Merge pull request #2601 from FernandoS27/texture_cache

Implement a new Texture Cache
This commit is contained in:
Zach Hilman 2019-07-05 13:39:13 -04:00 committed by GitHub
commit 772c86a260
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
63 changed files with 4196 additions and 3269 deletions

View file

@ -70,6 +70,7 @@ set(HASH_FILES
"${VIDEO_CORE}/shader/decode/half_set.cpp"
"${VIDEO_CORE}/shader/decode/half_set_predicate.cpp"
"${VIDEO_CORE}/shader/decode/hfma2.cpp"
"${VIDEO_CORE}/shader/decode/image.cpp"
"${VIDEO_CORE}/shader/decode/integer_set.cpp"
"${VIDEO_CORE}/shader/decode/integer_set_predicate.cpp"
"${VIDEO_CORE}/shader/decode/memory.cpp"

View file

@ -44,6 +44,7 @@ add_custom_command(OUTPUT scm_rev.cpp
"${VIDEO_CORE}/shader/decode/half_set.cpp"
"${VIDEO_CORE}/shader/decode/half_set_predicate.cpp"
"${VIDEO_CORE}/shader/decode/hfma2.cpp"
"${VIDEO_CORE}/shader/decode/image.cpp"
"${VIDEO_CORE}/shader/decode/integer_set.cpp"
"${VIDEO_CORE}/shader/decode/integer_set_predicate.cpp"
"${VIDEO_CORE}/shader/decode/memory.cpp"
@ -74,6 +75,7 @@ add_library(common STATIC
assert.h
detached_tasks.cpp
detached_tasks.h
binary_find.h
bit_field.h
bit_util.h
cityhash.cpp

View file

@ -19,6 +19,12 @@ constexpr T AlignDown(T value, std::size_t size) {
return static_cast<T>(value - value % size);
}
template <typename T>
constexpr T AlignBits(T value, std::size_t align) {
static_assert(std::is_unsigned_v<T>, "T must be an unsigned value.");
return static_cast<T>((value + ((1ULL << align) - 1)) >> align << align);
}
template <typename T>
constexpr bool Is4KBAligned(T value) {
static_assert(std::is_unsigned_v<T>, "T must be an unsigned value.");

21
src/common/binary_find.h Normal file
View file

@ -0,0 +1,21 @@
// Copyright 2019 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <algorithm>
namespace Common {
template <class ForwardIt, class T, class Compare = std::less<>>
ForwardIt BinaryFind(ForwardIt first, ForwardIt last, const T& value, Compare comp = {}) {
// Note: BOTH type T and the type after ForwardIt is dereferenced
// must be implicitly convertible to BOTH Type1 and Type2, used in Compare.
// This is stricter than lower_bound requirement (see above)
first = std::lower_bound(first, last, value, comp);
return first != last && !comp(value, *first) ? first : last;
}
} // namespace Common

View file

@ -97,4 +97,48 @@ inline u32 CountTrailingZeroes64(u64 value) {
}
#endif
#ifdef _MSC_VER
inline u32 MostSignificantBit32(const u32 value) {
unsigned long result;
_BitScanReverse(&result, value);
return static_cast<u32>(result);
}
inline u32 MostSignificantBit64(const u64 value) {
unsigned long result;
_BitScanReverse64(&result, value);
return static_cast<u32>(result);
}
#else
inline u32 MostSignificantBit32(const u32 value) {
return 31U - static_cast<u32>(__builtin_clz(value));
}
inline u32 MostSignificantBit64(const u64 value) {
return 63U - static_cast<u32>(__builtin_clzll(value));
}
#endif
inline u32 Log2Floor32(const u32 value) {
return MostSignificantBit32(value);
}
inline u32 Log2Ceil32(const u32 value) {
const u32 log2_f = Log2Floor32(value);
return log2_f + ((value ^ (1U << log2_f)) != 0U);
}
inline u32 Log2Floor64(const u64 value) {
return MostSignificantBit64(value);
}
inline u32 Log2Ceil64(const u64 value) {
const u64 log2_f = static_cast<u64>(Log2Floor64(value));
return static_cast<u32>(log2_f + ((value ^ (1ULL << log2_f)) != 0ULL));
}
} // namespace Common

View file

@ -4,6 +4,7 @@
#pragma once
#include <algorithm>
#include <string>
#if !defined(ARCHITECTURE_x86_64)

View file

@ -41,12 +41,12 @@ add_library(video_core STATIC
renderer_opengl/gl_buffer_cache.h
renderer_opengl/gl_device.cpp
renderer_opengl/gl_device.h
renderer_opengl/gl_framebuffer_cache.cpp
renderer_opengl/gl_framebuffer_cache.h
renderer_opengl/gl_global_cache.cpp
renderer_opengl/gl_global_cache.h
renderer_opengl/gl_rasterizer.cpp
renderer_opengl/gl_rasterizer.h
renderer_opengl/gl_rasterizer_cache.cpp
renderer_opengl/gl_rasterizer_cache.h
renderer_opengl/gl_resource_manager.cpp
renderer_opengl/gl_resource_manager.h
renderer_opengl/gl_sampler_cache.cpp
@ -67,6 +67,8 @@ add_library(video_core STATIC
renderer_opengl/gl_state.h
renderer_opengl/gl_stream_buffer.cpp
renderer_opengl/gl_stream_buffer.h
renderer_opengl/gl_texture_cache.cpp
renderer_opengl/gl_texture_cache.h
renderer_opengl/maxwell_to_gl.h
renderer_opengl/renderer_opengl.cpp
renderer_opengl/renderer_opengl.h
@ -88,6 +90,7 @@ add_library(video_core STATIC
shader/decode/conversion.cpp
shader/decode/memory.cpp
shader/decode/texture.cpp
shader/decode/image.cpp
shader/decode/float_set_predicate.cpp
shader/decode/integer_set_predicate.cpp
shader/decode/half_set_predicate.cpp
@ -109,6 +112,13 @@ add_library(video_core STATIC
shader/track.cpp
surface.cpp
surface.h
texture_cache/surface_base.cpp
texture_cache/surface_base.h
texture_cache/surface_params.cpp
texture_cache/surface_params.h
texture_cache/surface_view.cpp
texture_cache/surface_view.h
texture_cache/texture_cache.h
textures/astc.cpp
textures/astc.h
textures/convert.cpp
@ -116,8 +126,6 @@ add_library(video_core STATIC
textures/decoders.cpp
textures/decoders.h
textures/texture.h
texture_cache.cpp
texture_cache.h
video_core.cpp
video_core.h
)

View file

@ -36,10 +36,10 @@ void State::ProcessData(const u32 data, const bool is_last_call) {
} else {
UNIMPLEMENTED_IF(regs.dest.z != 0);
UNIMPLEMENTED_IF(regs.dest.depth != 1);
UNIMPLEMENTED_IF(regs.dest.BlockWidth() != 1);
UNIMPLEMENTED_IF(regs.dest.BlockDepth() != 1);
UNIMPLEMENTED_IF(regs.dest.BlockWidth() != 0);
UNIMPLEMENTED_IF(regs.dest.BlockDepth() != 0);
const std::size_t dst_size = Tegra::Texture::CalculateSize(
true, 1, regs.dest.width, regs.dest.height, 1, regs.dest.BlockHeight(), 1);
true, 1, regs.dest.width, regs.dest.height, 1, regs.dest.BlockHeight(), 0);
tmp_buffer.resize(dst_size);
memory_manager.ReadBlock(address, tmp_buffer.data(), dst_size);
Tegra::Texture::SwizzleKepler(regs.dest.width, regs.dest.height, regs.dest.x, regs.dest.y,

View file

@ -39,15 +39,15 @@ struct Registers {
}
u32 BlockWidth() const {
return 1U << block_width.Value();
return block_width.Value();
}
u32 BlockHeight() const {
return 1U << block_height.Value();
return block_height.Value();
}
u32 BlockDepth() const {
return 1U << block_depth.Value();
return block_depth.Value();
}
} dest;
};

View file

@ -4,7 +4,6 @@
#include "common/assert.h"
#include "common/logging/log.h"
#include "common/math_util.h"
#include "video_core/engines/fermi_2d.h"
#include "video_core/memory_manager.h"
#include "video_core/rasterizer_interface.h"
@ -35,21 +34,31 @@ void Fermi2D::HandleSurfaceCopy() {
static_cast<u32>(regs.operation));
// TODO(Subv): Only raw copies are implemented.
ASSERT(regs.operation == Regs::Operation::SrcCopy);
ASSERT(regs.operation == Operation::SrcCopy);
const u32 src_blit_x1{static_cast<u32>(regs.blit_src_x >> 32)};
const u32 src_blit_y1{static_cast<u32>(regs.blit_src_y >> 32)};
const u32 src_blit_x2{
static_cast<u32>((regs.blit_src_x + (regs.blit_dst_width * regs.blit_du_dx)) >> 32)};
const u32 src_blit_y2{
static_cast<u32>((regs.blit_src_y + (regs.blit_dst_height * regs.blit_dv_dy)) >> 32)};
u32 src_blit_x2, src_blit_y2;
if (regs.blit_control.origin == Origin::Corner) {
src_blit_x2 =
static_cast<u32>((regs.blit_src_x + (regs.blit_du_dx * regs.blit_dst_width)) >> 32);
src_blit_y2 =
static_cast<u32>((regs.blit_src_y + (regs.blit_dv_dy * regs.blit_dst_height)) >> 32);
} else {
src_blit_x2 = static_cast<u32>((regs.blit_src_x >> 32) + regs.blit_dst_width);
src_blit_y2 = static_cast<u32>((regs.blit_src_y >> 32) + regs.blit_dst_height);
}
const Common::Rectangle<u32> src_rect{src_blit_x1, src_blit_y1, src_blit_x2, src_blit_y2};
const Common::Rectangle<u32> dst_rect{regs.blit_dst_x, regs.blit_dst_y,
regs.blit_dst_x + regs.blit_dst_width,
regs.blit_dst_y + regs.blit_dst_height};
Config copy_config;
copy_config.operation = regs.operation;
copy_config.filter = regs.blit_control.filter;
copy_config.src_rect = src_rect;
copy_config.dst_rect = dst_rect;
if (!rasterizer.AccelerateSurfaceCopy(regs.src, regs.dst, src_rect, dst_rect)) {
if (!rasterizer.AccelerateSurfaceCopy(regs.src, regs.dst, copy_config)) {
UNIMPLEMENTED();
}
}

View file

@ -9,6 +9,7 @@
#include "common/bit_field.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/math_util.h"
#include "video_core/gpu.h"
namespace Tegra {
@ -38,6 +39,26 @@ public:
/// Write the value to the register identified by method.
void CallMethod(const GPU::MethodCall& method_call);
enum class Origin : u32 {
Center = 0,
Corner = 1,
};
enum class Filter : u32 {
PointSample = 0, // Nearest
Linear = 1,
};
enum class Operation : u32 {
SrcCopyAnd = 0,
ROPAnd = 1,
Blend = 2,
SrcCopy = 3,
ROP = 4,
SrcCopyPremult = 5,
BlendPremult = 6,
};
struct Regs {
static constexpr std::size_t NUM_REGS = 0x258;
@ -63,32 +84,19 @@ public:
}
u32 BlockWidth() const {
// The block width is stored in log2 format.
return 1 << block_width;
return block_width.Value();
}
u32 BlockHeight() const {
// The block height is stored in log2 format.
return 1 << block_height;
return block_height.Value();
}
u32 BlockDepth() const {
// The block depth is stored in log2 format.
return 1 << block_depth;
return block_depth.Value();
}
};
static_assert(sizeof(Surface) == 0x28, "Surface has incorrect size");
enum class Operation : u32 {
SrcCopyAnd = 0,
ROPAnd = 1,
Blend = 2,
SrcCopy = 3,
ROP = 4,
SrcCopyPremult = 5,
BlendPremult = 6,
};
union {
struct {
INSERT_PADDING_WORDS(0x80);
@ -105,7 +113,11 @@ public:
INSERT_PADDING_WORDS(0x177);
u32 blit_control;
union {
u32 raw;
BitField<0, 1, Origin> origin;
BitField<4, 1, Filter> filter;
} blit_control;
INSERT_PADDING_WORDS(0x8);
@ -124,6 +136,13 @@ public:
};
} regs{};
struct Config {
Operation operation;
Filter filter;
Common::Rectangle<u32> src_rect;
Common::Rectangle<u32> dst_rect;
};
private:
VideoCore::RasterizerInterface& rasterizer;
MemoryManager& memory_manager;

View file

@ -430,14 +430,10 @@ Texture::TICEntry Maxwell3D::GetTICEntry(u32 tic_index) const {
Texture::TICEntry tic_entry;
memory_manager.ReadBlockUnsafe(tic_address_gpu, &tic_entry, sizeof(Texture::TICEntry));
ASSERT_MSG(tic_entry.header_version == Texture::TICHeaderVersion::BlockLinear ||
tic_entry.header_version == Texture::TICHeaderVersion::Pitch,
"TIC versions other than BlockLinear or Pitch are unimplemented");
const auto r_type = tic_entry.r_type.Value();
const auto g_type = tic_entry.g_type.Value();
const auto b_type = tic_entry.b_type.Value();
const auto a_type = tic_entry.a_type.Value();
const auto r_type{tic_entry.r_type.Value()};
const auto g_type{tic_entry.g_type.Value()};
const auto b_type{tic_entry.b_type.Value()};
const auto a_type{tic_entry.a_type.Value()};
// TODO(Subv): Different data types for separate components are not supported
DEBUG_ASSERT(r_type == g_type && r_type == b_type && r_type == a_type);

View file

@ -111,7 +111,7 @@ void MaxwellDMA::HandleCopy() {
memory_manager.WriteBlock(dest, write_buffer.data(), dst_size);
} else {
ASSERT(regs.dst_params.BlockDepth() == 1);
ASSERT(regs.dst_params.BlockDepth() == 0);
const u32 src_bytes_per_pixel = regs.src_pitch / regs.x_count;

View file

@ -59,11 +59,11 @@ public:
};
u32 BlockHeight() const {
return 1 << block_height;
return block_height.Value();
}
u32 BlockDepth() const {
return 1 << block_depth;
return block_depth.Value();
}
};

View file

@ -4,6 +4,7 @@
#pragma once
#include <array>
#include <bitset>
#include <optional>
#include <tuple>
@ -126,6 +127,15 @@ union Sampler {
u64 value{};
};
union Image {
Image() = default;
constexpr explicit Image(u64 value) : value{value} {}
BitField<36, 13, u64> index;
u64 value;
};
} // namespace Tegra::Shader
namespace std {
@ -344,6 +354,26 @@ enum class TextureMiscMode : u64 {
PTP,
};
enum class SurfaceDataMode : u64 {
P = 0,
D_BA = 1,
};
enum class OutOfBoundsStore : u64 {
Ignore = 0,
Clamp = 1,
Trap = 2,
};
enum class ImageType : u64 {
Texture1D = 0,
TextureBuffer = 1,
Texture1DArray = 2,
Texture2D = 3,
Texture2DArray = 4,
Texture3D = 5,
};
enum class IsberdMode : u64 {
None = 0,
Patch = 1,
@ -398,7 +428,7 @@ enum class LmemLoadCacheManagement : u64 {
CV = 3,
};
enum class LmemStoreCacheManagement : u64 {
enum class StoreCacheManagement : u64 {
Default = 0,
CG = 1,
CS = 2,
@ -811,7 +841,7 @@ union Instruction {
} ld_l;
union {
BitField<44, 2, LmemStoreCacheManagement> cache_management;
BitField<44, 2, StoreCacheManagement> cache_management;
} st_l;
union {
@ -1231,6 +1261,20 @@ union Instruction {
}
} texs;
union {
BitField<28, 1, u64> is_array;
BitField<29, 2, TextureType> texture_type;
BitField<35, 1, u64> aoffi;
BitField<49, 1, u64> nodep_flag;
BitField<50, 1, u64> ms; // Multisample?
BitField<54, 1, u64> cl;
BitField<55, 1, u64> process_mode;
TextureProcessMode GetTextureProcessMode() const {
return process_mode == 0 ? TextureProcessMode::LZ : TextureProcessMode::LL;
}
} tld;
union {
BitField<49, 1, u64> nodep_flag;
BitField<53, 4, u64> texture_info;
@ -1280,6 +1324,35 @@ union Instruction {
}
} tlds;
union {
BitField<24, 2, StoreCacheManagement> cache_management;
BitField<33, 3, ImageType> image_type;
BitField<49, 2, OutOfBoundsStore> out_of_bounds_store;
BitField<51, 1, u64> is_immediate;
BitField<52, 1, SurfaceDataMode> mode;
BitField<20, 3, StoreType> store_data_layout;
BitField<20, 4, u64> component_mask_selector;
bool IsComponentEnabled(std::size_t component) const {
ASSERT(mode == SurfaceDataMode::P);
constexpr u8 R = 0b0001;
constexpr u8 G = 0b0010;
constexpr u8 B = 0b0100;
constexpr u8 A = 0b1000;
constexpr std::array<u8, 16> mask = {
0, (R), (G), (R | G), (B), (R | B),
(G | B), (R | G | B), (A), (R | A), (G | A), (R | G | A),
(B | A), (R | B | A), (G | B | A), (R | G | B | A)};
return std::bitset<4>{mask.at(component_mask_selector)}.test(component);
}
StoreType GetStoreDataLayout() const {
ASSERT(mode == SurfaceDataMode::D_BA);
return store_data_layout;
}
} sust;
union {
BitField<20, 24, u64> target;
BitField<5, 1, u64> constant_buffer;
@ -1371,6 +1444,7 @@ union Instruction {
Attribute attribute;
Sampler sampler;
Image image;
u64 value;
};
@ -1408,11 +1482,13 @@ public:
TXQ, // Texture Query
TXQ_B, // Texture Query Bindless
TEXS, // Texture Fetch with scalar/non-vec4 source/destinations
TLD, // Texture Load
TLDS, // Texture Load with scalar/non-vec4 source/destinations
TLD4, // Texture Load 4
TLD4S, // Texture Load 4 with scalar / non - vec4 source / destinations
TMML_B, // Texture Mip Map Level
TMML, // Texture Mip Map Level
SUST, // Surface Store
EXIT,
IPA,
OUT_R, // Emit vertex/primitive
@ -1543,6 +1619,7 @@ public:
Synch,
Memory,
Texture,
Image,
FloatSet,
FloatSetPredicate,
IntegerSet,
@ -1682,11 +1759,13 @@ private:
INST("1101111101001---", Id::TXQ, Type::Texture, "TXQ"),
INST("1101111101010---", Id::TXQ_B, Type::Texture, "TXQ_B"),
INST("1101-00---------", Id::TEXS, Type::Texture, "TEXS"),
INST("11011100--11----", Id::TLD, Type::Texture, "TLD"),
INST("1101101---------", Id::TLDS, Type::Texture, "TLDS"),
INST("110010----111---", Id::TLD4, Type::Texture, "TLD4"),
INST("1101111100------", Id::TLD4S, Type::Texture, "TLD4S"),
INST("110111110110----", Id::TMML_B, Type::Texture, "TMML_B"),
INST("1101111101011---", Id::TMML, Type::Texture, "TMML"),
INST("11101011001-----", Id::SUST, Type::Image, "SUST"),
INST("11100000--------", Id::IPA, Type::Trivial, "IPA"),
INST("1111101111100---", Id::OUT_R, Type::Trivial, "OUT_R"),
INST("1110111111010---", Id::ISBERD, Type::Trivial, "ISBERD"),

