Merge pull request #4168 from ReinUsesLisp/global-memory

gl_arb_decompiler: Use NV_shader_buffer_{load,store} on assembly shaders
This commit is contained in:
bunnei 2020-07-20 21:54:17 -04:00 committed by GitHub
commit 61e4c0f83d
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
7 changed files with 173 additions and 110 deletions

View file

@ -185,10 +185,6 @@ std::string TextureType(const MetaTexture& meta) {
return type;
}
std::string GlobalMemoryName(const GlobalMemoryBase& base) {
return fmt::format("gmem{}_{}", base.cbuf_index, base.cbuf_offset);
}
class ARBDecompiler final {
public:
explicit ARBDecompiler(const Device& device, const ShaderIR& ir, const Registry& registry,
@ -199,6 +195,8 @@ public:
}
private:
void DefineGlobalMemory();
void DeclareHeader();
void DeclareVertex();
void DeclareGeometry();
@ -228,6 +226,7 @@ private:
std::pair<std::string, std::size_t> BuildCoords(Operation);
std::string BuildAoffi(Operation);
std::string GlobalMemoryPointer(const GmemNode& gmem);
void Exit();
std::string Assign(Operation);
@ -378,10 +377,8 @@ private:
std::string address;
std::string_view opname;
if (const auto gmem = std::get_if<GmemNode>(&*operation[0])) {
AddLine("SUB.U {}, {}, {};", temporary, Visit(gmem->GetRealAddress()),
Visit(gmem->GetBaseAddress()));
address = fmt::format("{}[{}]", GlobalMemoryName(gmem->GetDescriptor()), temporary);
opname = "ATOMB";
address = GlobalMemoryPointer(*gmem);
opname = "ATOM";
} else if (const auto smem = std::get_if<SmemNode>(&*operation[0])) {
address = fmt::format("shared_mem[{}]", Visit(smem->GetAddress()));
opname = "ATOMS";
@ -456,9 +453,13 @@ private:
shader_source += '\n';
}
std::string AllocTemporary() {
max_temporaries = std::max(max_temporaries, num_temporaries + 1);
return fmt::format("T{}.x", num_temporaries++);
std::string AllocLongVectorTemporary() {
max_long_temporaries = std::max(max_long_temporaries, num_long_temporaries + 1);
return fmt::format("L{}", num_long_temporaries++);
}
std::string AllocLongTemporary() {
return fmt::format("{}.x", AllocLongVectorTemporary());
}
std::string AllocVectorTemporary() {
@ -466,8 +467,13 @@ private:
return fmt::format("T{}", num_temporaries++);
}
std::string AllocTemporary() {
return fmt::format("{}.x", AllocVectorTemporary());
}
void ResetTemporaries() noexcept {
num_temporaries = 0;
num_long_temporaries = 0;
}
const Device& device;
@ -478,6 +484,11 @@ private:
std::size_t num_temporaries = 0;
std::size_t max_temporaries = 0;
std::size_t num_long_temporaries = 0;
std::size_t max_long_temporaries = 0;
std::map<GlobalMemoryBase, u32> global_memory_names;
std::string shader_source;
static constexpr std::string_view ADD_F32 = "ADD.F32";
@ -784,6 +795,8 @@ private:
ARBDecompiler::ARBDecompiler(const Device& device, const ShaderIR& ir, const Registry& registry,
ShaderType stage, std::string_view identifier)
: device{device}, ir{ir}, registry{registry}, stage{stage} {
DefineGlobalMemory();
AddLine("TEMP RC;");
AddLine("TEMP FSWZA[4];");
AddLine("TEMP FSWZB[4];");
@ -829,12 +842,20 @@ std::string_view HeaderStageName(ShaderType stage) {
}
}
void ARBDecompiler::DefineGlobalMemory() {
u32 binding = 0;
for (const auto& pair : ir.GetGlobalMemory()) {
const GlobalMemoryBase base = pair.first;
