has been played, otherwise false.
*/
bool IsBufferConsumed(const u64 tag) override {
if (released_buffer.tag == 0) {
if (!released_buffers.try_dequeue(released_buffer)) {
return false;
}
}
if (released_buffer.tag == tag) {
released_buffer.tag = 0;
return true;
}
return false;
}
/**
* Empty out the buffer queue.
*/
void ClearQueue() override {
samples_buffer.Pop();
while (queue.pop()) {
}
while (released_buffers.pop()) {
}
queued_buffers = 0;
released_buffer = {};
playing_buffer = {};
playing_buffer.consumed = true;
}
private:
/**
* Signal events back to the audio system that a buffer was played/can be filled.
*
* @param buffer - Consumed audio buffer to be released.
*/
void SignalEvent(const ::AudioCore::Sink::SinkBuffer& buffer) {
auto& manager{system.AudioCore().GetAudioManager()};
switch (type) {
case StreamType::Out:
released_buffers.enqueue(buffer);
manager.SetEvent(Event::Type::AudioOutManager, true);
break;
case StreamType::In:
released_buffers.enqueue(buffer);
manager.SetEvent(Event::Type::AudioInManager, true);
break;
case StreamType::Render:
break;
}
}
/**
* Main callback from Cubeb. Either expects samples from us (audio render/audio out), or will
* provide samples to be copied (audio in).
*
* @param stream - Cubeb-specific data about the stream.
* @param user_data - Custom data pointer passed along, points to a CubebSinkStream.
* @param in_buff - Input buffer to be used if the stream is an input type.
* @param out_buff - Output buffer to be used if the stream is an output type.
* @param num_frames_ - Number of frames of audio in the buffers. Note: Not number of samples.
*/
static long DataCallback([[maybe_unused]] cubeb_stream* stream, void* user_data,
[[maybe_unused]] const void* in_buff, void* out_buff,
long num_frames_) {
auto* impl = static_cast<CubebSinkStream*>(user_data);
if (!impl) {
return -1;
}
const std::size_t num_channels = impl->GetDeviceChannels();
const std::size_t frame_size = num_channels;
const std::size_t frame_size_bytes = frame_size * sizeof(s16);
const std::size_t num_frames{static_cast<size_t>(num_frames_)};
size_t frames_written{0};
[[maybe_unused]] bool underrun{false};
if (impl->type == StreamType::In) {
// INPUT
std::span<const s16> input_buffer{reinterpret_cast<const s16*>(in_buff),
num_frames * frame_size};
while (frames_written < num_frames) {
auto& playing_buffer{impl->playing_buffer};
// If the playing buffer has been consumed or has no frames, we need a new one
if (playing_buffer.consumed || playing_buffer.frames == 0) {
if (!impl->queue.try_dequeue(impl->playing_buffer)) {
// If no buffer was available we've underrun, just push the samples and
// continue.
underrun = true;
impl->samples_buffer.Push(&input_buffer[frames_written * frame_size],
(num_frames - frames_written) * frame_size);
frames_written = num_frames;
continue;
} else {
// Successfully got a new buffer, mark the old one as consumed and signal.
impl->queued_buffers--;
impl->SignalEvent(impl->playing_buffer);
}
}
// Get the minimum frames available between the currently playing buffer, and the
// amount we have left to fill
size_t frames_available{
std::min(playing_buffer.frames - playing_buffer.frames_played,
num_frames - frames_written)};
impl->samples_buffer.Push(&input_buffer[frames_written * frame_size],
frames_available * frame_size);
frames_written += frames_available;
playing_buffer.frames_played += frames_available;
// If that's all the frames in the current buffer, add its samples and mark it as
// consumed
if (playing_buffer.frames_played >= playing_buffer.frames) {
impl->AddPlayedSampleCount(playing_buffer.frames_played * num_channels);
impl->playing_buffer.consumed = true;
}
}
std::memcpy(&impl->last_frame[0], &input_buffer[(frames_written - 1) * frame_size],
frame_size_bytes);
} else {
// OUTPUT
std::span<s16> output_buffer{reinterpret_cast<s16*>(out_buff), num_frames * frame_size};
while (frames_written < num_frames) {
auto& playing_buffer{impl->playing_buffer};
// If the playing buffer has been consumed or has no frames, we need a new one
if (playing_buffer.consumed || playing_buffer.frames == 0) {
if (!impl->queue.try_dequeue(impl->playing_buffer)) {
// If no buffer was available we've underrun, fill the remaining buffer with
// the last written frame and continue.
underrun = true;
for (size_t i = frames_written; i < num_frames; i++) {
std::memcpy(&output_buffer[i * frame_size], &impl->last_frame[0],
frame_size_bytes);
}
frames_written = num_frames;
continue;
} else {
// Successfully got a new buffer, mark the old one as consumed and signal.
impl->queued_buffers--;
impl->SignalEvent(impl->playing_buffer);
}
}
// Get the minimum frames available between the currently playing buffer, and the
// amount we have left to fill
size_t frames_available{
std::min(playing_buffer.frames - playing_buffer.frames_played,
num_frames - frames_written)};
impl->samples_buffer.Pop(&output_buffer[frames_written * frame_size],
frames_available * frame_size);
frames_written += frames_available;
playing_buffer.frames_played += frames_available;
// If that's all the frames in the current buffer, add its samples and mark it as
// consumed
if (playing_buffer.frames_played >= playing_buffer.frames) {
impl->AddPlayedSampleCount(playing_buffer.frames_played * num_channels);
impl->playing_buffer.consumed = true;
}
}
std::memcpy(&impl->last_frame[0], &output_buffer[(frames_written - 1) * frame_size],
frame_size_bytes);
}
return num_frames_;
}
/**
* Cubeb callback for if a device state changes. Unused currently.