View file

@ -202,11 +202,12 @@ const u8* MemoryManager::GetPointer(GPUVAddr addr) const {
}
bool MemoryManager::IsBlockContinuous(const GPUVAddr start, const std::size_t size) const {
const GPUVAddr end = start + size;
const std::size_t inner_size = size - 1;
const GPUVAddr end = start + inner_size;
const auto host_ptr_start = reinterpret_cast<std::uintptr_t>(GetPointer(start));
const auto host_ptr_end = reinterpret_cast<std::uintptr_t>(GetPointer(end));
const auto range = static_cast<std::size_t>(host_ptr_end - host_ptr_start);
return range == size;
return range == inner_size;
}
void MemoryManager::ReadBlock(GPUVAddr src_addr, void* dest_buffer, const std::size_t size) const {

View file

@ -10,6 +10,10 @@
#include "video_core/engines/fermi_2d.h"
#include "video_core/gpu.h"
namespace Tegra {
class MemoryManager;
}
namespace VideoCore {
enum class LoadCallbackStage {
@ -46,8 +50,7 @@ public:
/// Attempt to use a faster method to perform a surface copy
virtual bool AccelerateSurfaceCopy(const Tegra::Engines::Fermi2D::Regs::Surface& src,
const Tegra::Engines::Fermi2D::Regs::Surface& dst,
const Common::Rectangle<u32>& src_rect,
const Common::Rectangle<u32>& dst_rect) {
const Tegra::Engines::Fermi2D::Config& copy_config) {
return false;
}

View file

@ -0,0 +1,75 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <tuple>
#include "common/cityhash.h"
#include "common/scope_exit.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/renderer_opengl/gl_framebuffer_cache.h"
#include "video_core/renderer_opengl/gl_state.h"
namespace OpenGL {
using Maxwell = Tegra::Engines::Maxwell3D::Regs;
FramebufferCacheOpenGL::FramebufferCacheOpenGL() = default;
FramebufferCacheOpenGL::~FramebufferCacheOpenGL() = default;
GLuint FramebufferCacheOpenGL::GetFramebuffer(const FramebufferCacheKey& key) {
const auto [entry, is_cache_miss] = cache.try_emplace(key);
auto& framebuffer{entry->second};
if (is_cache_miss) {
framebuffer = CreateFramebuffer(key);
}
return framebuffer.handle;
}
OGLFramebuffer FramebufferCacheOpenGL::CreateFramebuffer(const FramebufferCacheKey& key) {
OGLFramebuffer framebuffer;
framebuffer.Create();
// TODO(Rodrigo): Use DSA here after Nvidia fixes their framebuffer DSA bugs.
local_state.draw.draw_framebuffer = framebuffer.handle;
local_state.ApplyFramebufferState();
if (key.is_single_buffer) {
if (key.color_attachments[0] != GL_NONE && key.colors[0]) {
key.colors[0]->Attach(key.color_attachments[0], GL_DRAW_FRAMEBUFFER);
glDrawBuffer(key.color_attachments[0]);
} else {
glDrawBuffer(GL_NONE);
}
} else {
for (std::size_t index = 0; index < Maxwell::NumRenderTargets; ++index) {
if (key.colors[index]) {
key.colors[index]->Attach(GL_COLOR_ATTACHMENT0 + static_cast<GLenum>(index),
GL_DRAW_FRAMEBUFFER);
}
}
glDrawBuffers(key.colors_count, key.color_attachments.data());
}
if (key.zeta) {
key.zeta->Attach(key.stencil_enable ? GL_DEPTH_STENCIL_ATTACHMENT : GL_DEPTH_ATTACHMENT,
GL_DRAW_FRAMEBUFFER);
}
return framebuffer;
}
std::size_t FramebufferCacheKey::Hash() const {
static_assert(sizeof(*this) % sizeof(u64) == 0, "Unaligned struct");
return static_cast<std::size_t>(
Common::CityHash64(reinterpret_cast<const char*>(this), sizeof(*this)));
}
bool FramebufferCacheKey::operator==(const FramebufferCacheKey& rhs) const {
return std::tie(is_single_buffer, stencil_enable, colors_count, color_attachments, colors,
zeta) == std::tie(rhs.is_single_buffer, rhs.stencil_enable, rhs.colors_count,
rhs.color_attachments, rhs.colors, rhs.zeta);
}
} // namespace OpenGL

View file

@ -0,0 +1,68 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <array>
#include <cstddef>
#include <unordered_map>
#include <glad/glad.h>
#include "common/common_types.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/renderer_opengl/gl_resource_manager.h"
#include "video_core/renderer_opengl/gl_state.h"
#include "video_core/renderer_opengl/gl_texture_cache.h"
namespace OpenGL {
struct alignas(sizeof(u64)) FramebufferCacheKey {
bool is_single_buffer = false;
bool stencil_enable = false;
u16 colors_count = 0;
std::array<GLenum, Tegra::Engines::Maxwell3D::Regs::NumRenderTargets> color_attachments{};
std::array<View, Tegra::Engines::Maxwell3D::Regs::NumRenderTargets> colors;
View zeta;
std::size_t Hash() const;
bool operator==(const FramebufferCacheKey& rhs) const;
bool operator!=(const FramebufferCacheKey& rhs) const {
return !operator==(rhs);
}
};
} // namespace OpenGL
namespace std {
template <>
struct hash<OpenGL::FramebufferCacheKey> {
std::size_t operator()(const OpenGL::FramebufferCacheKey& k) const noexcept {
return k.Hash();
}
};
} // namespace std
namespace OpenGL {
class FramebufferCacheOpenGL {
public:
FramebufferCacheOpenGL();
~FramebufferCacheOpenGL();
GLuint GetFramebuffer(const FramebufferCacheKey& key);
private:
OGLFramebuffer CreateFramebuffer(const FramebufferCacheKey& key);
OpenGLState local_state;
std::unordered_map<FramebufferCacheKey, OGLFramebuffer> cache;
};
} // namespace OpenGL

View file

@ -29,8 +29,10 @@
namespace OpenGL {
using Maxwell = Tegra::Engines::Maxwell3D::Regs;
using PixelFormat = VideoCore::Surface::PixelFormat;
using SurfaceType = VideoCore::Surface::SurfaceType;
using VideoCore::Surface::PixelFormat;
using VideoCore::Surface::SurfaceTarget;
using VideoCore::Surface::SurfaceType;
MICROPROFILE_DEFINE(OpenGL_VAO, "OpenGL", "Vertex Format Setup", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_VB, "OpenGL", "Vertex Buffer Setup", MP_RGB(128, 128, 192));
@ -78,29 +80,9 @@ struct DrawParameters {
}
};
struct FramebufferCacheKey {
bool is_single_buffer = false;
bool stencil_enable = false;
std::array<GLenum, Maxwell::NumRenderTargets> color_attachments{};
std::array<GLuint, Tegra::Engines::Maxwell3D::Regs::NumRenderTargets> colors{};
u32 colors_count = 0;
GLuint zeta = 0;
auto Tie() const {
return std::tie(is_single_buffer, stencil_enable, color_attachments, colors, colors_count,
zeta);
}
bool operator<(const FramebufferCacheKey& rhs) const {
return Tie() < rhs.Tie();
}
};
RasterizerOpenGL::RasterizerOpenGL(Core::System& system, Core::Frontend::EmuWindow& emu_window,
ScreenInfo& info)
: res_cache{*this}, shader_cache{*this, system, emu_window, device},
: texture_cache{system, *this, device}, shader_cache{*this, system, emu_window, device},
global_cache{*this}, system{system}, screen_info{info},
buffer_cache(*this, STREAM_BUFFER_SIZE) {
OpenGLState::ApplyDefaultState();
@ -121,11 +103,6 @@ void RasterizerOpenGL::CheckExtensions() {
Render_OpenGL,
"Anisotropic filter is not supported! This can cause graphical issues in some games.");
}
if (!GLAD_GL_ARB_buffer_storage) {
LOG_WARNING(
Render_OpenGL,
"Buffer storage control is not supported! This can cause performance degradation.");
}
}
GLuint RasterizerOpenGL::SetupVertexFormat() {
@ -302,8 +279,14 @@ void RasterizerOpenGL::SetupShaders(GLenum primitive_mode) {
static_cast<GLsizeiptr>(sizeof(ubo)));
Shader shader{shader_cache.GetStageProgram(program)};
const auto [program_handle, next_bindings] =
shader->GetProgramHandle(primitive_mode, base_bindings);
const auto stage_enum{static_cast<Maxwell::ShaderStage>(stage)};
SetupDrawConstBuffers(stage_enum, shader);
SetupGlobalRegions(stage_enum, shader);
const auto texture_buffer_usage{SetupTextures(stage_enum, shader, base_bindings)};
const ProgramVariant variant{base_bindings, primitive_mode, texture_buffer_usage};
const auto [program_handle, next_bindings] = shader->GetProgramHandle(variant);
switch (program) {
case Maxwell::ShaderProgram::VertexA:
@ -321,11 +304,6 @@ void RasterizerOpenGL::SetupShaders(GLenum primitive_mode) {
shader_config.enable.Value(), shader_config.offset);
}
const auto stage_enum = static_cast<Maxwell::ShaderStage>(stage);
SetupDrawConstBuffers(stage_enum, shader);
SetupGlobalRegions(stage_enum, shader);
SetupTextures(stage_enum, shader, base_bindings);
// Workaround for Intel drivers.
// When a clip distance is enabled but not set in the shader it crops parts of the screen
// (sometimes it's half the screen, sometimes three quarters). To avoid this, enable the
@ -351,44 +329,6 @@ void RasterizerOpenGL::SetupShaders(GLenum primitive_mode) {
gpu.dirty_flags.shaders = false;
}
void RasterizerOpenGL::SetupCachedFramebuffer(const FramebufferCacheKey& fbkey,
OpenGLState& current_state) {
const auto [entry, is_cache_miss] = framebuffer_cache.try_emplace(fbkey);
auto& framebuffer = entry->second;
if (is_cache_miss)
framebuffer.Create();
current_state.draw.draw_framebuffer = framebuffer.handle;
current_state.ApplyFramebufferState();
if (!is_cache_miss)
return;
if (fbkey.is_single_buffer) {
if (fbkey.color_attachments[0] != GL_NONE) {
glFramebufferTexture(GL_DRAW_FRAMEBUFFER, fbkey.color_attachments[0], fbkey.colors[0],
0);
}
glDrawBuffer(fbkey.color_attachments[0]);
} else {
for (std::size_t index = 0; index < Maxwell::NumRenderTargets; ++index) {
if (fbkey.colors[index]) {
glFramebufferTexture(GL_DRAW_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0 + static_cast<GLenum>(index),
fbkey.colors[index], 0);
}
}
glDrawBuffers(fbkey.colors_count, fbkey.color_attachments.data());
}
if (fbkey.zeta) {
GLenum zeta_attachment =
fbkey.stencil_enable ? GL_DEPTH_STENCIL_ATTACHMENT : GL_DEPTH_ATTACHMENT;
glFramebufferTexture(GL_DRAW_FRAMEBUFFER, zeta_attachment, fbkey.zeta, 0);
}
}
std::size_t RasterizerOpenGL::CalculateVertexArraysSize() const {
const auto& regs = system.GPU().Maxwell3D().regs;
@ -478,9 +418,13 @@ std::pair<bool, bool> RasterizerOpenGL::ConfigureFramebuffers(
}
current_framebuffer_config_state = fb_config_state;
Surface depth_surface;
texture_cache.GuardRenderTargets(true);
View depth_surface{};
if (using_depth_fb) {
depth_surface = res_cache.GetDepthBufferSurface(preserve_contents);
depth_surface = texture_cache.GetDepthBufferSurface(preserve_contents);
} else {
texture_cache.SetEmptyDepthBuffer();
}
UNIMPLEMENTED_IF(regs.rt_separate_frag_data == 0);
@ -493,13 +437,13 @@ std::pair<bool, bool> RasterizerOpenGL::ConfigureFramebuffers(
if (using_color_fb) {
if (single_color_target) {
// Used when just a single color attachment is enabled, e.g. for clearing a color buffer
Surface color_surface =
res_cache.GetColorBufferSurface(*single_color_target, preserve_contents);
View color_surface{
texture_cache.GetColorBufferSurface(*single_color_target, preserve_contents)};
if (color_surface) {
// Assume that a surface will be written to if it is used as a framebuffer, even if
// the shader doesn't actually write to it.
color_surface->MarkAsModified(true, res_cache);
texture_cache.MarkColorBufferInUse(*single_color_target);
// Workaround for and issue in nvidia drivers
// https://devtalk.nvidia.com/default/topic/776591/opengl/gl_framebuffer_srgb-functions-incorrectly/
state.framebuffer_srgb.enabled |= color_surface->GetSurfaceParams().srgb_conversion;
@ -508,16 +452,21 @@ std::pair<bool, bool> RasterizerOpenGL::ConfigureFramebuffers(
fbkey.is_single_buffer = true;
fbkey.color_attachments[0] =
GL_COLOR_ATTACHMENT0 + static_cast<GLenum>(*single_color_target);
fbkey.colors[0] = color_surface != nullptr ? color_surface->Texture().handle : 0;
fbkey.colors[0] = color_surface;
for (std::size_t index = 0; index < Maxwell::NumRenderTargets; ++index) {
if (index != *single_color_target) {
texture_cache.SetEmptyColorBuffer(index);
}
}
} else {
// Multiple color attachments are enabled
for (std::size_t index = 0; index < Maxwell::NumRenderTargets; ++index) {
Surface color_surface = res_cache.GetColorBufferSurface(index, preserve_contents);
View color_surface{texture_cache.GetColorBufferSurface(index, preserve_contents)};
if (color_surface) {
// Assume that a surface will be written to if it is used as a framebuffer, even
// if the shader doesn't actually write to it.
color_surface->MarkAsModified(true, res_cache);
texture_cache.MarkColorBufferInUse(index);
// Enable sRGB only for supported formats
// Workaround for and issue in nvidia drivers
// https://devtalk.nvidia.com/default/topic/776591/opengl/gl_framebuffer_srgb-functions-incorrectly/
@ -527,8 +476,7 @@ std::pair<bool, bool> RasterizerOpenGL::ConfigureFramebuffers(
fbkey.color_attachments[index] =
GL_COLOR_ATTACHMENT0 + regs.rt_control.GetMap(index);
fbkey.colors[index] =
color_surface != nullptr ? color_surface->Texture().handle : 0;
fbkey.colors[index] = color_surface;
}
fbkey.is_single_buffer = false;
fbkey.colors_count = regs.rt_control.count;
@ -541,14 +489,16 @@ std::pair<bool, bool> RasterizerOpenGL::ConfigureFramebuffers(
if (depth_surface) {
// Assume that a surface will be written to if it is used as a framebuffer, even if
// the shader doesn't actually write to it.
depth_surface->MarkAsModified(true, res_cache);
texture_cache.MarkDepthBufferInUse();
fbkey.zeta = depth_surface->Texture().handle;
fbkey.zeta = depth_surface;
fbkey.stencil_enable = regs.stencil_enable &&
depth_surface->GetSurfaceParams().type == SurfaceType::DepthStencil;
}
SetupCachedFramebuffer(fbkey, current_state);
texture_cache.GuardRenderTargets(false);
current_state.draw.draw_framebuffer = framebuffer_cache.GetFramebuffer(fbkey);
SyncViewport(current_state);
return current_depth_stencil_usage = {static_cast<bool>(depth_surface), fbkey.stencil_enable};
@ -630,6 +580,7 @@ void RasterizerOpenGL::Clear() {
clear_state.ApplyDepth();
clear_state.ApplyStencilTest();
clear_state.ApplyViewport();
clear_state.ApplyFramebufferState();
if (use_color) {
glClearBufferfv(GL_COLOR, regs.clear_buffers.RT, regs.clear_color);
@ -652,7 +603,6 @@ void RasterizerOpenGL::DrawArrays() {
auto& gpu = system.GPU().Maxwell3D();
const auto& regs = gpu.regs;
ConfigureFramebuffers(state);
SyncColorMask();
SyncFragmentColorClampState();
SyncMultiSampleState();
@ -697,16 +647,22 @@ void RasterizerOpenGL::DrawArrays() {
SetupVertexBuffer(vao);
DrawParameters params = SetupDraw();
texture_cache.GuardSamplers(true);
SetupShaders(params.primitive_mode);
texture_cache.GuardSamplers(false);
ConfigureFramebuffers(state);
buffer_cache.Unmap();
shader_program_manager->ApplyTo(state);
state.Apply();
res_cache.SignalPreDrawCall();
if (texture_cache.TextureBarrier()) {
glTextureBarrier();
}
params.DispatchDraw();
res_cache.SignalPostDrawCall();
accelerate_draw = AccelDraw::Disabled;
}
@ -718,7 +674,7 @@ void RasterizerOpenGL::FlushRegion(CacheAddr addr, u64 size) {
if (!addr || !size) {
return;
}
res_cache.FlushRegion(addr, size);
texture_cache.FlushRegion(addr, size);
global_cache.FlushRegion(addr, size);
}
@ -727,23 +683,24 @@ void RasterizerOpenGL::InvalidateRegion(CacheAddr addr, u64 size) {
if (!addr || !size) {
return;
}
res_cache.InvalidateRegion(addr, size);
texture_cache.InvalidateRegion(addr, size);
shader_cache.InvalidateRegion(addr, size);
global_cache.InvalidateRegion(addr, size);
buffer_cache.InvalidateRegion(addr, size);
}
void RasterizerOpenGL::FlushAndInvalidateRegion(CacheAddr addr, u64 size) {
FlushRegion(addr, size);
if (Settings::values.use_accurate_gpu_emulation) {
FlushRegion(addr, size);
}
InvalidateRegion(addr, size);
}
bool RasterizerOpenGL::AccelerateSurfaceCopy(const Tegra::Engines::Fermi2D::Regs::Surface& src,
const Tegra::Engines::Fermi2D::Regs::Surface& dst,
const Common::Rectangle<u32>& src_rect,
const Common::Rectangle<u32>& dst_rect) {
const Tegra::Engines::Fermi2D::Config& copy_config) {
MICROPROFILE_SCOPE(OpenGL_Blits);
res_cache.FermiCopySurface(src, dst, src_rect, dst_rect);
texture_cache.DoFermiCopy(src, dst, copy_config);
return true;
}
@ -755,7 +712,8 @@ bool RasterizerOpenGL::AccelerateDisplay(const Tegra::FramebufferConfig& config,
MICROPROFILE_SCOPE(OpenGL_CacheManagement);
const auto& surface{res_cache.TryFindFramebufferSurface(Memory::GetPointer(framebuffer_addr))};
const auto surface{
texture_cache.TryFindFramebufferSurface(Memory::GetPointer(framebuffer_addr))};
if (!surface) {
return {};
}
@ -771,7 +729,7 @@ bool RasterizerOpenGL::AccelerateDisplay(const Tegra::FramebufferConfig& config,
LOG_WARNING(Render_OpenGL, "Framebuffer pixel_format is different");
}
screen_info.display_texture = surface->Texture().handle;
screen_info.display_texture = surface->GetTexture();
return true;
}
@ -837,8 +795,8 @@ void RasterizerOpenGL::SetupGlobalRegions(Tegra::Engines::Maxwell3D::Regs::Shade
}
}
void RasterizerOpenGL::SetupTextures(Maxwell::ShaderStage stage, const Shader& shader,
BaseBindings base_bindings) {
TextureBufferUsage RasterizerOpenGL::SetupTextures(Maxwell::ShaderStage stage, const Shader& shader,
BaseBindings base_bindings) {
MICROPROFILE_SCOPE(OpenGL_Texture);
const auto& gpu = system.GPU();
const auto& maxwell3d = gpu.Maxwell3D();
@ -847,6 +805,8 @@ void RasterizerOpenGL::SetupTextures(Maxwell::ShaderStage stage, const Shader& s
ASSERT_MSG(base_bindings.sampler + entries.size() <= std::size(state.texture_units),
"Exceeded the number of active textures.");
TextureBufferUsage texture_buffer_usage{0};
for (u32 bindpoint = 0; bindpoint < entries.size(); ++bindpoint) {
const auto& entry = entries[bindpoint];
Tegra::Texture::FullTextureInfo texture;
@ -860,18 +820,26 @@ void RasterizerOpenGL::SetupTextures(Maxwell::ShaderStage stage, const Shader& s
}
const u32 current_bindpoint = base_bindings.sampler + bindpoint;
state.texture_units[current_bindpoint].sampler = sampler_cache.GetSampler(texture.tsc);
auto& unit{state.texture_units[current_bindpoint]};
unit.sampler = sampler_cache.GetSampler(texture.tsc);
if (Surface surface = res_cache.GetTextureSurface(texture, entry); surface) {
state.texture_units[current_bindpoint].texture =
surface->Texture(entry.IsArray()).handle;
surface->UpdateSwizzle(texture.tic.x_source, texture.tic.y_source, texture.tic.z_source,
if (const auto view{texture_cache.GetTextureSurface(texture, entry)}; view) {
if (view->GetSurfaceParams().IsBuffer()) {
// Record that this texture is a texture buffer.
texture_buffer_usage.set(bindpoint);
} else {
// Apply swizzle to textures that are not buffers.
view->ApplySwizzle(texture.tic.x_source, texture.tic.y_source, texture.tic.z_source,
texture.tic.w_source);
}
state.texture_units[current_bindpoint].texture = view->GetTexture();
} else {
// Can occur when texture addr is null or its memory is unmapped/invalid
state.texture_units[current_bindpoint].texture = 0;
unit.texture = 0;
}
}
return texture_buffer_usage;
}
void RasterizerOpenGL::SyncViewport(OpenGLState& current_state) {