global_memory_names.emplace(base, binding);
++binding;
}
}
void ARBDecompiler::DeclareHeader() {
AddLine("!!NV{}5.0", HeaderStageName(stage));
// Enabling this allows us to cheat on some instructions like TXL with SHADOWARRAY2D
AddLine("OPTION NV_internal;");
AddLine("OPTION NV_gpu_program_fp64;");
AddLine("OPTION NV_shader_storage_buffer;");
AddLine("OPTION NV_shader_thread_group;");
if (ir.UsesWarps() && device.HasWarpIntrinsics()) {
AddLine("OPTION NV_shader_thread_shuffle;");
@ -951,11 +972,10 @@ void ARBDecompiler::DeclareLocalMemory() {
}
void ARBDecompiler::DeclareGlobalMemory() {
u32 binding = 0; // device.GetBaseBindings(stage).shader_storage_buffer;
for (const auto& pair : ir.GetGlobalMemory()) {
const auto& base = pair.first;
AddLine("STORAGE {}[] = {{ program.storage[{}] }};", GlobalMemoryName(base), binding);
++binding;
const std::size_t num_entries = ir.GetGlobalMemory().size();
if (num_entries > 0) {
const std::size_t num_vectors = Common::AlignUp(num_entries, 2) / 2;
AddLine("PARAM c[{}] = {{ program.local[0..{}] }};", num_vectors, num_vectors - 1);
}
}
@ -977,6 +997,9 @@ void ARBDecompiler::DeclareTemporaries() {
for (std::size_t i = 0; i < max_temporaries; ++i) {
AddLine("TEMP T{};", i);
}
for (std::size_t i = 0; i < max_long_temporaries; ++i) {
AddLine("LONG TEMP L{};", i);
}
}
void ARBDecompiler::DeclarePredicates() {
@ -1339,10 +1362,7 @@ std::string ARBDecompiler::Visit(const Node& node) {
if (const auto gmem = std::get_if<GmemNode>(&*node)) {
std::string temporary = AllocTemporary();
AddLine("SUB.U {}, {}, {};", temporary, Visit(gmem->GetRealAddress()),
Visit(gmem->GetBaseAddress()));
AddLine("LDB.U32 {}, {}[{}];", temporary, GlobalMemoryName(gmem->GetDescriptor()),
temporary);
AddLine("LOAD.U32 {}, {};", temporary, GlobalMemoryPointer(*gmem));
return temporary;
}
@ -1419,6 +1439,22 @@ std::string ARBDecompiler::BuildAoffi(Operation operation) {
return fmt::format(", offset({})", temporary);
}
std::string ARBDecompiler::GlobalMemoryPointer(const GmemNode& gmem) {
const u32 binding = global_memory_names.at(gmem.GetDescriptor());
const char result_swizzle = binding % 2 == 0 ? 'x' : 'y';
const std::string pointer = AllocLongVectorTemporary();
std::string temporary = AllocTemporary();
const u32 local_index = binding / 2;
AddLine("PK64.U {}, c[{}];", pointer, local_index);
AddLine("SUB.U {}, {}, {};", temporary, Visit(gmem.GetRealAddress()),
Visit(gmem.GetBaseAddress()));
AddLine("CVT.U64.U32 {}.z, {};", pointer, temporary);
AddLine("ADD.U64 {}.x, {}.{}, {}.z;", pointer, pointer, result_swizzle, pointer);
return fmt::format("{}.x", pointer);
}
void ARBDecompiler::Exit() {
if (stage != ShaderType::Fragment) {
AddLine("RET;");
@ -1515,11 +1551,7 @@ std::string ARBDecompiler::Assign(Operation operation) {
ResetTemporaries();
return {};
} else if (const auto gmem = std::get_if<GmemNode>(&*dest)) {
const std::string temporary = AllocTemporary();
AddLine("SUB.U {}, {}, {};", temporary, Visit(gmem->GetRealAddress()),
Visit(gmem->GetBaseAddress()));
AddLine("STB.U32 {}, {}[{}];", Visit(src), GlobalMemoryName(gmem->GetDescriptor()),
temporary);
AddLine("STORE.U32 {}, {};", Visit(src), GlobalMemoryPointer(*gmem));
ResetTemporaries();
return {};
} else {