*
* @param stream - Cubeb-specific data about the stream.
* @param user_data - Custom data pointer passed along, points to a CubebSinkStream.
* @param state - New state of the device.
*/
static void StateCallback([[maybe_unused]] cubeb_stream* stream,
[[maybe_unused]] void* user_data,
[[maybe_unused]] cubeb_state state) {}
/// Main Cubeb context
cubeb* ctx{};
/// Cubeb stream backend
cubeb_stream* stream_backend{};
/// Name of this stream
std::string name{};
/// Type of this stream
StreamType type;
/// Core system
Core::System& system;
/// Ring buffer of the samples waiting to be played or consumed
Common::RingBuffer<s16, 0x10000> samples_buffer;
/// Audio buffers queued and waiting to play
Common::ReaderWriterQueue<::AudioCore::Sink::SinkBuffer> queue;
/// The currently-playing audio buffer
::AudioCore::Sink::SinkBuffer playing_buffer{};
/// Audio buffers which have been played and are in queue to be released by the audio system
Common::ReaderWriterQueue<::AudioCore::Sink::SinkBuffer> released_buffers{};
/// Currently released buffer waiting to be taken by the audio system
::AudioCore::Sink::SinkBuffer released_buffer{};
/// The last played (or received) frame of audio, used when the callback underruns
std::array<s16, MaxChannels> last_frame{};
};
CubebSink::CubebSink(std::string_view target_device_name) {
// Cubeb requires COM to be initialized on the thread calling cubeb_init on Windows
#ifdef _WIN32
com_init_result = CoInitializeEx(nullptr, COINIT_MULTITHREADED);
#endif
if (cubeb_init(&ctx, "yuzu", nullptr) != CUBEB_OK) {
LOG_CRITICAL(Audio_Sink, "cubeb_init failed");
return;
}
if (target_device_name != auto_device_name && !target_device_name.empty()) {
cubeb_device_collection collection;
if (cubeb_enumerate_devices(ctx, CUBEB_DEVICE_TYPE_OUTPUT, &collection) != CUBEB_OK) {
LOG_WARNING(Audio_Sink, "Audio output device enumeration not supported");
} else {
const auto collection_end{collection.device + collection.count};
const auto device{
std::find_if(collection.device, collection_end, [&](const cubeb_device_info& info) {
return info.friendly_name != nullptr &&
target_device_name == std::string(info.friendly_name);
})};
if (device != collection_end) {
output_device = device->devid;
}
cubeb_device_collection_destroy(ctx, &collection);
}
}
cubeb_get_max_channel_count(ctx, &device_channels);
device_channels = device_channels >= 6U ? 6U : 2U;
}
CubebSink::~CubebSink() {
if (!ctx) {
return;
}
for (auto& sink_stream : sink_streams) {
sink_stream.reset();
}
cubeb_destroy(ctx);
#ifdef _WIN32
if (SUCCEEDED(com_init_result)) {
CoUninitialize();
}
#endif
}
SinkStream* CubebSink::AcquireSinkStream(Core::System& system, const u32 system_channels,
const std::string& name, const StreamType type) {
SinkStreamPtr& stream = sink_streams.emplace_back(std::make_unique<CubebSinkStream>(
ctx, device_channels, system_channels, output_device, input_device, name, type, system));
return stream.get();
}
void CubebSink::CloseStream(const SinkStream* stream) {
for (size_t i = 0; i < sink_streams.size(); i++) {
if (sink_streams[i].get() == stream) {
sink_streams[i].reset();
sink_streams.erase(sink_streams.begin() + i);
break;
}
}
}
void CubebSink::CloseStreams() {
sink_streams.clear();
}
void CubebSink::PauseStreams() {
for (auto& stream : sink_streams) {
stream->Stop();
}
}
void CubebSink::UnpauseStreams() {
for (auto& stream : sink_streams) {
stream->Start(true);
}
}
f32 CubebSink::GetDeviceVolume() const {
if (sink_streams.empty()) {
return 1.0f;
}
return sink_streams[0]->GetDeviceVolume();
}
void CubebSink::SetDeviceVolume(const f32 volume) {
for (auto& stream : sink_streams) {
stream->SetDeviceVolume(volume);
}
}
void CubebSink::SetSystemVolume(const f32 volume) {
for (auto& stream : sink_streams) {
stream->SetSystemVolume(volume);
}
}
std::vector<std::string> ListCubebSinkDevices(const bool capture) {
std::vector<std::string> device_list;
cubeb* ctx;
if (cubeb_init(&ctx, "yuzu Device Enumerator", nullptr) != CUBEB_OK) {
LOG_CRITICAL(Audio_Sink, "cubeb_init failed");
return {};
}
auto type{capture ? CUBEB_DEVICE_TYPE_INPUT : CUBEB_DEVICE_TYPE_OUTPUT};
cubeb_device_collection collection;
if (cubeb_enumerate_devices(ctx, type, &collection) != CUBEB_OK) {
LOG_WARNING(Audio_Sink, "Audio output device enumeration not supported");
} else {
for (std::size_t i = 0; i < collection.count; i++) {
const cubeb_device_info& device = collection.device[i];
if (device.friendly_name && device.friendly_name[0] != '\0' &&
device.state == CUBEB_DEVICE_STATE_ENABLED) {
device_list.emplace_back(device.friendly_name);
}
}
cubeb_device_collection_destroy(ctx, &collection);
}
cubeb_destroy(ctx);
return device_list;
}
} // namespace AudioCore::Sink