View file

@ -23,14 +23,15 @@
#include "video_core/rasterizer_interface.h"
#include "video_core/renderer_opengl/gl_buffer_cache.h"
#include "video_core/renderer_opengl/gl_device.h"
#include "video_core/renderer_opengl/gl_framebuffer_cache.h"
#include "video_core/renderer_opengl/gl_global_cache.h"
#include "video_core/renderer_opengl/gl_rasterizer_cache.h"
#include "video_core/renderer_opengl/gl_resource_manager.h"
#include "video_core/renderer_opengl/gl_sampler_cache.h"
#include "video_core/renderer_opengl/gl_shader_cache.h"
#include "video_core/renderer_opengl/gl_shader_decompiler.h"
#include "video_core/renderer_opengl/gl_shader_manager.h"
#include "video_core/renderer_opengl/gl_state.h"
#include "video_core/renderer_opengl/gl_texture_cache.h"
#include "video_core/renderer_opengl/utils.h"
namespace Core {
@ -41,11 +42,14 @@ namespace Core::Frontend {
class EmuWindow;
}
namespace Tegra {
class MemoryManager;
}
namespace OpenGL {
struct ScreenInfo;
struct DrawParameters;
struct FramebufferCacheKey;
class RasterizerOpenGL : public VideoCore::RasterizerInterface {
public:
@ -61,8 +65,7 @@ public:
void FlushAndInvalidateRegion(CacheAddr addr, u64 size) override;
bool AccelerateSurfaceCopy(const Tegra::Engines::Fermi2D::Regs::Surface& src,
const Tegra::Engines::Fermi2D::Regs::Surface& dst,
const Common::Rectangle<u32>& src_rect,
const Common::Rectangle<u32>& dst_rect) override;
const Tegra::Engines::Fermi2D::Config& copy_config) override;
bool AccelerateDisplay(const Tegra::FramebufferConfig& config, VAddr framebuffer_addr,
u32 pixel_stride) override;
bool AccelerateDrawBatch(bool is_indexed) override;
@ -95,6 +98,8 @@ private:
/**
* Configures the color and depth framebuffer states.
* @param must_reconfigure If true, tells the framebuffer to skip the cache and reconfigure
* again. Used by the texture cache to solve texception conflicts
* @param use_color_fb If true, configure color framebuffers.
* @param using_depth_fb If true, configure the depth/stencil framebuffer.
* @param preserve_contents If true, tries to preserve data from a previously used framebuffer.
@ -118,9 +123,10 @@ private:
void SetupGlobalRegions(Tegra::Engines::Maxwell3D::Regs::ShaderStage stage,
const Shader& shader);
/// Configures the current textures to use for the draw command.
void SetupTextures(Tegra::Engines::Maxwell3D::Regs::ShaderStage stage, const Shader& shader,
BaseBindings base_bindings);
/// Configures the current textures to use for the draw command. Returns shaders texture buffer
/// usage.
TextureBufferUsage SetupTextures(Tegra::Engines::Maxwell3D::Regs::ShaderStage stage,
const Shader& shader, BaseBindings base_bindings);
/// Syncs the viewport and depth range to match the guest state
void SyncViewport(OpenGLState& current_state);
@ -181,10 +187,11 @@ private:
const Device device;
OpenGLState state;
RasterizerCacheOpenGL res_cache;
TextureCacheOpenGL texture_cache;
ShaderCacheOpenGL shader_cache;
GlobalRegionCacheOpenGL global_cache;
SamplerCacheOpenGL sampler_cache;
FramebufferCacheOpenGL framebuffer_cache;
Core::System& system;
ScreenInfo& screen_info;
@ -195,7 +202,6 @@ private:
OGLVertexArray>
vertex_array_cache;
std::map<FramebufferCacheKey, OGLFramebuffer> framebuffer_cache;
FramebufferConfigState current_framebuffer_config_state;
std::pair<bool, bool> current_depth_stencil_usage{};
@ -218,8 +224,6 @@ private:
void SetupShaders(GLenum primitive_mode);
void SetupCachedFramebuffer(const FramebufferCacheKey& fbkey, OpenGLState& current_state);
enum class AccelDraw { Disabled, Arrays, Indexed };
AccelDraw accelerate_draw = AccelDraw::Disabled;