View file

@ -26,7 +26,7 @@ Buffer::Buffer(const Device& device, VAddr cpu_addr, std::size_t size)
: VideoCommon::BufferBlock{cpu_addr, size} {
gl_buffer.Create();
glNamedBufferData(gl_buffer.handle, static_cast<GLsizeiptr>(size), nullptr, GL_DYNAMIC_DRAW);
if (device.HasVertexBufferUnifiedMemory()) {
if (device.UseAssemblyShaders() || device.HasVertexBufferUnifiedMemory()) {
glMakeNamedBufferResidentNV(gl_buffer.handle, GL_READ_WRITE);
glGetNamedBufferParameterui64vNV(gl_buffer.handle, GL_BUFFER_GPU_ADDRESS_NV, &gpu_address);
}

View file

@ -139,6 +139,18 @@ void oglEnable(GLenum cap, bool state) {
(state ? glEnable : glDisable)(cap);
}
void UpdateBindlessPointers(GLenum target, GLuint64EXT* pointers, std::size_t num_entries) {
if (num_entries == 0) {
return;
}
if (num_entries % 2 == 1) {
pointers[num_entries] = 0;
}
const GLsizei num_vectors = static_cast<GLsizei>((num_entries + 1) / 2);
glProgramLocalParametersI4uivNV(target, 0, num_vectors,
reinterpret_cast<const GLuint*>(pointers));
}
} // Anonymous namespace
RasterizerOpenGL::RasterizerOpenGL(Core::System& system, Core::Frontend::EmuWindow& emu_window,
@ -324,7 +336,6 @@ GLintptr RasterizerOpenGL::SetupIndexBuffer() {
void RasterizerOpenGL::SetupShaders(GLenum primitive_mode) {
MICROPROFILE_SCOPE(OpenGL_Shader);
auto& gpu = system.GPU().Maxwell3D();
std::size_t num_ssbos = 0;
u32 clip_distances = 0;
for (std::size_t index = 0; index < Maxwell::MaxShaderProgram; ++index) {
@ -347,29 +358,13 @@ void RasterizerOpenGL::SetupShaders(GLenum primitive_mode) {
}
// Currently this stages are not supported in the OpenGL backend.
// Todo(Blinkhawk): Port tesselation shaders from Vulkan to OpenGL
if (program == Maxwell::ShaderProgram::TesselationControl) {
continue;
} else if (program == Maxwell::ShaderProgram::TesselationEval) {
// TODO(Blinkhawk): Port tesselation shaders from Vulkan to OpenGL
if (program == Maxwell::ShaderProgram::TesselationControl ||
program == Maxwell::ShaderProgram::TesselationEval) {
continue;
}
Shader* shader = shader_cache.GetStageProgram(program, async_shaders);
if (device.UseAssemblyShaders()) {
// Check for ARB limitation. We only have 16 SSBOs per context state. To workaround this
// all stages share the same bindings.
const std::size_t num_stage_ssbos = shader->GetEntries().global_memory_entries.size();
ASSERT_MSG(num_stage_ssbos == 0 || num_ssbos == 0, "SSBOs on more than one stage");
num_ssbos += num_stage_ssbos;
}
// Stage indices are 0 - 5
const std::size_t stage = index == 0 ? 0 : index - 1;
SetupDrawConstBuffers(stage, shader);
SetupDrawGlobalMemory(stage, shader);
SetupDrawTextures(stage, shader);
SetupDrawImages(stage, shader);
Shader* const shader = shader_cache.GetStageProgram(program, async_shaders);
const GLuint program_handle = shader->IsBuilt() ? shader->GetHandle() : 0;
switch (program) {
@ -388,6 +383,13 @@ void RasterizerOpenGL::SetupShaders(GLenum primitive_mode) {
shader_config.enable.Value(), shader_config.offset);
}
// Stage indices are 0 - 5
const std::size_t stage = index == 0 ? 0 : index - 1;
SetupDrawConstBuffers(stage, shader);
SetupDrawGlobalMemory(stage, shader);
SetupDrawTextures(stage, shader);
SetupDrawImages(stage, shader);
// Workaround for Intel drivers.
// When a clip distance is enabled but not set in the shader it crops parts of the screen
// (sometimes it's half the screen, sometimes three quarters). To avoid this, enable the
@ -749,6 +751,8 @@ void RasterizerOpenGL::DispatchCompute(GPUVAddr code_addr) {
current_cbuf = 0;
auto kernel = shader_cache.GetComputeKernel(code_addr);
program_manager.BindCompute(kernel->GetHandle());
SetupComputeTextures(kernel);
SetupComputeImages(kernel);
@ -763,7 +767,6 @@ void RasterizerOpenGL::DispatchCompute(GPUVAddr code_addr) {