File diff suppressed because it is too large Load diff

View file

@ -1,572 +0,0 @@
// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <array>
#include <memory>
#include <string>
#include <tuple>
#include <vector>
#include "common/alignment.h"
#include "common/bit_util.h"
#include "common/common_types.h"
#include "common/hash.h"
#include "common/math_util.h"
#include "video_core/engines/fermi_2d.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/rasterizer_cache.h"
#include "video_core/renderer_opengl/gl_resource_manager.h"
#include "video_core/renderer_opengl/gl_shader_gen.h"
#include "video_core/surface.h"
#include "video_core/textures/decoders.h"
#include "video_core/textures/texture.h"
namespace OpenGL {
class CachedSurface;
using Surface = std::shared_ptr<CachedSurface>;
using SurfaceSurfaceRect_Tuple = std::tuple<Surface, Surface, Common::Rectangle<u32>>;
using SurfaceTarget = VideoCore::Surface::SurfaceTarget;
using SurfaceType = VideoCore::Surface::SurfaceType;
using PixelFormat = VideoCore::Surface::PixelFormat;
using ComponentType = VideoCore::Surface::ComponentType;
using Maxwell = Tegra::Engines::Maxwell3D::Regs;
struct SurfaceParams {
enum class SurfaceClass {
Uploaded,
RenderTarget,
DepthBuffer,
Copy,
};
static std::string SurfaceTargetName(SurfaceTarget target) {
switch (target) {
case SurfaceTarget::Texture1D:
return "Texture1D";
case SurfaceTarget::Texture2D:
return "Texture2D";
case SurfaceTarget::Texture3D:
return "Texture3D";
case SurfaceTarget::Texture1DArray:
return "Texture1DArray";
case SurfaceTarget::Texture2DArray:
return "Texture2DArray";
case SurfaceTarget::TextureCubemap:
return "TextureCubemap";
case SurfaceTarget::TextureCubeArray:
return "TextureCubeArray";
default:
LOG_CRITICAL(HW_GPU, "Unimplemented surface_target={}", static_cast<u32>(target));
UNREACHABLE();
return fmt::format("TextureUnknown({})", static_cast<u32>(target));
}
}
u32 GetFormatBpp() const {
return VideoCore::Surface::GetFormatBpp(pixel_format);
}
/// Returns the rectangle corresponding to this surface
Common::Rectangle<u32> GetRect(u32 mip_level = 0) const;
/// Returns the total size of this surface in bytes, adjusted for compression
std::size_t SizeInBytesRaw(bool ignore_tiled = false) const {
const u32 compression_factor{GetCompressionFactor(pixel_format)};
const u32 bytes_per_pixel{GetBytesPerPixel(pixel_format)};
const size_t uncompressed_size{
Tegra::Texture::CalculateSize((ignore_tiled ? false : is_tiled), bytes_per_pixel, width,
height, depth, block_height, block_depth)};
// Divide by compression_factor^2, as height and width are factored by this
return uncompressed_size / (compression_factor * compression_factor);
}
/// Returns the size of this surface as an OpenGL texture in bytes
std::size_t SizeInBytesGL() const {
return SizeInBytesRaw(true);
}
/// Returns the size of this surface as a cube face in bytes
std::size_t SizeInBytesCubeFace() const {
return size_in_bytes / 6;
}
/// Returns the size of this surface as an OpenGL cube face in bytes
std::size_t SizeInBytesCubeFaceGL() const {
return size_in_bytes_gl / 6;
}
/// Returns the exact size of memory occupied by the texture in VRAM, including mipmaps.
std::size_t MemorySize() const {
std::size_t size = InnerMemorySize(false, is_layered);
if (is_layered)
return size * depth;
return size;
}
/// Returns true if the parameters constitute a valid rasterizer surface.
bool IsValid() const {
return gpu_addr && host_ptr && height && width;
}
/// Returns the exact size of the memory occupied by a layer in a texture in VRAM, including
/// mipmaps.
std::size_t LayerMemorySize() const {
return InnerMemorySize(false, true);
}
/// Returns the size of a layer of this surface in OpenGL.
std::size_t LayerSizeGL(u32 mip_level) const {
return InnerMipmapMemorySize(mip_level, true, is_layered, false);
}
std::size_t GetMipmapSizeGL(u32 mip_level, bool ignore_compressed = true) const {
std::size_t size = InnerMipmapMemorySize(mip_level, true, is_layered, ignore_compressed);
if (is_layered)
return size * depth;
return size;
}
std::size_t GetMipmapLevelOffset(u32 mip_level) const {
std::size_t offset = 0;
for (u32 i = 0; i < mip_level; i++)
offset += InnerMipmapMemorySize(i, false, is_layered);
return offset;
}
std::size_t GetMipmapLevelOffsetGL(u32 mip_level) const {
std::size_t offset = 0;
for (u32 i = 0; i < mip_level; i++)
offset += InnerMipmapMemorySize(i, true, is_layered);
return offset;
}
std::size_t GetMipmapSingleSize(u32 mip_level) const {
return InnerMipmapMemorySize(mip_level, false, is_layered);
}
u32 MipWidth(u32 mip_level) const {
return std::max(1U, width >> mip_level);
}
u32 MipWidthGobAligned(u32 mip_level) const {
return Common::AlignUp(std::max(1U, width >> mip_level), 64U * 8U / GetFormatBpp());
}
u32 MipHeight(u32 mip_level) const {
return std::max(1U, height >> mip_level);
}
u32 MipDepth(u32 mip_level) const {
return is_layered ? depth : std::max(1U, depth >> mip_level);
}
// Auto block resizing algorithm from:
// https://cgit.freedesktop.org/mesa/mesa/tree/src/gallium/drivers/nouveau/nv50/nv50_miptree.c
u32 MipBlockHeight(u32 mip_level) const {
if (mip_level == 0)
return block_height;
u32 alt_height = MipHeight(mip_level);
u32 h = GetDefaultBlockHeight(pixel_format);
u32 blocks_in_y = (alt_height + h - 1) / h;
u32 bh = 16;
while (bh > 1 && blocks_in_y <= bh * 4) {
bh >>= 1;
}
return bh;
}
u32 MipBlockDepth(u32 mip_level) const {
if (mip_level == 0) {
return block_depth;
}
if (is_layered) {
return 1;
}
const u32 mip_depth = MipDepth(mip_level);
u32 bd = 32;
while (bd > 1 && mip_depth * 2 <= bd) {
bd >>= 1;
}
if (bd == 32) {
const u32 bh = MipBlockHeight(mip_level);
if (bh >= 4) {
return 16;
}
}
return bd;
}
u32 RowAlign(u32 mip_level) const {
const u32 m_width = MipWidth(mip_level);
const u32 bytes_per_pixel = GetBytesPerPixel(pixel_format);
const u32 l2 = Common::CountTrailingZeroes32(m_width * bytes_per_pixel);
return (1U << l2);
}
/// Creates SurfaceParams from a texture configuration
static SurfaceParams CreateForTexture(const Tegra::Texture::FullTextureInfo& config,
const GLShader::SamplerEntry& entry);
/// Creates SurfaceParams from a framebuffer configuration
static SurfaceParams CreateForFramebuffer(std::size_t index);
/// Creates SurfaceParams for a depth buffer configuration
static SurfaceParams CreateForDepthBuffer(
u32 zeta_width, u32 zeta_height, GPUVAddr zeta_address, Tegra::DepthFormat format,
u32 block_width, u32 block_height, u32 block_depth,
Tegra::Engines::Maxwell3D::Regs::InvMemoryLayout type);
/// Creates SurfaceParams for a Fermi2D surface copy
static SurfaceParams CreateForFermiCopySurface(
const Tegra::Engines::Fermi2D::Regs::Surface& config);
/// Checks if surfaces are compatible for caching
bool IsCompatibleSurface(const SurfaceParams& other) const {
if (std::tie(pixel_format, type, width, height, target, depth, is_tiled) ==
std::tie(other.pixel_format, other.type, other.width, other.height, other.target,
other.depth, other.is_tiled)) {
if (!is_tiled)
return true;
return std::tie(block_height, block_depth, tile_width_spacing) ==
std::tie(other.block_height, other.block_depth, other.tile_width_spacing);
}
return false;
}
/// Initializes parameters for caching, should be called after everything has been initialized
void InitCacheParameters(GPUVAddr gpu_addr);
std::string TargetName() const {
switch (target) {
case SurfaceTarget::Texture1D:
return "1D";
case SurfaceTarget::Texture2D:
return "2D";
case SurfaceTarget::Texture3D:
return "3D";
case SurfaceTarget::Texture1DArray:
return "1DArray";
case SurfaceTarget::Texture2DArray:
return "2DArray";
case SurfaceTarget::TextureCubemap:
return "Cube";
default:
LOG_CRITICAL(HW_GPU, "Unimplemented surface_target={}", static_cast<u32>(target));
UNREACHABLE();
return fmt::format("TUK({})", static_cast<u32>(target));
}
}
std::string ClassName() const {
switch (identity) {
case SurfaceClass::Uploaded:
return "UP";
case SurfaceClass::RenderTarget:
return "RT";
case SurfaceClass::DepthBuffer:
return "DB";
case SurfaceClass::Copy:
return "CP";
default:
LOG_CRITICAL(HW_GPU, "Unimplemented surface_class={}", static_cast<u32>(identity));
UNREACHABLE();
return fmt::format("CUK({})", static_cast<u32>(identity));
}
}
std::string IdentityString() const {
return ClassName() + '_' + TargetName() + '_' + (is_tiled ? 'T' : 'L');
}
bool is_tiled;
u32 block_width;
u32 block_height;
u32 block_depth;
u32 tile_width_spacing;
PixelFormat pixel_format;
ComponentType component_type;
SurfaceType type;
u32 width;
u32 height;
u32 depth;
u32 unaligned_height;
u32 pitch;
SurfaceTarget target;
SurfaceClass identity;
u32 max_mip_level;
bool is_layered;
bool is_array;
bool srgb_conversion;
// Parameters used for caching
u8* host_ptr;
GPUVAddr gpu_addr;
std::size_t size_in_bytes;
std::size_t size_in_bytes_gl;
// Render target specific parameters, not used in caching
struct {
u32 index;
u32 array_mode;
u32 volume;
u32 layer_stride;
u32 base_layer;
} rt;
private:
std::size_t InnerMipmapMemorySize(u32 mip_level, bool force_gl = false, bool layer_only = false,
bool uncompressed = false) const;
std::size_t InnerMemorySize(bool force_gl = false, bool layer_only = false,
bool uncompressed = false) const;
};
}; // namespace OpenGL
/// Hashable variation of SurfaceParams, used for a key in the surface cache
struct SurfaceReserveKey : Common::HashableStruct<OpenGL::SurfaceParams> {
static SurfaceReserveKey Create(const OpenGL::SurfaceParams& params) {
SurfaceReserveKey res;
res.state = params;
res.state.identity = {}; // Ignore the origin of the texture
res.state.gpu_addr = {}; // Ignore GPU vaddr in caching
res.state.rt = {}; // Ignore rt config in caching
return res;
}
};
namespace std {
template <>
struct hash<SurfaceReserveKey> {
std::size_t operator()(const SurfaceReserveKey& k) const {
return k.Hash();
}
};
} // namespace std
namespace OpenGL {
class RasterizerOpenGL;
// This is used to store temporary big buffers,
// instead of creating/destroying all the time
struct RasterizerTemporaryMemory {
std::vector<std::vector<u8>> gl_buffer;
};
class CachedSurface final : public RasterizerCacheObject {
public:
explicit CachedSurface(const SurfaceParams& params);
VAddr GetCpuAddr() const override {
return cpu_addr;
}
std::size_t GetSizeInBytes() const override {
return cached_size_in_bytes;
}
std::size_t GetMemorySize() const {
return memory_size;
}
const OGLTexture& Texture() const {
return texture;
}
const OGLTexture& Texture(bool as_array) {
if (params.is_array == as_array) {
return texture;
} else {
EnsureTextureDiscrepantView();
return discrepant_view;
}
}
GLenum Target() const {
return gl_target;
}
const SurfaceParams& GetSurfaceParams() const {
return params;
}
// Read/Write data in Switch memory to/from gl_buffer
void LoadGLBuffer(RasterizerTemporaryMemory& res_cache_tmp_mem);
void FlushGLBuffer(RasterizerTemporaryMemory& res_cache_tmp_mem);
// Upload data in gl_buffer to this surface's texture
void UploadGLTexture(RasterizerTemporaryMemory& res_cache_tmp_mem, GLuint read_fb_handle,
GLuint draw_fb_handle);
void UpdateSwizzle(Tegra::Texture::SwizzleSource swizzle_x,
Tegra::Texture::SwizzleSource swizzle_y,
Tegra::Texture::SwizzleSource swizzle_z,
Tegra::Texture::SwizzleSource swizzle_w);
void MarkReinterpreted() {
reinterpreted = true;
}
bool IsReinterpreted() const {
return reinterpreted;
}
void MarkForReload(bool reload) {
must_reload = reload;
}
bool MustReload() const {
return must_reload;
}
bool IsUploaded() const {
return params.identity == SurfaceParams::SurfaceClass::Uploaded;
}
private:
void UploadGLMipmapTexture(RasterizerTemporaryMemory& res_cache_tmp_mem, u32 mip_map,
GLuint read_fb_handle, GLuint draw_fb_handle);
void EnsureTextureDiscrepantView();
OGLTexture texture;
OGLTexture discrepant_view;
SurfaceParams params{};
GLenum gl_target{};
GLenum gl_internal_format{};
std::size_t cached_size_in_bytes{};
std::array<GLenum, 4> swizzle{GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA};
std::size_t memory_size;
bool reinterpreted = false;
bool must_reload = false;
VAddr cpu_addr{};
};
class RasterizerCacheOpenGL final : public RasterizerCache<Surface> {
public:
explicit RasterizerCacheOpenGL(RasterizerOpenGL& rasterizer);
/// Get a surface based on the texture configuration
Surface GetTextureSurface(const Tegra::Texture::FullTextureInfo& config,
const GLShader::SamplerEntry& entry);
/// Get the depth surface based on the framebuffer configuration
Surface GetDepthBufferSurface(bool preserve_contents);
/// Get the color surface based on the framebuffer configuration and the specified render target
Surface GetColorBufferSurface(std::size_t index, bool preserve_contents);
/// Tries to find a framebuffer using on the provided CPU address
Surface TryFindFramebufferSurface(const u8* host_ptr) const;
/// Copies the contents of one surface to another
void FermiCopySurface(const Tegra::Engines::Fermi2D::Regs::Surface& src_config,
const Tegra::Engines::Fermi2D::Regs::Surface& dst_config,
const Common::Rectangle<u32>& src_rect,
const Common::Rectangle<u32>& dst_rect);
void SignalPreDrawCall();
void SignalPostDrawCall();
protected:
void FlushObjectInner(const Surface& object) override {
object->FlushGLBuffer(temporal_memory);
}
private:
void LoadSurface(const Surface& surface);
Surface GetSurface(const SurfaceParams& params, bool preserve_contents = true);
/// Gets an uncached surface, creating it if need be
Surface GetUncachedSurface(const SurfaceParams& params);
/// Recreates a surface with new parameters
Surface RecreateSurface(const Surface& old_surface, const SurfaceParams& new_params);
/// Reserves a unique surface that can be reused later
void ReserveSurface(const Surface& surface);
/// Tries to get a reserved surface for the specified parameters
Surface TryGetReservedSurface(const SurfaceParams& params);
// Partialy reinterpret a surface based on a triggering_surface that collides with it.
// returns true if the reinterpret was successful, false in case it was not.
bool PartialReinterpretSurface(Surface triggering_surface, Surface intersect);
/// Performs a slow but accurate surface copy, flushing to RAM and reinterpreting the data
void AccurateCopySurface(const Surface& src_surface, const Surface& dst_surface);
void FastLayeredCopySurface(const Surface& src_surface, const Surface& dst_surface);
void FastCopySurface(const Surface& src_surface, const Surface& dst_surface);
void CopySurface(const Surface& src_surface, const Surface& dst_surface,
const GLuint copy_pbo_handle, const GLenum src_attachment = 0,
const GLenum dst_attachment = 0, const std::size_t cubemap_face = 0);
/// The surface reserve is a "backup" cache, this is where we put unique surfaces that have
/// previously been used. This is to prevent surfaces from being constantly created and
/// destroyed when used with different surface parameters.
std::unordered_map<SurfaceReserveKey, Surface> surface_reserve;
OGLFramebuffer read_framebuffer;
OGLFramebuffer draw_framebuffer;
bool texception = false;
/// Use a Pixel Buffer Object to download the previous texture and then upload it to the new one
/// using the new format.
OGLBuffer copy_pbo;
std::array<Surface, Maxwell::NumRenderTargets> last_color_buffers;
std::array<Surface, Maxwell::NumRenderTargets> current_color_buffers;
Surface last_depth_buffer;
RasterizerTemporaryMemory temporal_memory;
using SurfaceIntervalCache = boost::icl::interval_map<CacheAddr, Surface>;
using SurfaceInterval = typename SurfaceIntervalCache::interval_type;
static auto GetReinterpretInterval(const Surface& object) {
return SurfaceInterval::right_open(object->GetCacheAddr() + 1,
object->GetCacheAddr() + object->GetMemorySize() - 1);
}
// Reinterpreted surfaces are very fragil as the game may keep rendering into them.
SurfaceIntervalCache reinterpreted_surfaces;
void RegisterReinterpretSurface(Surface reinterpret_surface) {
auto interval = GetReinterpretInterval(reinterpret_surface);
reinterpreted_surfaces.insert({interval, reinterpret_surface});
reinterpret_surface->MarkReinterpreted();
}
Surface CollideOnReinterpretedSurface(CacheAddr addr) const {
const SurfaceInterval interval{addr};
for (auto& pair :
boost::make_iterator_range(reinterpreted_surfaces.equal_range(interval))) {
return pair.second;
}
return nullptr;
}
void Register(const Surface& object) override {
RasterizerCache<Surface>::Register(object);
}
/// Unregisters an object from the cache
void Unregister(const Surface& object) override {
if (object->IsReinterpreted()) {
auto interval = GetReinterpretInterval(object);
reinterpreted_surfaces.erase(interval);
}
RasterizerCache<Surface>::Unregister(object);
}
};
} // namespace OpenGL

View file

@ -33,6 +33,24 @@ void OGLTexture::Release() {
handle = 0;
}
void OGLTextureView::Create() {
if (handle != 0)
return;
MICROPROFILE_SCOPE(OpenGL_ResourceCreation);
glGenTextures(1, &handle);
}
void OGLTextureView::Release() {
if (handle == 0)
return;
MICROPROFILE_SCOPE(OpenGL_ResourceDeletion);
glDeleteTextures(1, &handle);
OpenGLState::GetCurState().UnbindTexture(handle).Apply();
handle = 0;
}
void OGLSampler::Create() {
if (handle != 0)
return;
@ -130,6 +148,12 @@ void OGLBuffer::Release() {
handle = 0;
}
void OGLBuffer::MakeStreamCopy(std::size_t buffer_size) {
ASSERT_OR_EXECUTE((handle != 0 && buffer_size != 0), { return; });
glNamedBufferData(handle, buffer_size, nullptr, GL_STREAM_COPY);
}
void OGLSync::Create() {
if (handle != 0)
return;

View file

@ -36,6 +36,31 @@ public:
GLuint handle = 0;
};
class OGLTextureView : private NonCopyable {
public:
OGLTextureView() = default;
OGLTextureView(OGLTextureView&& o) noexcept : handle(std::exchange(o.handle, 0)) {}
~OGLTextureView() {
Release();
}
OGLTextureView& operator=(OGLTextureView&& o) noexcept {
Release();
handle = std::exchange(o.handle, 0);
return *this;
}
/// Creates a new internal OpenGL resource and stores the handle
void Create();
/// Deletes the internal OpenGL resource
void Release();
GLuint handle = 0;
};
class OGLSampler : private NonCopyable {
public:
OGLSampler() = default;
@ -161,6 +186,9 @@ public:
/// Deletes the internal OpenGL resource
void Release();
// Converts the buffer into a stream copy buffer with a fixed size
void MakeStreamCopy(std::size_t buffer_size);
GLuint handle = 0;
};

View file

@ -103,15 +103,22 @@ constexpr std::tuple<const char*, const char*, u32> GetPrimitiveDescription(GLen
/// Calculates the size of a program stream
std::size_t CalculateProgramSize(const GLShader::ProgramCode& program) {
constexpr std::size_t start_offset = 10;
// This is the encoded version of BRA that jumps to itself. All Nvidia
// shaders end with one.
constexpr u64 self_jumping_branch = 0xE2400FFFFF07000FULL;
constexpr u64 mask = 0xFFFFFFFFFF7FFFFFULL;
std::size_t offset = start_offset;
std::size_t size = start_offset * sizeof(u64);
while (offset < program.size()) {
const u64 instruction = program[offset];
if (!IsSchedInstruction(offset, start_offset)) {
if (instruction == 0 || (instruction >> 52) == 0x50b) {
if ((instruction & mask) == self_jumping_branch) {
// End on Maxwell's "nop" instruction
break;
}
if (instruction == 0) {
break;
}
}
size += sizeof(u64);
offset++;
@ -168,8 +175,12 @@ GLShader::ProgramResult CreateProgram(const Device& device, Maxwell::ShaderProgr
}
CachedProgram SpecializeShader(const std::string& code, const GLShader::ShaderEntries& entries,
Maxwell::ShaderProgram program_type, BaseBindings base_bindings,
GLenum primitive_mode, bool hint_retrievable = false) {
Maxwell::ShaderProgram program_type, const ProgramVariant& variant,
bool hint_retrievable = false) {
auto base_bindings{variant.base_bindings};
const auto primitive_mode{variant.primitive_mode};
const auto texture_buffer_usage{variant.texture_buffer_usage};
std::string source = "#version 430 core\n"
"#extension GL_ARB_separate_shader_objects : enable\n\n";
source += fmt::format("#define EMULATION_UBO_BINDING {}\n", base_bindings.cbuf++);
@ -186,6 +197,18 @@ CachedProgram SpecializeShader(const std::string& code, const GLShader::ShaderEn
source += fmt::format("#define SAMPLER_BINDING_{} {}\n", sampler.GetIndex(),
base_bindings.sampler++);
}
for (const auto& image : entries.images) {
source +=
fmt::format("#define IMAGE_BINDING_{} {}\n", image.GetIndex(), base_bindings.image++);
}
// Transform 1D textures to texture samplers by declaring its preprocessor macros.
for (std::size_t i = 0; i < texture_buffer_usage.size(); ++i) {
if (!texture_buffer_usage.test(i)) {
continue;
}
source += fmt::format("#define SAMPLER_{}_IS_BUFFER", i);
}
if (program_type == Maxwell::ShaderProgram::Geometry) {
const auto [glsl_topology, debug_name, max_vertices] =
@ -254,20 +277,18 @@ Shader CachedShader::CreateStageFromCache(const ShaderParameters& params,
return std::shared_ptr<CachedShader>(new CachedShader(params, program_type, std::move(result)));
}
std::tuple<GLuint, BaseBindings> CachedShader::GetProgramHandle(GLenum primitive_mode,
BaseBindings base_bindings) {
std::tuple<GLuint, BaseBindings> CachedShader::GetProgramHandle(const ProgramVariant& variant) {
GLuint handle{};
if (program_type == Maxwell::ShaderProgram::Geometry) {
handle = GetGeometryShader(primitive_mode, base_bindings);
handle = GetGeometryShader(variant);
} else {
const auto [entry, is_cache_miss] = programs.try_emplace(base_bindings);
const auto [entry, is_cache_miss] = programs.try_emplace(variant);
auto& program = entry->second;
if (is_cache_miss) {
program = TryLoadProgram(primitive_mode, base_bindings);
program = TryLoadProgram(variant);
if (!program) {
program =
SpecializeShader(code, entries, program_type, base_bindings, primitive_mode);
disk_cache.SaveUsage(GetUsage(primitive_mode, base_bindings));
program = SpecializeShader(code, entries, program_type, variant);
disk_cache.SaveUsage(GetUsage(variant));
}
LabelGLObject(GL_PROGRAM, program->handle, cpu_addr);
@ -276,6 +297,7 @@ std::tuple<GLuint, BaseBindings> CachedShader::GetProgramHandle(GLenum primitive
handle = program->handle;
}
auto base_bindings{variant.base_bindings};
base_bindings.cbuf += static_cast<u32>(entries.const_buffers.size()) + RESERVED_UBOS;
base_bindings.gmem += static_cast<u32>(entries.global_memory_entries.size());
base_bindings.sampler += static_cast<u32>(entries.samplers.size());
@ -283,43 +305,42 @@ std::tuple<GLuint, BaseBindings> CachedShader::GetProgramHandle(GLenum primitive
return {handle, base_bindings};
}
GLuint CachedShader::GetGeometryShader(GLenum primitive_mode, BaseBindings base_bindings) {
const auto [entry, is_cache_miss] = geometry_programs.try_emplace(base_bindings);
GLuint CachedShader::GetGeometryShader(const ProgramVariant& variant) {
const auto [entry, is_cache_miss] = geometry_programs.try_emplace(variant);
auto& programs = entry->second;
switch (primitive_mode) {
switch (variant.primitive_mode) {
case GL_POINTS:
return LazyGeometryProgram(programs.points, base_bindings, primitive_mode);
return LazyGeometryProgram(programs.points, variant);
case GL_LINES:
case GL_LINE_STRIP:
return LazyGeometryProgram(programs.lines, base_bindings, primitive_mode);
return LazyGeometryProgram(programs.lines, variant);
case GL_LINES_ADJACENCY:
case GL_LINE_STRIP_ADJACENCY:
return LazyGeometryProgram(programs.lines_adjacency, base_bindings, primitive_mode);
return LazyGeometryProgram(programs.lines_adjacency, variant);
case GL_TRIANGLES:
case GL_TRIANGLE_STRIP:
case GL_TRIANGLE_FAN:
return LazyGeometryProgram(programs.triangles, base_bindings, primitive_mode);
return LazyGeometryProgram(programs.triangles, variant);
case GL_TRIANGLES_ADJACENCY:
case GL_TRIANGLE_STRIP_ADJACENCY:
return LazyGeometryProgram(programs.triangles_adjacency, base_bindings, primitive_mode);
return LazyGeometryProgram(programs.triangles_adjacency, variant);
default:
UNREACHABLE_MSG("Unknown primitive mode.");
return LazyGeometryProgram(programs.points, base_bindings, primitive_mode);
return LazyGeometryProgram(programs.points, variant);
}
}
GLuint CachedShader::LazyGeometryProgram(CachedProgram& target_program, BaseBindings base_bindings,
GLenum primitive_mode) {
GLuint CachedShader::LazyGeometryProgram(CachedProgram& target_program,
const ProgramVariant& variant) {
if (target_program) {
return target_program->handle;
}
const auto [glsl_name, debug_name, vertices] = GetPrimitiveDescription(primitive_mode);
target_program = TryLoadProgram(primitive_mode, base_bindings);
const auto [glsl_name, debug_name, vertices] = GetPrimitiveDescription(variant.primitive_mode);
target_program = TryLoadProgram(variant);
if (!target_program) {
target_program =
SpecializeShader(code, entries, program_type, base_bindings, primitive_mode);
disk_cache.SaveUsage(GetUsage(primitive_mode, base_bindings));
target_program = SpecializeShader(code, entries, program_type, variant);
disk_cache.SaveUsage(GetUsage(variant));
}
LabelGLObject(GL_PROGRAM, target_program->handle, cpu_addr, debug_name);
@ -327,18 +348,19 @@ GLuint CachedShader::LazyGeometryProgram(CachedProgram& target_program, BaseBind
return target_program->handle;
};
CachedProgram CachedShader::TryLoadProgram(GLenum primitive_mode,
BaseBindings base_bindings) const {
const auto found = precompiled_programs.find(GetUsage(primitive_mode, base_bindings));
CachedProgram CachedShader::TryLoadProgram(const ProgramVariant& variant) const {
const auto found = precompiled_programs.find(GetUsage(variant));
if (found == precompiled_programs.end()) {
return {};
}
return found->second;
}
ShaderDiskCacheUsage CachedShader::GetUsage(GLenum primitive_mode,
BaseBindings base_bindings) const {
return {unique_identifier, base_bindings, primitive_mode};
ShaderDiskCacheUsage CachedShader::GetUsage(const ProgramVariant& variant) const {
ShaderDiskCacheUsage usage;
usage.unique_identifier = unique_identifier;
usage.variant = variant;
return usage;
}
ShaderCacheOpenGL::ShaderCacheOpenGL(RasterizerOpenGL& rasterizer, Core::System& system,
@ -404,8 +426,7 @@ void ShaderCacheOpenGL::LoadDiskCache(const std::atomic_bool& stop_loading,
}
if (!shader) {
shader = SpecializeShader(unspecialized.code, unspecialized.entries,
unspecialized.program_type, usage.bindings,
usage.primitive, true);
unspecialized.program_type, usage.variant, true);
}
std::scoped_lock lock(mutex);

View file

@ -6,6 +6,7 @@
#include <array>
#include <atomic>
#include <bitset>
#include <memory>
#include <set>
#include <tuple>
@ -74,8 +75,7 @@ public:
}
/// Gets the GL program handle for the shader
std::tuple<GLuint, BaseBindings> GetProgramHandle(GLenum primitive_mode,
BaseBindings base_bindings);
std::tuple<GLuint, BaseBindings> GetProgramHandle(const ProgramVariant& variant);
private:
explicit CachedShader(const ShaderParameters& params, Maxwell::ShaderProgram program_type,
@ -92,15 +92,14 @@ private:
CachedProgram triangles_adjacency;
};
GLuint GetGeometryShader(GLenum primitive_mode, BaseBindings base_bindings);
GLuint GetGeometryShader(const ProgramVariant& variant);
/// Generates a geometry shader or returns one that already exists.
GLuint LazyGeometryProgram(CachedProgram& target_program, BaseBindings base_bindings,
GLenum primitive_mode);
GLuint LazyGeometryProgram(CachedProgram& target_program, const ProgramVariant& variant);
CachedProgram TryLoadProgram(GLenum primitive_mode, BaseBindings base_bindings) const;
CachedProgram TryLoadProgram(const ProgramVariant& variant) const;
ShaderDiskCacheUsage GetUsage(GLenum primitive_mode, BaseBindings base_bindings) const;
ShaderDiskCacheUsage GetUsage(const ProgramVariant& variant) const;
u8* host_ptr{};
VAddr cpu_addr{};
@ -113,8 +112,8 @@ private:
std::string code;
std::size_t shader_length{};
std::unordered_map<BaseBindings, CachedProgram> programs;
std::unordered_map<BaseBindings, GeometryPrograms> geometry_programs;
std::unordered_map<ProgramVariant, CachedProgram> programs;
std::unordered_map<ProgramVariant, GeometryPrograms> geometry_programs;
std::unordered_map<u32, GLuint> cbuf_resource_cache;
std::unordered_map<u32, GLuint> gmem_resource_cache;

View file

@ -180,6 +180,7 @@ public:
DeclareGlobalMemory();
DeclareSamplers();
DeclarePhysicalAttributeReader();
DeclareImages();
code.AddLine("void execute_{}() {{", suffix);
++code.scope;
@ -234,6 +235,9 @@ public:
for (const auto& sampler : ir.GetSamplers()) {
entries.samplers.emplace_back(sampler);
}
for (const auto& image : ir.GetImages()) {
entries.images.emplace_back(image);
}
for (const auto& gmem_pair : ir.GetGlobalMemory()) {
const auto& [base, usage] = gmem_pair;
entries.global_memory_entries.emplace_back(base.cbuf_index, base.cbuf_offset,
@ -453,9 +457,13 @@ private:
void DeclareSamplers() {
const auto& samplers = ir.GetSamplers();
for (const auto& sampler : samplers) {
std::string sampler_type = [&sampler] {
const std::string name{GetSampler(sampler)};
const std::string description{"layout (binding = SAMPLER_BINDING_" +
std::to_string(sampler.GetIndex()) + ") uniform"};
std::string sampler_type = [&]() {
switch (sampler.GetType()) {
case Tegra::Shader::TextureType::Texture1D:
// Special cased, read below.
return "sampler1D";
case Tegra::Shader::TextureType::Texture2D:
return "sampler2D";
@ -475,8 +483,19 @@ private:
sampler_type += "Shadow";
}
code.AddLine("layout (binding = SAMPLER_BINDING_{}) uniform {} {};", sampler.GetIndex(),
sampler_type, GetSampler(sampler));
if (sampler.GetType() == Tegra::Shader::TextureType::Texture1D) {
// 1D textures can be aliased to texture buffers, hide the declarations behind a
// preprocessor flag and use one or the other from the GPU state. This has to be
// done because shaders don't have enough information to determine the texture type.
EmitIfdefIsBuffer(sampler);
code.AddLine("{} samplerBuffer {};", description, name);
code.AddLine("#else");
code.AddLine("{} {} {};", description, sampler_type, name);
code.AddLine("#endif");
} else {
// The other texture types (2D, 3D and cubes) don't have this issue.
code.AddLine("{} {} {};", description, sampler_type, name);
}
}
if (!samplers.empty()) {
code.AddNewLine();
@ -516,6 +535,37 @@ private:
code.AddNewLine();
}
void DeclareImages() {
const auto& images{ir.GetImages()};
for (const auto& image : images) {
const std::string image_type = [&]() {
switch (image.GetType()) {
case Tegra::Shader::ImageType::Texture1D:
return "image1D";
case Tegra::Shader::ImageType::TextureBuffer:
return "bufferImage";
case Tegra::Shader::ImageType::Texture1DArray:
return "image1DArray";
case Tegra::Shader::ImageType::Texture2D:
return "image2D";
case Tegra::Shader::ImageType::Texture2DArray:
return "image2DArray";
case Tegra::Shader::ImageType::Texture3D:
return "image3D";
default:
UNREACHABLE();
return "image1D";
}
}();
code.AddLine("layout (binding = IMAGE_BINDING_{}) coherent volatile writeonly uniform "
"{} {};",
image.GetIndex(), image_type, GetImage(image));
}
if (!images.empty()) {
code.AddNewLine();
}
}
void VisitBlock(const NodeBlock& bb) {
for (const auto& node : bb) {
if (const std::string expr = Visit(node); !expr.empty()) {
@ -1439,13 +1489,61 @@ private:
else if (next < count)
expr += ", ";
}
// Store a copy of the expression without the lod to be used with texture buffers
std::string expr_buffer = expr;
if (meta->lod) {
expr += ", ";
expr += CastOperand(Visit(meta->lod), Type::Int);
}
expr += ')';
expr += GetSwizzle(meta->element);
return expr + GetSwizzle(meta->element);
expr_buffer += ')';
expr_buffer += GetSwizzle(meta->element);
const std::string tmp{code.GenerateTemporary()};
EmitIfdefIsBuffer(meta->sampler);
code.AddLine("float {} = {};", tmp, expr_buffer);
code.AddLine("#else");
code.AddLine("float {} = {};", tmp, expr);
code.AddLine("#endif");
return tmp;
}
std::string ImageStore(Operation operation) {
constexpr std::array<const char*, 4> constructors{"int(", "ivec2(", "ivec3(", "ivec4("};
const auto meta{std::get<MetaImage>(operation.GetMeta())};
std::string expr = "imageStore(";
expr += GetImage(meta.image);
expr += ", ";
const std::size_t coords_count{operation.GetOperandsCount()};
expr += constructors.at(coords_count - 1);
for (std::size_t i = 0; i < coords_count; ++i) {
expr += VisitOperand(operation, i, Type::Int);
if (i + 1 < coords_count) {
expr += ", ";
}
}
expr += "), ";
const std::size_t values_count{meta.values.size()};
UNIMPLEMENTED_IF(values_count != 4);
expr += "vec4(";
for (std::size_t i = 0; i < values_count; ++i) {
expr += Visit(meta.values.at(i));
if (i + 1 < values_count) {
expr += ", ";
}
}
expr += "));";
code.AddLine(expr);
return {};
}
std::string Branch(Operation operation) {
@ -1688,6 +1786,8 @@ private:
&GLSLDecompiler::TextureQueryLod,
&GLSLDecompiler::TexelFetch,
&GLSLDecompiler::ImageStore,
&GLSLDecompiler::Branch,
&GLSLDecompiler::PushFlowStack,
&GLSLDecompiler::PopFlowStack,
@ -1756,6 +1856,14 @@ private:
return GetDeclarationWithSuffix(static_cast<u32>(sampler.GetIndex()), "sampler");
}
std::string GetImage(const Image& image) const {
return GetDeclarationWithSuffix(static_cast<u32>(image.GetIndex()), "image");
}
void EmitIfdefIsBuffer(const Sampler& sampler) {
code.AddLine("#ifdef SAMPLER_{}_IS_BUFFER", sampler.GetIndex());
}
std::string GetDeclarationWithSuffix(u32 index, const std::string& name) const {
return fmt::format("{}_{}_{}", name, index, suffix);
}

View file

@ -27,6 +27,7 @@ struct ShaderEntries;
using Maxwell = Tegra::Engines::Maxwell3D::Regs;
using ProgramResult = std::pair<std::string, ShaderEntries>;
using SamplerEntry = VideoCommon::Shader::Sampler;
using ImageEntry = VideoCommon::Shader::Image;
class ConstBufferEntry : public VideoCommon::Shader::ConstBuffer {
public:
@ -74,6 +75,7 @@ struct ShaderEntries {
std::vector<ConstBufferEntry> const_buffers;
std::vector<SamplerEntry> samplers;
std::vector<SamplerEntry> bindless_samplers;
std::vector<ImageEntry> images;
std::vector<GlobalMemoryEntry> global_memory_entries;
std::array<bool, Maxwell::NumClipDistances> clip_distances{};
std::size_t shader_length{};

View file

@ -34,11 +34,11 @@ enum class PrecompiledEntryKind : u32 {
Dump,
};
constexpr u32 NativeVersion = 1;
constexpr u32 NativeVersion = 4;
// Making sure sizes doesn't change by accident
static_assert(sizeof(BaseBindings) == 12);
static_assert(sizeof(ShaderDiskCacheUsage) == 24);
static_assert(sizeof(BaseBindings) == 16);
static_assert(sizeof(ShaderDiskCacheUsage) == 40);
namespace {
@ -332,11 +332,28 @@ std::optional<ShaderDiskCacheDecompiled> ShaderDiskCacheOpenGL::LoadDecompiledEn
static_cast<Tegra::Shader::TextureType>(type), is_array, is_shadow, is_bindless);
}
u32 images_count{};
if (!LoadObjectFromPrecompiled(images_count)) {
return {};
}
for (u32 i = 0; i < images_count; ++i) {
u64 offset{};
u64 index{};
u32 type{};
u8 is_bindless{};
if (!LoadObjectFromPrecompiled(offset) || !LoadObjectFromPrecompiled(index) ||
!LoadObjectFromPrecompiled(type) || !LoadObjectFromPrecompiled(is_bindless)) {
return {};
}
entry.entries.images.emplace_back(
static_cast<std::size_t>(offset), static_cast<std::size_t>(index),
static_cast<Tegra::Shader::ImageType>(type), is_bindless != 0);
}
u32 global_memory_count{};
if (!LoadObjectFromPrecompiled(global_memory_count)) {
return {};
}
for (u32 i = 0; i < global_memory_count; ++i) {
u32 cbuf_index{};
u32 cbuf_offset{};
@ -360,7 +377,6 @@ std::optional<ShaderDiskCacheDecompiled> ShaderDiskCacheOpenGL::LoadDecompiledEn
if (!LoadObjectFromPrecompiled(shader_length)) {
return {};
}
entry.entries.shader_length = static_cast<std::size_t>(shader_length);
return entry;
@ -400,6 +416,18 @@ bool ShaderDiskCacheOpenGL::SaveDecompiledFile(u64 unique_identifier, const std:
}
}
if (!SaveObjectToPrecompiled(static_cast<u32>(entries.images.size()))) {
return false;
}
for (const auto& image : entries.images) {
if (!SaveObjectToPrecompiled(static_cast<u64>(image.GetOffset())) ||
!SaveObjectToPrecompiled(static_cast<u64>(image.GetIndex())) ||
!SaveObjectToPrecompiled(static_cast<u32>(image.GetType())) ||
!SaveObjectToPrecompiled(static_cast<u8>(image.IsBindless() ? 1 : 0))) {
return false;
}
}
if (!SaveObjectToPrecompiled(static_cast<u32>(entries.global_memory_entries.size()))) {
return false;
}

View file

@ -4,6 +4,7 @@
#pragma once
#include <bitset>
#include <optional>
#include <string>
#include <tuple>
@ -30,22 +31,26 @@ class IOFile;
namespace OpenGL {
using ProgramCode = std::vector<u64>;
using Maxwell = Tegra::Engines::Maxwell3D::Regs;
struct ShaderDiskCacheUsage;
struct ShaderDiskCacheDump;
using ShaderDumpsMap = std::unordered_map<ShaderDiskCacheUsage, ShaderDiskCacheDump>;
/// Allocated bindings used by an OpenGL shader program
using ProgramCode = std::vector<u64>;
using Maxwell = Tegra::Engines::Maxwell3D::Regs;
using TextureBufferUsage = std::bitset<64>;
/// Allocated bindings used by an OpenGL shader program.
struct BaseBindings {
u32 cbuf{};
u32 gmem{};
u32 sampler{};
u32 image{};
bool operator==(const BaseBindings& rhs) const {
return std::tie(cbuf, gmem, sampler) == std::tie(rhs.cbuf, rhs.gmem, rhs.sampler);
return std::tie(cbuf, gmem, sampler, image) ==
std::tie(rhs.cbuf, rhs.gmem, rhs.sampler, rhs.image);
}
bool operator!=(const BaseBindings& rhs) const {
@ -53,15 +58,29 @@ struct BaseBindings {
}
};
/// Describes how a shader is used
/// Describes the different variants a single program can be compiled.
struct ProgramVariant {
BaseBindings base_bindings;
GLenum primitive_mode{};
TextureBufferUsage texture_buffer_usage{};
bool operator==(const ProgramVariant& rhs) const {
return std::tie(base_bindings, primitive_mode, texture_buffer_usage) ==
std::tie(rhs.base_bindings, rhs.primitive_mode, rhs.texture_buffer_usage);
}
bool operator!=(const ProgramVariant& rhs) const {
return !operator==(rhs);
}
};
/// Describes how a shader is used.
struct ShaderDiskCacheUsage {
u64 unique_identifier{};
BaseBindings bindings;
GLenum primitive{};
ProgramVariant variant;
bool operator==(const ShaderDiskCacheUsage& rhs) const {
return std::tie(unique_identifier, bindings, primitive) ==
std::tie(rhs.unique_identifier, rhs.bindings, rhs.primitive);
return std::tie(unique_identifier, variant) == std::tie(rhs.unique_identifier, rhs.variant);
}
bool operator!=(const ShaderDiskCacheUsage& rhs) const {
@ -76,7 +95,19 @@ namespace std {
template <>
struct hash<OpenGL::BaseBindings> {
std::size_t operator()(const OpenGL::BaseBindings& bindings) const noexcept {
return bindings.cbuf | bindings.gmem << 8 | bindings.sampler << 16;
return static_cast<std::size_t>(bindings.cbuf) ^
(static_cast<std::size_t>(bindings.gmem) << 8) ^
(static_cast<std::size_t>(bindings.sampler) << 16) ^
(static_cast<std::size_t>(bindings.image) << 24);
}
};
template <>
struct hash<OpenGL::ProgramVariant> {
std::size_t operator()(const OpenGL::ProgramVariant& variant) const noexcept {
return std::hash<OpenGL::BaseBindings>()(variant.base_bindings) ^
std::hash<OpenGL::TextureBufferUsage>()(variant.texture_buffer_usage) ^
(static_cast<std::size_t>(variant.primitive_mode) << 6);
}
};
@ -84,7 +115,7 @@ template <>
struct hash<OpenGL::ShaderDiskCacheUsage> {
std::size_t operator()(const OpenGL::ShaderDiskCacheUsage& usage) const noexcept {
return static_cast<std::size_t>(usage.unique_identifier) ^
std::hash<OpenGL::BaseBindings>()(usage.bindings) ^ usage.primitive << 16;
std::hash<OpenGL::ProgramVariant>()(usage.variant);
}
};
@ -275,26 +306,17 @@ private:
return LoadArrayFromPrecompiled(&object, 1);
}
bool LoadObjectFromPrecompiled(bool& object) {
u8 value;
const bool read_ok = LoadArrayFromPrecompiled(&value, 1);
if (!read_ok) {
return false;
}
object = value != 0;
return true;
}
// Core system
Core::System& system;
// Stored transferable shaders
std::map<u64, std::unordered_set<ShaderDiskCacheUsage>> transferable;
// Stores whole precompiled cache which will be read from/saved to the precompiled cache file
// Stores whole precompiled cache which will be read from or saved to the precompiled chache
// file
FileSys::VectorVfsFile precompiled_cache_virtual_file;
// Stores the current offset of the precompiled cache file for IO purposes
std::size_t precompiled_cache_virtual_file_offset = 0;
// Stored transferable shaders
std::unordered_map<u64, std::unordered_set<ShaderDiskCacheUsage>> transferable;
// The cache has been loaded at boot
bool tried_to_load{};
};