buffer_cache.Unmap();
const auto& launch_desc = system.GPU().KeplerCompute().launch_description;
program_manager.BindCompute(kernel->GetHandle());
glDispatchCompute(launch_desc.grid_dim_x, launch_desc.grid_dim_y, launch_desc.grid_dim_z);
++num_queued_commands;
}
@ -1023,40 +1026,66 @@ void RasterizerOpenGL::SetupConstBuffer(GLenum stage, u32 binding,
}
void RasterizerOpenGL::SetupDrawGlobalMemory(std::size_t stage_index, Shader* shader) {
static constexpr std::array TARGET_LUT = {
GL_VERTEX_PROGRAM_NV, GL_TESS_CONTROL_PROGRAM_NV, GL_TESS_EVALUATION_PROGRAM_NV,
GL_GEOMETRY_PROGRAM_NV, GL_FRAGMENT_PROGRAM_NV,
};
auto& gpu{system.GPU()};
auto& memory_manager{gpu.MemoryManager()};
const auto cbufs{gpu.Maxwell3D().state.shader_stages[stage_index]};
const auto& cbufs{gpu.Maxwell3D().state.shader_stages[stage_index]};
const auto& entries{shader->GetEntries().global_memory_entries};
u32 binding =
device.UseAssemblyShaders() ? 0 : device.GetBaseBindings(stage_index).shader_storage_buffer;
for (const auto& entry : shader->GetEntries().global_memory_entries) {
std::array<GLuint64EXT, 32> pointers;
ASSERT(entries.size() < pointers.size());
const bool assembly_shaders = device.UseAssemblyShaders();
u32 binding = assembly_shaders ? 0 : device.GetBaseBindings(stage_index).shader_storage_buffer;
for (const auto& entry : entries) {
const GPUVAddr addr{cbufs.const_buffers[entry.cbuf_index].address + entry.cbuf_offset};
const GPUVAddr gpu_addr{memory_manager.Read<u64>(addr)};
const u32 size{memory_manager.Read<u32>(addr + 8)};
SetupGlobalMemory(binding++, entry, gpu_addr, size);
SetupGlobalMemory(binding, entry, gpu_addr, size, &pointers[binding]);
++binding;
}
if (assembly_shaders) {
UpdateBindlessPointers(TARGET_LUT[stage_index], pointers.data(), entries.size());
}
}
void RasterizerOpenGL::SetupComputeGlobalMemory(Shader* kernel) {
auto& gpu{system.GPU()};
auto& memory_manager{gpu.MemoryManager()};
const auto cbufs{gpu.KeplerCompute().launch_description.const_buffer_config};
const auto& cbufs{gpu.KeplerCompute().launch_description.const_buffer_config};
const auto& entries{kernel->GetEntries().global_memory_entries};
std::array<GLuint64EXT, 32> pointers;
ASSERT(entries.size() < pointers.size());
u32 binding = 0;
for (const auto& entry : kernel->GetEntries().global_memory_entries) {
const auto addr{cbufs[entry.cbuf_index].Address() + entry.cbuf_offset};
const auto gpu_addr{memory_manager.Read<u64>(addr)};
const auto size{memory_manager.Read<u32>(addr + 8)};
SetupGlobalMemory(binding++, entry, gpu_addr, size);
for (const auto& entry : entries) {
const GPUVAddr addr{cbufs[entry.cbuf_index].Address() + entry.cbuf_offset};
const GPUVAddr gpu_addr{memory_manager.Read<u64>(addr)};
const u32 size{memory_manager.Read<u32>(addr + 8)};
SetupGlobalMemory(binding, entry, gpu_addr, size, &pointers[binding]);
++binding;
}
if (device.UseAssemblyShaders()) {
UpdateBindlessPointers(GL_COMPUTE_PROGRAM_NV, pointers.data(), entries.size());
}
}
void RasterizerOpenGL::SetupGlobalMemory(u32 binding, const GlobalMemoryEntry& entry,
GPUVAddr gpu_addr, std::size_t size) {
const auto alignment{device.GetShaderStorageBufferAlignment()};
GPUVAddr gpu_addr, std::size_t size,
GLuint64EXT* pointer) {
const std::size_t alignment{device.GetShaderStorageBufferAlignment()};
const auto info = buffer_cache.UploadMemory(gpu_addr, size, alignment, entry.is_written);
glBindBufferRange(GL_SHADER_STORAGE_BUFFER, binding, info.handle, info.offset,
static_cast<GLsizeiptr>(size));
if (device.UseAssemblyShaders()) {
*pointer = info.address + info.offset;
} else {
glBindBufferRange(GL_SHADER_STORAGE_BUFFER, binding, info.handle, info.offset,
static_cast<GLsizeiptr>(size));
}
}
void RasterizerOpenGL::SetupDrawTextures(std::size_t stage_index, Shader* shader) {