View file

@ -15,7 +15,8 @@ MICROPROFILE_DEFINE(OpenGL_StreamBuffer, "OpenGL", "Stream Buffer Orphaning",
namespace OpenGL {
OGLStreamBuffer::OGLStreamBuffer(GLsizeiptr size, bool vertex_data_usage, bool prefer_coherent)
OGLStreamBuffer::OGLStreamBuffer(GLsizeiptr size, bool vertex_data_usage, bool prefer_coherent,
bool use_persistent)
: buffer_size(size) {
gl_buffer.Create();
@ -29,7 +30,7 @@ OGLStreamBuffer::OGLStreamBuffer(GLsizeiptr size, bool vertex_data_usage, bool p
allocate_size *= 2;
}
if (GLAD_GL_ARB_buffer_storage) {
if (use_persistent) {
persistent = true;
coherent = prefer_coherent;
const GLbitfield flags =

View file

@ -13,7 +13,8 @@ namespace OpenGL {
class OGLStreamBuffer : private NonCopyable {
public:
explicit OGLStreamBuffer(GLsizeiptr size, bool vertex_data_usage, bool prefer_coherent = false);
explicit OGLStreamBuffer(GLsizeiptr size, bool vertex_data_usage, bool prefer_coherent = false,
bool use_persistent = true);
~OGLStreamBuffer();
GLuint GetHandle() const;

View file

@ -0,0 +1,614 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/assert.h"
#include "common/bit_util.h"
#include "common/common_types.h"
#include "common/microprofile.h"
#include "common/scope_exit.h"
#include "core/core.h"
#include "video_core/morton.h"
#include "video_core/renderer_opengl/gl_resource_manager.h"
#include "video_core/renderer_opengl/gl_state.h"
#include "video_core/renderer_opengl/gl_texture_cache.h"
#include "video_core/renderer_opengl/utils.h"
#include "video_core/texture_cache/surface_base.h"
#include "video_core/texture_cache/texture_cache.h"
#include "video_core/textures/convert.h"
#include "video_core/textures/texture.h"
namespace OpenGL {
using Tegra::Texture::SwizzleSource;
using VideoCore::MortonSwizzleMode;
using VideoCore::Surface::ComponentType;
using VideoCore::Surface::PixelFormat;
using VideoCore::Surface::SurfaceCompression;
using VideoCore::Surface::SurfaceTarget;
using VideoCore::Surface::SurfaceType;
MICROPROFILE_DEFINE(OpenGL_Texture_Upload, "OpenGL", "Texture Upload", MP_RGB(128, 192, 128));
MICROPROFILE_DEFINE(OpenGL_Texture_Download, "OpenGL", "Texture Download", MP_RGB(128, 192, 128));
namespace {
struct FormatTuple {
GLint internal_format;
GLenum format;
GLenum type;
ComponentType component_type;
bool compressed;
};
constexpr std::array<FormatTuple, VideoCore::Surface::MaxPixelFormat> tex_format_tuples = {{
{GL_RGBA8, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8_REV, ComponentType::UNorm, false}, // ABGR8U
{GL_RGBA8, GL_RGBA, GL_BYTE, ComponentType::SNorm, false}, // ABGR8S
{GL_RGBA8UI, GL_RGBA_INTEGER, GL_UNSIGNED_BYTE, ComponentType::UInt, false}, // ABGR8UI
{GL_RGB565, GL_RGB, GL_UNSIGNED_SHORT_5_6_5_REV, ComponentType::UNorm, false}, // B5G6R5U
{GL_RGB10_A2, GL_RGBA, GL_UNSIGNED_INT_2_10_10_10_REV, ComponentType::UNorm,
false}, // A2B10G10R10U
{GL_RGB5_A1, GL_RGBA, GL_UNSIGNED_SHORT_1_5_5_5_REV, ComponentType::UNorm, false}, // A1B5G5R5U
{GL_R8, GL_RED, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // R8U
{GL_R8UI, GL_RED_INTEGER, GL_UNSIGNED_BYTE, ComponentType::UInt, false}, // R8UI
{GL_RGBA16F, GL_RGBA, GL_HALF_FLOAT, ComponentType::Float, false}, // RGBA16F
{GL_RGBA16, GL_RGBA, GL_UNSIGNED_SHORT, ComponentType::UNorm, false}, // RGBA16U
{GL_RGBA16UI, GL_RGBA_INTEGER, GL_UNSIGNED_SHORT, ComponentType::UInt, false}, // RGBA16UI
{GL_R11F_G11F_B10F, GL_RGB, GL_UNSIGNED_INT_10F_11F_11F_REV, ComponentType::Float,
false}, // R11FG11FB10F
{GL_RGBA32UI, GL_RGBA_INTEGER, GL_UNSIGNED_INT, ComponentType::UInt, false}, // RGBA32UI
{GL_COMPRESSED_RGBA_S3TC_DXT1_EXT, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8, ComponentType::UNorm,
true}, // DXT1
{GL_COMPRESSED_RGBA_S3TC_DXT3_EXT, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8, ComponentType::UNorm,
true}, // DXT23
{GL_COMPRESSED_RGBA_S3TC_DXT5_EXT, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8, ComponentType::UNorm,
true}, // DXT45
{GL_COMPRESSED_RED_RGTC1, GL_RED, GL_UNSIGNED_INT_8_8_8_8, ComponentType::UNorm, true}, // DXN1
{GL_COMPRESSED_RG_RGTC2, GL_RG, GL_UNSIGNED_INT_8_8_8_8, ComponentType::UNorm,
true}, // DXN2UNORM
{GL_COMPRESSED_SIGNED_RG_RGTC2, GL_RG, GL_INT, ComponentType::SNorm, true}, // DXN2SNORM
{GL_COMPRESSED_RGBA_BPTC_UNORM, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8, ComponentType::UNorm,
true}, // BC7U
{GL_COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT, GL_RGB, GL_UNSIGNED_INT_8_8_8_8, ComponentType::Float,
true}, // BC6H_UF16
{GL_COMPRESSED_RGB_BPTC_SIGNED_FLOAT, GL_RGB, GL_UNSIGNED_INT_8_8_8_8, ComponentType::Float,
true}, // BC6H_SF16
{GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // ASTC_2D_4X4
{GL_RGBA8, GL_BGRA, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // BGRA8
{GL_RGBA32F, GL_RGBA, GL_FLOAT, ComponentType::Float, false}, // RGBA32F
{GL_RG32F, GL_RG, GL_FLOAT, ComponentType::Float, false}, // RG32F
{GL_R32F, GL_RED, GL_FLOAT, ComponentType::Float, false}, // R32F
{GL_R16F, GL_RED, GL_HALF_FLOAT, ComponentType::Float, false}, // R16F
{GL_R16, GL_RED, GL_UNSIGNED_SHORT, ComponentType::UNorm, false}, // R16U
{GL_R16_SNORM, GL_RED, GL_SHORT, ComponentType::SNorm, false}, // R16S
{GL_R16UI, GL_RED_INTEGER, GL_UNSIGNED_SHORT, ComponentType::UInt, false}, // R16UI
{GL_R16I, GL_RED_INTEGER, GL_SHORT, ComponentType::SInt, false}, // R16I
{GL_RG16, GL_RG, GL_UNSIGNED_SHORT, ComponentType::UNorm, false}, // RG16
{GL_RG16F, GL_RG, GL_HALF_FLOAT, ComponentType::Float, false}, // RG16F
{GL_RG16UI, GL_RG_INTEGER, GL_UNSIGNED_SHORT, ComponentType::UInt, false}, // RG16UI
{GL_RG16I, GL_RG_INTEGER, GL_SHORT, ComponentType::SInt, false}, // RG16I
{GL_RG16_SNORM, GL_RG, GL_SHORT, ComponentType::SNorm, false}, // RG16S
{GL_RGB32F, GL_RGB, GL_FLOAT, ComponentType::Float, false}, // RGB32F
{GL_SRGB8_ALPHA8, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8_REV, ComponentType::UNorm,
false}, // RGBA8_SRGB
{GL_RG8, GL_RG, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // RG8U
{GL_RG8, GL_RG, GL_BYTE, ComponentType::SNorm, false}, // RG8S
{GL_RG32UI, GL_RG_INTEGER, GL_UNSIGNED_INT, ComponentType::UInt, false}, // RG32UI
{GL_R32UI, GL_RED_INTEGER, GL_UNSIGNED_INT, ComponentType::UInt, false}, // R32UI
{GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // ASTC_2D_8X8
{GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // ASTC_2D_8X5
{GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // ASTC_2D_5X4
{GL_SRGB8_ALPHA8, GL_BGRA, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // BGRA8
// Compressed sRGB formats
{GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8, ComponentType::UNorm,
true}, // DXT1_SRGB
{GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8, ComponentType::UNorm,
true}, // DXT23_SRGB
{GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8, ComponentType::UNorm,
true}, // DXT45_SRGB
{GL_COMPRESSED_SRGB_ALPHA_BPTC_UNORM, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8, ComponentType::UNorm,
true}, // BC7U_SRGB
{GL_SRGB8_ALPHA8, GL_RGBA, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // ASTC_2D_4X4_SRGB
{GL_SRGB8_ALPHA8, GL_RGBA, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // ASTC_2D_8X8_SRGB
{GL_SRGB8_ALPHA8, GL_RGBA, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // ASTC_2D_8X5_SRGB
{GL_SRGB8_ALPHA8, GL_RGBA, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // ASTC_2D_5X4_SRGB
{GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // ASTC_2D_5X5
{GL_SRGB8_ALPHA8, GL_RGBA, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // ASTC_2D_5X5_SRGB
{GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // ASTC_2D_10X8
{GL_SRGB8_ALPHA8, GL_RGBA, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // ASTC_2D_10X8_SRGB
// Depth formats
{GL_DEPTH_COMPONENT32F, GL_DEPTH_COMPONENT, GL_FLOAT, ComponentType::Float, false}, // Z32F
{GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT, GL_UNSIGNED_SHORT, ComponentType::UNorm,
false}, // Z16
// DepthStencil formats
{GL_DEPTH24_STENCIL8, GL_DEPTH_STENCIL, GL_UNSIGNED_INT_24_8, ComponentType::UNorm,
false}, // Z24S8
{GL_DEPTH24_STENCIL8, GL_DEPTH_STENCIL, GL_UNSIGNED_INT_24_8, ComponentType::UNorm,
false}, // S8Z24
{GL_DEPTH32F_STENCIL8, GL_DEPTH_STENCIL, GL_FLOAT_32_UNSIGNED_INT_24_8_REV,
ComponentType::Float, false}, // Z32FS8
}};
const FormatTuple& GetFormatTuple(PixelFormat pixel_format, ComponentType component_type) {
ASSERT(static_cast<std::size_t>(pixel_format) < tex_format_tuples.size());
const auto& format{tex_format_tuples[static_cast<std::size_t>(pixel_format)]};
ASSERT(component_type == format.component_type);
return format;
}
GLenum GetTextureTarget(const SurfaceTarget& target) {
switch (target) {
case SurfaceTarget::TextureBuffer:
return GL_TEXTURE_BUFFER;
case SurfaceTarget::Texture1D:
return GL_TEXTURE_1D;
case SurfaceTarget::Texture2D:
return GL_TEXTURE_2D;
case SurfaceTarget::Texture3D:
return GL_TEXTURE_3D;
case SurfaceTarget::Texture1DArray:
return GL_TEXTURE_1D_ARRAY;
case SurfaceTarget::Texture2DArray:
return GL_TEXTURE_2D_ARRAY;
case SurfaceTarget::TextureCubemap:
return GL_TEXTURE_CUBE_MAP;
case SurfaceTarget::TextureCubeArray:
return GL_TEXTURE_CUBE_MAP_ARRAY;
}
UNREACHABLE();
return {};
}
GLint GetSwizzleSource(SwizzleSource source) {
switch (source) {
case SwizzleSource::Zero:
return GL_ZERO;
case SwizzleSource::R:
return GL_RED;
case SwizzleSource::G:
return GL_GREEN;
case SwizzleSource::B:
return GL_BLUE;
case SwizzleSource::A:
return GL_ALPHA;
case SwizzleSource::OneInt:
case SwizzleSource::OneFloat:
return GL_ONE;
}
UNREACHABLE();
return GL_NONE;
}
void ApplyTextureDefaults(const SurfaceParams& params, GLuint texture) {
glTextureParameteri(texture, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTextureParameteri(texture, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTextureParameteri(texture, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTextureParameteri(texture, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTextureParameteri(texture, GL_TEXTURE_MAX_LEVEL, params.num_levels - 1);
if (params.num_levels == 1) {
glTextureParameterf(texture, GL_TEXTURE_LOD_BIAS, 1000.0f);
}
}
OGLTexture CreateTexture(const SurfaceParams& params, GLenum target, GLenum internal_format,
OGLBuffer& texture_buffer) {
OGLTexture texture;
texture.Create(target);
switch (params.target) {
case SurfaceTarget::Texture1D:
glTextureStorage1D(texture.handle, params.emulated_levels, internal_format, params.width);
break;
case SurfaceTarget::TextureBuffer:
texture_buffer.Create();
glNamedBufferStorage(texture_buffer.handle, params.width * params.GetBytesPerPixel(),
nullptr, GL_DYNAMIC_STORAGE_BIT);
glTextureBuffer(texture.handle, internal_format, texture_buffer.handle);
case SurfaceTarget::Texture2D:
case SurfaceTarget::TextureCubemap:
glTextureStorage2D(texture.handle, params.emulated_levels, internal_format, params.width,
params.height);
break;
case SurfaceTarget::Texture3D:
case SurfaceTarget::Texture2DArray:
case SurfaceTarget::TextureCubeArray:
glTextureStorage3D(texture.handle, params.emulated_levels, internal_format, params.width,
params.height, params.depth);
break;
default:
UNREACHABLE();
}
ApplyTextureDefaults(params, texture.handle);
return texture;
}
} // Anonymous namespace
CachedSurface::CachedSurface(const GPUVAddr gpu_addr, const SurfaceParams& params)
: VideoCommon::SurfaceBase<View>(gpu_addr, params) {
const auto& tuple{GetFormatTuple(params.pixel_format, params.component_type)};
internal_format = tuple.internal_format;
format = tuple.format;
type = tuple.type;
is_compressed = tuple.compressed;
target = GetTextureTarget(params.target);
texture = CreateTexture(params, target, internal_format, texture_buffer);
DecorateSurfaceName();
main_view = CreateViewInner(
ViewParams(params.target, 0, params.is_layered ? params.depth : 1, 0, params.num_levels),
true);
}
CachedSurface::~CachedSurface() = default;
void CachedSurface::DownloadTexture(std::vector<u8>& staging_buffer) {
MICROPROFILE_SCOPE(OpenGL_Texture_Download);
SCOPE_EXIT({ glPixelStorei(GL_PACK_ROW_LENGTH, 0); });
for (u32 level = 0; level < params.emulated_levels; ++level) {
glPixelStorei(GL_PACK_ALIGNMENT, std::min(8U, params.GetRowAlignment(level)));
glPixelStorei(GL_PACK_ROW_LENGTH, static_cast<GLint>(params.GetMipWidth(level)));
const std::size_t mip_offset = params.GetHostMipmapLevelOffset(level);
if (is_compressed) {
glGetCompressedTextureImage(texture.handle, level,
static_cast<GLsizei>(params.GetHostMipmapSize(level)),
staging_buffer.data() + mip_offset);
} else {
glGetTextureImage(texture.handle, level, format, type,
static_cast<GLsizei>(params.GetHostMipmapSize(level)),
staging_buffer.data() + mip_offset);
}
}
}
void CachedSurface::UploadTexture(const std::vector<u8>& staging_buffer) {
MICROPROFILE_SCOPE(OpenGL_Texture_Upload);
SCOPE_EXIT({ glPixelStorei(GL_UNPACK_ROW_LENGTH, 0); });
for (u32 level = 0; level < params.emulated_levels; ++level) {
UploadTextureMipmap(level, staging_buffer);
}
}
void CachedSurface::UploadTextureMipmap(u32 level, const std::vector<u8>& staging_buffer) {
glPixelStorei(GL_UNPACK_ALIGNMENT, std::min(8U, params.GetRowAlignment(level)));
glPixelStorei(GL_UNPACK_ROW_LENGTH, static_cast<GLint>(params.GetMipWidth(level)));
auto compression_type = params.GetCompressionType();
const std::size_t mip_offset = compression_type == SurfaceCompression::Converted
? params.GetConvertedMipmapOffset(level)
: params.GetHostMipmapLevelOffset(level);
const u8* buffer{staging_buffer.data() + mip_offset};
if (is_compressed) {
const auto image_size{static_cast<GLsizei>(params.GetHostMipmapSize(level))};
switch (params.target) {
case SurfaceTarget::Texture2D:
glCompressedTextureSubImage2D(texture.handle, level, 0, 0,
static_cast<GLsizei>(params.GetMipWidth(level)),
static_cast<GLsizei>(params.GetMipHeight(level)),
internal_format, image_size, buffer);
break;
case SurfaceTarget::Texture3D:
case SurfaceTarget::Texture2DArray:
case SurfaceTarget::TextureCubeArray:
glCompressedTextureSubImage3D(texture.handle, level, 0, 0, 0,
static_cast<GLsizei>(params.GetMipWidth(level)),
static_cast<GLsizei>(params.GetMipHeight(level)),
static_cast<GLsizei>(params.GetMipDepth(level)),
internal_format, image_size, buffer);
break;
case SurfaceTarget::TextureCubemap: {
const std::size_t layer_size{params.GetHostLayerSize(level)};
for (std::size_t face = 0; face < params.depth; ++face) {
glCompressedTextureSubImage3D(texture.handle, level, 0, 0, static_cast<GLint>(face),
static_cast<GLsizei>(params.GetMipWidth(level)),
static_cast<GLsizei>(params.GetMipHeight(level)), 1,
internal_format, static_cast<GLsizei>(layer_size),
buffer);
buffer += layer_size;
}
break;
}
default:
UNREACHABLE();
}
} else {
switch (params.target) {
case SurfaceTarget::Texture1D:
glTextureSubImage1D(texture.handle, level, 0, params.GetMipWidth(level), format, type,
buffer);
break;
case SurfaceTarget::TextureBuffer:
ASSERT(level == 0);
glNamedBufferSubData(texture_buffer.handle, 0,
params.GetMipWidth(level) * params.GetBytesPerPixel(), buffer);
break;
case SurfaceTarget::Texture1DArray:
case SurfaceTarget::Texture2D:
glTextureSubImage2D(texture.handle, level, 0, 0, params.GetMipWidth(level),
params.GetMipHeight(level), format, type, buffer);
break;
case SurfaceTarget::Texture3D:
case SurfaceTarget::Texture2DArray:
case SurfaceTarget::TextureCubeArray:
glTextureSubImage3D(
texture.handle, level, 0, 0, 0, static_cast<GLsizei>(params.GetMipWidth(level)),
static_cast<GLsizei>(params.GetMipHeight(level)),
static_cast<GLsizei>(params.GetMipDepth(level)), format, type, buffer);
break;
case SurfaceTarget::TextureCubemap:
for (std::size_t face = 0; face < params.depth; ++face) {
glTextureSubImage3D(texture.handle, level, 0, 0, static_cast<GLint>(face),
params.GetMipWidth(level), params.GetMipHeight(level), 1,
format, type, buffer);
buffer += params.GetHostLayerSize(level);
}
break;
default:
UNREACHABLE();
}
}
}
void CachedSurface::DecorateSurfaceName() {
LabelGLObject(GL_TEXTURE, texture.handle, GetGpuAddr(), params.TargetName());
}
void CachedSurfaceView::DecorateViewName(GPUVAddr gpu_addr, std::string prefix) {
LabelGLObject(GL_TEXTURE, texture_view.handle, gpu_addr, prefix);
}
View CachedSurface::CreateView(const ViewParams& view_key) {
return CreateViewInner(view_key, false);
}
View CachedSurface::CreateViewInner(const ViewParams& view_key, const bool is_proxy) {
auto view = std::make_shared<CachedSurfaceView>(*this, view_key, is_proxy);
views[view_key] = view;
if (!is_proxy)
view->DecorateViewName(gpu_addr, params.TargetName() + "V:" + std::to_string(view_count++));
return view;
}
CachedSurfaceView::CachedSurfaceView(CachedSurface& surface, const ViewParams& params,
const bool is_proxy)
: VideoCommon::ViewBase(params), surface{surface}, is_proxy{is_proxy} {
target = GetTextureTarget(params.target);
if (!is_proxy) {
texture_view = CreateTextureView();
}
swizzle = EncodeSwizzle(SwizzleSource::R, SwizzleSource::G, SwizzleSource::B, SwizzleSource::A);
}
CachedSurfaceView::~CachedSurfaceView() = default;
void CachedSurfaceView::Attach(GLenum attachment, GLenum target) const {
ASSERT(params.num_layers == 1 && params.num_levels == 1);
const auto& owner_params = surface.GetSurfaceParams();
switch (owner_params.target) {
case SurfaceTarget::Texture1D:
glFramebufferTexture1D(target, attachment, surface.GetTarget(), surface.GetTexture(),
params.base_level);
break;
case SurfaceTarget::Texture2D:
glFramebufferTexture2D(target, attachment, surface.GetTarget(), surface.GetTexture(),
params.base_level);
break;
case SurfaceTarget::Texture1DArray:
case SurfaceTarget::Texture2DArray:
case SurfaceTarget::TextureCubemap:
case SurfaceTarget::TextureCubeArray:
glFramebufferTextureLayer(target, attachment, surface.GetTexture(), params.base_level,
params.base_layer);
break;
default:
UNIMPLEMENTED();
}
}
void CachedSurfaceView::ApplySwizzle(SwizzleSource x_source, SwizzleSource y_source,
SwizzleSource z_source, SwizzleSource w_source) {
u32 new_swizzle = EncodeSwizzle(x_source, y_source, z_source, w_source);
if (new_swizzle == swizzle)
return;
swizzle = new_swizzle;
const std::array<GLint, 4> gl_swizzle = {GetSwizzleSource(x_source), GetSwizzleSource(y_source),
GetSwizzleSource(z_source),
GetSwizzleSource(w_source)};
const GLuint handle = GetTexture();
glTextureParameteriv(handle, GL_TEXTURE_SWIZZLE_RGBA, gl_swizzle.data());
}
OGLTextureView CachedSurfaceView::CreateTextureView() const {
const auto& owner_params = surface.GetSurfaceParams();
OGLTextureView texture_view;
texture_view.Create();
const GLuint handle{texture_view.handle};
const FormatTuple& tuple{
GetFormatTuple(owner_params.pixel_format, owner_params.component_type)};
glTextureView(handle, target, surface.texture.handle, tuple.internal_format, params.base_level,
params.num_levels, params.base_layer, params.num_layers);
ApplyTextureDefaults(owner_params, handle);
return texture_view;
}
TextureCacheOpenGL::TextureCacheOpenGL(Core::System& system,
VideoCore::RasterizerInterface& rasterizer,
const Device& device)
: TextureCacheBase{system, rasterizer} {
src_framebuffer.Create();
dst_framebuffer.Create();
}
TextureCacheOpenGL::~TextureCacheOpenGL() = default;
Surface TextureCacheOpenGL::CreateSurface(GPUVAddr gpu_addr, const SurfaceParams& params) {
return std::make_shared<CachedSurface>(gpu_addr, params);
}
void TextureCacheOpenGL::ImageCopy(Surface& src_surface, Surface& dst_surface,
const VideoCommon::CopyParams& copy_params) {
const auto& src_params = src_surface->GetSurfaceParams();
const auto& dst_params = dst_surface->GetSurfaceParams();
if (src_params.type != dst_params.type) {
// A fallback is needed
return;
}
const auto src_handle = src_surface->GetTexture();
const auto src_target = src_surface->GetTarget();
const auto dst_handle = dst_surface->GetTexture();
const auto dst_target = dst_surface->GetTarget();
glCopyImageSubData(src_handle, src_target, copy_params.source_level, copy_params.source_x,
copy_params.source_y, copy_params.source_z, dst_handle, dst_target,
copy_params.dest_level, copy_params.dest_x, copy_params.dest_y,
copy_params.dest_z, copy_params.width, copy_params.height,
copy_params.depth);
}
void TextureCacheOpenGL::ImageBlit(View& src_view, View& dst_view,
const Tegra::Engines::Fermi2D::Config& copy_config) {
const auto& src_params{src_view->GetSurfaceParams()};
const auto& dst_params{dst_view->GetSurfaceParams()};
OpenGLState prev_state{OpenGLState::GetCurState()};
SCOPE_EXIT({ prev_state.Apply(); });
OpenGLState state;
state.draw.read_framebuffer = src_framebuffer.handle;
state.draw.draw_framebuffer = dst_framebuffer.handle;
state.Apply();
u32 buffers{};
UNIMPLEMENTED_IF(src_params.target == SurfaceTarget::Texture3D);
UNIMPLEMENTED_IF(dst_params.target == SurfaceTarget::Texture3D);
if (src_params.type == SurfaceType::ColorTexture) {
src_view->Attach(GL_COLOR_ATTACHMENT0, GL_READ_FRAMEBUFFER);
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0,
0);
dst_view->Attach(GL_COLOR_ATTACHMENT0, GL_DRAW_FRAMEBUFFER);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0,
0);
buffers = GL_COLOR_BUFFER_BIT;
} else if (src_params.type == SurfaceType::Depth) {
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
src_view->Attach(GL_DEPTH_ATTACHMENT, GL_READ_FRAMEBUFFER);
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0, 0);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
dst_view->Attach(GL_DEPTH_ATTACHMENT, GL_DRAW_FRAMEBUFFER);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0, 0);
buffers = GL_DEPTH_BUFFER_BIT;
} else if (src_params.type == SurfaceType::DepthStencil) {
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
src_view->Attach(GL_DEPTH_STENCIL_ATTACHMENT, GL_READ_FRAMEBUFFER);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
dst_view->Attach(GL_DEPTH_STENCIL_ATTACHMENT, GL_DRAW_FRAMEBUFFER);
buffers = GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT;
}
const Common::Rectangle<u32>& src_rect = copy_config.src_rect;
const Common::Rectangle<u32>& dst_rect = copy_config.dst_rect;
const bool is_linear = copy_config.filter == Tegra::Engines::Fermi2D::Filter::Linear;
glBlitFramebuffer(src_rect.left, src_rect.top, src_rect.right, src_rect.bottom, dst_rect.left,
dst_rect.top, dst_rect.right, dst_rect.bottom, buffers,
is_linear && (buffers == GL_COLOR_BUFFER_BIT) ? GL_LINEAR : GL_NEAREST);
}
void TextureCacheOpenGL::BufferCopy(Surface& src_surface, Surface& dst_surface) {
const auto& src_params = src_surface->GetSurfaceParams();
const auto& dst_params = dst_surface->GetSurfaceParams();
UNIMPLEMENTED_IF(src_params.num_levels > 1 || dst_params.num_levels > 1);
const auto source_format = GetFormatTuple(src_params.pixel_format, src_params.component_type);
const auto dest_format = GetFormatTuple(dst_params.pixel_format, dst_params.component_type);
const std::size_t source_size = src_surface->GetHostSizeInBytes();
const std::size_t dest_size = dst_surface->GetHostSizeInBytes();
const std::size_t buffer_size = std::max(source_size, dest_size);
GLuint copy_pbo_handle = FetchPBO(buffer_size);
glBindBuffer(GL_PIXEL_PACK_BUFFER, copy_pbo_handle);
if (source_format.compressed) {
glGetCompressedTextureImage(src_surface->GetTexture(), 0, static_cast<GLsizei>(source_size),
nullptr);
} else {
glGetTextureImage(src_surface->GetTexture(), 0, source_format.format, source_format.type,
static_cast<GLsizei>(source_size), nullptr);
}
glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, copy_pbo_handle);
const GLsizei width = static_cast<GLsizei>(dst_params.width);
const GLsizei height = static_cast<GLsizei>(dst_params.height);
const GLsizei depth = static_cast<GLsizei>(dst_params.depth);
if (dest_format.compressed) {
LOG_CRITICAL(HW_GPU, "Compressed buffer copy is unimplemented!");
UNREACHABLE();
} else {
switch (dst_params.target) {
case SurfaceTarget::Texture1D:
glTextureSubImage1D(dst_surface->GetTexture(), 0, 0, width, dest_format.format,
dest_format.type, nullptr);
break;
case SurfaceTarget::Texture2D:
glTextureSubImage2D(dst_surface->GetTexture(), 0, 0, 0, width, height,
dest_format.format, dest_format.type, nullptr);
break;
case SurfaceTarget::Texture3D:
case SurfaceTarget::Texture2DArray:
case SurfaceTarget::TextureCubeArray:
glTextureSubImage3D(dst_surface->GetTexture(), 0, 0, 0, 0, width, height, depth,
dest_format.format, dest_format.type, nullptr);
break;
case SurfaceTarget::TextureCubemap:
glTextureSubImage3D(dst_surface->GetTexture(), 0, 0, 0, 0, width, height, depth,
dest_format.format, dest_format.type, nullptr);
break;
default:
LOG_CRITICAL(Render_OpenGL, "Unimplemented surface target={}",
static_cast<u32>(dst_params.target));
UNREACHABLE();
}
}
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
glTextureBarrier();
}
GLuint TextureCacheOpenGL::FetchPBO(std::size_t buffer_size) {
ASSERT_OR_EXECUTE(buffer_size > 0, { return 0; });
const u32 l2 = Common::Log2Ceil64(static_cast<u64>(buffer_size));
OGLBuffer& cp = copy_pbo_cache[l2];
if (cp.handle == 0) {
const std::size_t ceil_size = 1ULL << l2;
cp.Create();
cp.MakeStreamCopy(ceil_size);
}
return cp.handle;
}
} // namespace OpenGL

View file

@ -0,0 +1,143 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <array>
#include <functional>
#include <memory>
#include <unordered_map>
#include <utility>
#include <vector>
#include <glad/glad.h>
#include "common/common_types.h"
#include "video_core/engines/shader_bytecode.h"
#include "video_core/renderer_opengl/gl_device.h"
#include "video_core/renderer_opengl/gl_resource_manager.h"
#include "video_core/texture_cache/texture_cache.h"
namespace OpenGL {
using VideoCommon::SurfaceParams;
using VideoCommon::ViewParams;
class CachedSurfaceView;
class CachedSurface;
class TextureCacheOpenGL;
using Surface = std::shared_ptr<CachedSurface>;
using View = std::shared_ptr<CachedSurfaceView>;
using TextureCacheBase = VideoCommon::TextureCache<Surface, View>;
class CachedSurface final : public VideoCommon::SurfaceBase<View> {
friend CachedSurfaceView;
public:
explicit CachedSurface(GPUVAddr gpu_addr, const SurfaceParams& params);
~CachedSurface();
void UploadTexture(const std::vector<u8>& staging_buffer) override;
void DownloadTexture(std::vector<u8>& staging_buffer) override;
GLenum GetTarget() const {
return target;
}
GLuint GetTexture() const {
return texture.handle;
}
protected:
void DecorateSurfaceName();
View CreateView(const ViewParams& view_key) override;
View CreateViewInner(const ViewParams& view_key, bool is_proxy);
private:
void UploadTextureMipmap(u32 level, const std::vector<u8>& staging_buffer);
GLenum internal_format{};
GLenum format{};
GLenum type{};
bool is_compressed{};
GLenum target{};
u32 view_count{};
OGLTexture texture;
OGLBuffer texture_buffer;
};
class CachedSurfaceView final : public VideoCommon::ViewBase {
public:
explicit CachedSurfaceView(CachedSurface& surface, const ViewParams& params, bool is_proxy);
~CachedSurfaceView();
/// Attaches this texture view to the current bound GL_DRAW_FRAMEBUFFER
void Attach(GLenum attachment, GLenum target) const;
GLuint GetTexture() const {
if (is_proxy) {
return surface.GetTexture();
}
return texture_view.handle;
}
const SurfaceParams& GetSurfaceParams() const {
return surface.GetSurfaceParams();
}
void ApplySwizzle(Tegra::Texture::SwizzleSource x_source,
Tegra::Texture::SwizzleSource y_source,
Tegra::Texture::SwizzleSource z_source,
Tegra::Texture::SwizzleSource w_source);
void DecorateViewName(GPUVAddr gpu_addr, std::string prefix);
private:
u32 EncodeSwizzle(Tegra::Texture::SwizzleSource x_source,
Tegra::Texture::SwizzleSource y_source,
Tegra::Texture::SwizzleSource z_source,
Tegra::Texture::SwizzleSource w_source) const {
return (static_cast<u32>(x_source) << 24) | (static_cast<u32>(y_source) << 16) |
(static_cast<u32>(z_source) << 8) | static_cast<u32>(w_source);
}
OGLTextureView CreateTextureView() const;
CachedSurface& surface;
GLenum target{};
OGLTextureView texture_view;
u32 swizzle;
bool is_proxy;
};
class TextureCacheOpenGL final : public TextureCacheBase {
public:
explicit TextureCacheOpenGL(Core::System& system, VideoCore::RasterizerInterface& rasterizer,
const Device& device);
~TextureCacheOpenGL();
protected:
Surface CreateSurface(GPUVAddr gpu_addr, const SurfaceParams& params) override;
void ImageCopy(Surface& src_surface, Surface& dst_surface,
const VideoCommon::CopyParams& copy_params) override;
void ImageBlit(View& src_view, View& dst_view,
const Tegra::Engines::Fermi2D::Config& copy_config) override;
void BufferCopy(Surface& src_surface, Surface& dst_surface) override;
private:
GLuint FetchPBO(std::size_t buffer_size);
OGLFramebuffer src_framebuffer;
OGLFramebuffer dst_framebuffer;
std::unordered_map<u32, OGLBuffer> copy_pbo_cache;
};
} // namespace OpenGL