View file

@ -124,9 +124,9 @@ private:
/// Configures the current global memory entries to use for the kernel invocation.
void SetupComputeGlobalMemory(Shader* kernel);
/// Configures a constant buffer.
/// Configures a global memory buffer.
void SetupGlobalMemory(u32 binding, const GlobalMemoryEntry& entry, GPUVAddr gpu_addr,
std::size_t size);
std::size_t size, GLuint64EXT* pointer);
/// Configures the current textures to use for the draw command.
void SetupDrawTextures(std::size_t stage_index, Shader* shader);

View file

@ -11,8 +11,30 @@
namespace OpenGL {
ProgramManager::ProgramManager(const Device& device) {
use_assembly_programs = device.UseAssemblyShaders();
namespace {
void BindProgram(GLenum stage, GLuint current, GLuint old, bool& enabled) {
if (current == old) {
return;
}
if (current == 0) {
if (enabled) {
enabled = false;
glDisable(stage);
}
return;
}
if (!enabled) {
enabled = true;
glEnable(stage);
}
glBindProgramARB(stage, current);
}
} // Anonymous namespace
ProgramManager::ProgramManager(const Device& device)
: use_assembly_programs{device.UseAssemblyShaders()} {
if (use_assembly_programs) {
glEnable(GL_COMPUTE_PROGRAM_NV);
} else {
@ -33,9 +55,7 @@ void ProgramManager::BindCompute(GLuint program) {
}
void ProgramManager::BindGraphicsPipeline() {
if (use_assembly_programs) {
UpdateAssemblyPrograms();
} else {
if (!use_assembly_programs) {
UpdateSourcePrograms();
}
}
@ -63,32 +83,25 @@ void ProgramManager::RestoreGuestPipeline() {
}
}
void ProgramManager::UpdateAssemblyPrograms() {
const auto update_state = [](GLenum stage, bool& enabled, GLuint current, GLuint old) {
if (current == old) {
return;
}
if (current == 0) {
if (enabled) {
enabled = false;
glDisable(stage);
}
return;
}
if (!enabled) {
enabled = true;
glEnable(stage);
}
glBindProgramARB(stage, current);
};
void ProgramManager::UseVertexShader(GLuint program) {
if (use_assembly_programs) {
BindProgram(GL_VERTEX_PROGRAM_NV, program, current_state.vertex, vertex_enabled);
}
current_state.vertex = program;
}
update_state(GL_VERTEX_PROGRAM_NV, vertex_enabled, current_state.vertex, old_state.vertex);
update_state(GL_GEOMETRY_PROGRAM_NV, geometry_enabled, current_state.geometry,
old_state.geometry);
update_state(GL_FRAGMENT_PROGRAM_NV, fragment_enabled, current_state.fragment,
old_state.fragment);
void ProgramManager::UseGeometryShader(GLuint program) {
if (use_assembly_programs) {
BindProgram(GL_GEOMETRY_PROGRAM_NV, program, current_state.vertex, geometry_enabled);
}
current_state.geometry = program;
}
old_state = current_state;
void ProgramManager::UseFragmentShader(GLuint program) {
if (use_assembly_programs) {
BindProgram(GL_FRAGMENT_PROGRAM_NV, program, current_state.vertex, fragment_enabled);
}
current_state.fragment = program;
}
void ProgramManager::UpdateSourcePrograms() {

View file

@ -45,17 +45,9 @@ public:
/// Rewinds BindHostPipeline state changes.
void RestoreGuestPipeline();
void UseVertexShader(GLuint program) {
current_state.vertex = program;
}
void UseGeometryShader(GLuint program) {
current_state.geometry = program;
}
void UseFragmentShader(GLuint program) {
current_state.fragment = program;
}
void UseVertexShader(GLuint program);
void UseGeometryShader(GLuint program);
void UseFragmentShader(GLuint program);
private:
struct PipelineState {
@ -64,9 +56,6 @@ private:
GLuint fragment = 0;
};
/// Update NV_gpu_program5 programs.
void UpdateAssemblyPrograms();
/// Update GLSL programs.
void UpdateSourcePrograms();

View file

@ -35,7 +35,7 @@ OGLStreamBuffer::OGLStreamBuffer(const Device& device, GLsizeiptr size, bool ver
mapped_ptr = static_cast<u8*>(
glMapNamedBufferRange(gl_buffer.handle, 0, buffer_size, flags | GL_MAP_FLUSH_EXPLICIT_BIT));
if (device.HasVertexBufferUnifiedMemory()) {
if (device.UseAssemblyShaders() || device.HasVertexBufferUnifiedMemory()) {
glMakeNamedBufferResidentNV(gl_buffer.handle, GL_READ_ONLY);
glGetNamedBufferParameterui64vNV(gl_buffer.handle, GL_BUFFER_GPU_ADDRESS_NV, &gpu_address);
}