View file

@ -471,7 +471,6 @@ static void APIENTRY DebugHandler(GLenum source, GLenum type, GLuint id, GLenum
}
}
/// Initialize the renderer
bool RendererOpenGL::Init() {
Core::Frontend::ScopeAcquireWindowContext acquire_context{render_window};

View file

@ -5,8 +5,10 @@
#include <string>
#include <fmt/format.h>
#include <glad/glad.h>
#include "common/assert.h"
#include "common/common_types.h"
#include "common/scope_exit.h"
#include "video_core/renderer_opengl/utils.h"
namespace OpenGL {
@ -63,4 +65,4 @@ void LabelGLObject(GLenum identifier, GLuint handle, VAddr addr, std::string_vie
glObjectLabel(identifier, handle, -1, static_cast<const GLchar*>(object_label.c_str()));
}
} // namespace OpenGL
} // namespace OpenGL

View file

@ -32,4 +32,4 @@ private:
void LabelGLObject(GLenum identifier, GLuint handle, VAddr addr, std::string_view extra_info = {});
} // namespace OpenGL
} // namespace OpenGL

View file

@ -935,6 +935,11 @@ private:
return {};
}
Id ImageStore(Operation operation) {
UNIMPLEMENTED();
return {};
}
Id Branch(Operation operation) {
const auto target = std::get_if<ImmediateNode>(&*operation[0]);
UNIMPLEMENTED_IF(!target);
@ -1326,6 +1331,8 @@ private:
&SPIRVDecompiler::TextureQueryLod,
&SPIRVDecompiler::TexelFetch,
&SPIRVDecompiler::ImageStore,
&SPIRVDecompiler::Branch,
&SPIRVDecompiler::PushFlowStack,
&SPIRVDecompiler::PopFlowStack,

View file

@ -169,6 +169,7 @@ u32 ShaderIR::DecodeInstr(NodeBlock& bb, u32 pc) {
{OpCode::Type::Conversion, &ShaderIR::DecodeConversion},
{OpCode::Type::Memory, &ShaderIR::DecodeMemory},
{OpCode::Type::Texture, &ShaderIR::DecodeTexture},
{OpCode::Type::Image, &ShaderIR::DecodeImage},
{OpCode::Type::FloatSetPredicate, &ShaderIR::DecodeFloatSetPredicate},
{OpCode::Type::IntegerSetPredicate, &ShaderIR::DecodeIntegerSetPredicate},
{OpCode::Type::HalfSetPredicate, &ShaderIR::DecodeHalfSetPredicate},

View file

@ -0,0 +1,120 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <vector>
#include <fmt/format.h>
#include "common/assert.h"
#include "common/bit_field.h"
#include "common/common_types.h"
#include "common/logging/log.h"
#include "video_core/engines/shader_bytecode.h"
#include "video_core/shader/node_helper.h"
#include "video_core/shader/shader_ir.h"
namespace VideoCommon::Shader {
using Tegra::Shader::Instruction;
using Tegra::Shader::OpCode;
namespace {
std::size_t GetImageTypeNumCoordinates(Tegra::Shader::ImageType image_type) {
switch (image_type) {
case Tegra::Shader::ImageType::Texture1D:
case Tegra::Shader::ImageType::TextureBuffer:
return 1;
case Tegra::Shader::ImageType::Texture1DArray:
case Tegra::Shader::ImageType::Texture2D:
return 2;
case Tegra::Shader::ImageType::Texture2DArray:
case Tegra::Shader::ImageType::Texture3D:
return 3;
}
UNREACHABLE();
return 1;
}
} // Anonymous namespace
u32 ShaderIR::DecodeImage(NodeBlock& bb, u32 pc) {
const Instruction instr = {program_code[pc]};
const auto opcode = OpCode::Decode(instr);
switch (opcode->get().GetId()) {
case OpCode::Id::SUST: {
UNIMPLEMENTED_IF(instr.sust.mode != Tegra::Shader::SurfaceDataMode::P);
UNIMPLEMENTED_IF(instr.sust.image_type == Tegra::Shader::ImageType::TextureBuffer);
UNIMPLEMENTED_IF(instr.sust.out_of_bounds_store != Tegra::Shader::OutOfBoundsStore::Ignore);
UNIMPLEMENTED_IF(instr.sust.component_mask_selector != 0xf); // Ensure we have an RGBA store
std::vector<Node> values;
constexpr std::size_t hardcoded_size{4};
for (std::size_t i = 0; i < hardcoded_size; ++i) {
values.push_back(GetRegister(instr.gpr0.Value() + i));
}
std::vector<Node> coords;
const std::size_t num_coords{GetImageTypeNumCoordinates(instr.sust.image_type)};
for (std::size_t i = 0; i < num_coords; ++i) {
coords.push_back(GetRegister(instr.gpr8.Value() + i));
}
const auto type{instr.sust.image_type};
const auto& image{instr.sust.is_immediate ? GetImage(instr.image, type)
: GetBindlessImage(instr.gpr39, type)};
MetaImage meta{image, values};
const Node store{Operation(OperationCode::ImageStore, meta, std::move(coords))};
bb.push_back(store);
break;
}
default:
UNIMPLEMENTED_MSG("Unhandled conversion instruction: {}", opcode->get().GetName());
}
return pc;
}
const Image& ShaderIR::GetImage(Tegra::Shader::Image image, Tegra::Shader::ImageType type) {
const auto offset{static_cast<std::size_t>(image.index.Value())};
// If this image has already been used, return the existing mapping.
const auto itr{std::find_if(used_images.begin(), used_images.end(),
[=](const Image& entry) { return entry.GetOffset() == offset; })};
if (itr != used_images.end()) {
ASSERT(itr->GetType() == type);
return *itr;
}
// Otherwise create a new mapping for this image.
const std::size_t next_index{used_images.size()};
const Image entry{offset, next_index, type};
return *used_images.emplace(entry).first;
}
const Image& ShaderIR::GetBindlessImage(Tegra::Shader::Register reg,
Tegra::Shader::ImageType type) {
const Node image_register{GetRegister(reg)};
const Node base_image{
TrackCbuf(image_register, global_code, static_cast<s64>(global_code.size()))};
const auto cbuf{std::get_if<CbufNode>(&*base_image)};
const auto cbuf_offset_imm{std::get_if<ImmediateNode>(&*cbuf->GetOffset())};
const auto cbuf_offset{cbuf_offset_imm->GetValue()};
const auto cbuf_index{cbuf->GetIndex()};
const auto cbuf_key{(static_cast<u64>(cbuf_index) << 32) | static_cast<u64>(cbuf_offset)};
// If this image has already been used, return the existing mapping.
const auto itr{std::find_if(used_images.begin(), used_images.end(),
[=](const Image& entry) { return entry.GetOffset() == cbuf_key; })};
if (itr != used_images.end()) {
ASSERT(itr->GetType() == type);
return *itr;
}
// Otherwise create a new mapping for this image.
const std::size_t next_index{used_images.size()};
const Image entry{cbuf_index, cbuf_offset, next_index, type};
return *used_images.emplace(entry).first;
}
} // namespace VideoCommon::Shader

View file

@ -245,6 +245,18 @@ u32 ShaderIR::DecodeTexture(NodeBlock& bb, u32 pc) {
}
break;
}
case OpCode::Id::TLD: {
UNIMPLEMENTED_IF_MSG(instr.tld.aoffi, "AOFFI is not implemented");
UNIMPLEMENTED_IF_MSG(instr.tld.ms, "MS is not implemented");
UNIMPLEMENTED_IF_MSG(instr.tld.cl, "CL is not implemented");
if (instr.tld.nodep_flag) {
LOG_WARNING(HW_GPU, "TLD.NODEP implementation is incomplete");
}
WriteTexInstructionFloat(bb, instr, GetTldCode(instr));
break;
}
case OpCode::Id::TLDS: {
const Tegra::Shader::TextureType texture_type{instr.tlds.GetTextureType()};
const bool is_array{instr.tlds.IsArrayTexture()};
@ -575,6 +587,39 @@ Node4 ShaderIR::GetTld4Code(Instruction instr, TextureType texture_type, bool de
return values;
}
Node4 ShaderIR::GetTldCode(Tegra::Shader::Instruction instr) {
const auto texture_type{instr.tld.texture_type};
const bool is_array{instr.tld.is_array};
const bool lod_enabled{instr.tld.GetTextureProcessMode() == TextureProcessMode::LL};
const std::size_t coord_count{GetCoordCount(texture_type)};
u64 gpr8_cursor{instr.gpr8.Value()};
const Node array_register{is_array ? GetRegister(gpr8_cursor++) : nullptr};
std::vector<Node> coords;
coords.reserve(coord_count);
for (std::size_t i = 0; i < coord_count; ++i) {
coords.push_back(GetRegister(gpr8_cursor++));
}
u64 gpr20_cursor{instr.gpr20.Value()};
// const Node bindless_register{is_bindless ? GetRegister(gpr20_cursor++) : nullptr};
const Node lod{lod_enabled ? GetRegister(gpr20_cursor++) : Immediate(0u)};
// const Node aoffi_register{is_aoffi ? GetRegister(gpr20_cursor++) : nullptr};
// const Node multisample{is_multisample ? GetRegister(gpr20_cursor++) : nullptr};
const auto& sampler = GetSampler(instr.sampler, texture_type, is_array, false);
Node4 values;
for (u32 element = 0; element < values.size(); ++element) {
auto coords_copy = coords;
MetaTexture meta{sampler, array_register, {}, {}, {}, lod, {}, element};
values[element] = Operation(OperationCode::TexelFetch, meta, std::move(coords_copy));
}
return values;
}
Node4 ShaderIR::GetTldsCode(Instruction instr, TextureType texture_type, bool is_array) {
const std::size_t type_coord_count = GetCoordCount(texture_type);
const bool lod_enabled = instr.tlds.GetTextureProcessMode() == TextureProcessMode::LL;

View file

@ -146,6 +146,8 @@ enum class OperationCode {
TextureQueryLod, /// (MetaTexture, float[N] coords) -> float4
TexelFetch, /// (MetaTexture, int[N], int) -> float4
ImageStore, /// (MetaImage, float[N] coords) -> void
Branch, /// (uint branch_target) -> void
PushFlowStack, /// (uint branch_target) -> void
PopFlowStack, /// () -> void
@ -263,6 +265,48 @@ private:
bool is_bindless{}; ///< Whether this sampler belongs to a bindless texture or not.
};
class Image {
public:
explicit Image(std::size_t offset, std::size_t index, Tegra::Shader::ImageType type)
: offset{offset}, index{index}, type{type}, is_bindless{false} {}
explicit Image(u32 cbuf_index, u32 cbuf_offset, std::size_t index,
Tegra::Shader::ImageType type)
: offset{(static_cast<u64>(cbuf_index) << 32) | cbuf_offset}, index{index}, type{type},
is_bindless{true} {}
explicit Image(std::size_t offset, std::size_t index, Tegra::Shader::ImageType type,
bool is_bindless)
: offset{offset}, index{index}, type{type}, is_bindless{is_bindless} {}
std::size_t GetOffset() const {
return offset;
}
std::size_t GetIndex() const {
return index;
}
Tegra::Shader::ImageType GetType() const {
return type;
}
bool IsBindless() const {
return is_bindless;
}
bool operator<(const Image& rhs) const {
return std::tie(offset, index, type, is_bindless) <
std::tie(rhs.offset, rhs.index, rhs.type, rhs.is_bindless);
}
private:
std::size_t offset{};
std::size_t index{};
Tegra::Shader::ImageType type{};
bool is_bindless{};
};
struct GlobalMemoryBase {
u32 cbuf_index{};
u32 cbuf_offset{};
@ -289,8 +333,14 @@ struct MetaTexture {
u32 element{};
};
struct MetaImage {
const Image& image;
std::vector<Node> values;
};
/// Parameters that modify an operation but are not part of any particular operand
using Meta = std::variant<MetaArithmetic, MetaTexture, MetaStackClass, Tegra::Shader::HalfType>;
using Meta =
std::variant<MetaArithmetic, MetaTexture, MetaImage, MetaStackClass, Tegra::Shader::HalfType>;
/// Holds any kind of operation that can be done in the IR
class OperationNode final {

View file

@ -104,6 +104,10 @@ public:
return used_samplers;
}
const std::set<Image>& GetImages() const {
return used_images;
}
const std::array<bool, Tegra::Engines::Maxwell3D::Regs::NumClipDistances>& GetClipDistances()
const {
return used_clip_distances;
@ -154,6 +158,7 @@ private:
u32 DecodeConversion(NodeBlock& bb, u32 pc);
u32 DecodeMemory(NodeBlock& bb, u32 pc);
u32 DecodeTexture(NodeBlock& bb, u32 pc);
u32 DecodeImage(NodeBlock& bb, u32 pc);
u32 DecodeFloatSetPredicate(NodeBlock& bb, u32 pc);
u32 DecodeIntegerSetPredicate(NodeBlock& bb, u32 pc);
u32 DecodeHalfSetPredicate(NodeBlock& bb, u32 pc);
@ -254,6 +259,12 @@ private:
Tegra::Shader::TextureType type, bool is_array,
bool is_shadow);
/// Accesses an image.
const Image& GetImage(Tegra::Shader::Image image, Tegra::Shader::ImageType type);
/// Access a bindless image sampler.
const Image& GetBindlessImage(Tegra::Shader::Register reg, Tegra::Shader::ImageType type);
/// Extracts a sequence of bits from a node
Node BitfieldExtract(Node value, u32 offset, u32 bits);
@ -277,6 +288,8 @@ private:
Node4 GetTld4Code(Tegra::Shader::Instruction instr, Tegra::Shader::TextureType texture_type,
bool depth_compare, bool is_array, bool is_aoffi);
Node4 GetTldCode(Tegra::Shader::Instruction instr);
Node4 GetTldsCode(Tegra::Shader::Instruction instr, Tegra::Shader::TextureType texture_type,
bool is_array);
@ -327,6 +340,7 @@ private:
std::set<Tegra::Shader::Attribute::Index> used_output_attributes;
std::map<u32, ConstBuffer> used_cbufs;
std::set<Sampler> used_samplers;
std::set<Image> used_images;
std::array<bool, Tegra::Engines::Maxwell3D::Regs::NumClipDistances> used_clip_distances{};
std::map<GlobalMemoryBase, GlobalMemoryUsage> used_global_memory;
bool uses_physical_attributes{}; // Shader uses AL2P or physical attribute read/writes

View file

@ -12,6 +12,8 @@ SurfaceTarget SurfaceTargetFromTextureType(Tegra::Texture::TextureType texture_t
switch (texture_type) {
case Tegra::Texture::TextureType::Texture1D:
return SurfaceTarget::Texture1D;
case Tegra::Texture::TextureType::Texture1DBuffer:
return SurfaceTarget::TextureBuffer;
case Tegra::Texture::TextureType::Texture2D:
case Tegra::Texture::TextureType::Texture2DNoMipmap:
return SurfaceTarget::Texture2D;
@ -35,6 +37,7 @@ SurfaceTarget SurfaceTargetFromTextureType(Tegra::Texture::TextureType texture_t
bool SurfaceTargetIsLayered(SurfaceTarget target) {
switch (target) {
case SurfaceTarget::Texture1D:
case SurfaceTarget::TextureBuffer:
case SurfaceTarget::Texture2D:
case SurfaceTarget::Texture3D:
return false;
@ -53,6 +56,7 @@ bool SurfaceTargetIsLayered(SurfaceTarget target) {
bool SurfaceTargetIsArray(SurfaceTarget target) {
switch (target) {
case SurfaceTarget::Texture1D:
case SurfaceTarget::TextureBuffer:
case SurfaceTarget::Texture2D:
case SurfaceTarget::Texture3D:
case SurfaceTarget::TextureCubemap:
@ -304,8 +308,8 @@ PixelFormat PixelFormatFromTextureFormat(Tegra::Texture::TextureFormat format,
return PixelFormat::Z32F;
case Tegra::Texture::TextureFormat::Z16:
return PixelFormat::Z16;
case Tegra::Texture::TextureFormat::Z24S8:
return PixelFormat::Z24S8;
case Tegra::Texture::TextureFormat::S8Z24:
return PixelFormat::S8Z24;
case Tegra::Texture::TextureFormat::ZF32_X24S8:
return PixelFormat::Z32FS8;
case Tegra::Texture::TextureFormat::DXT1:

View file

@ -114,6 +114,7 @@ enum class SurfaceType {
enum class SurfaceTarget {
Texture1D,
TextureBuffer,
Texture2D,
Texture3D,
Texture1DArray,
@ -122,71 +123,71 @@ enum class SurfaceTarget {
TextureCubeArray,
};
constexpr std::array<u32, MaxPixelFormat> compression_factor_table = {{
1, // ABGR8U
1, // ABGR8S
1, // ABGR8UI
1, // B5G6R5U
1, // A2B10G10R10U
1, // A1B5G5R5U
1, // R8U
1, // R8UI
1, // RGBA16F
1, // RGBA16U
1, // RGBA16UI
1, // R11FG11FB10F
1, // RGBA32UI
4, // DXT1
4, // DXT23
4, // DXT45
4, // DXN1
4, // DXN2UNORM
4, // DXN2SNORM
4, // BC7U
4, // BC6H_UF16
4, // BC6H_SF16
4, // ASTC_2D_4X4
1, // BGRA8
1, // RGBA32F
1, // RG32F
1, // R32F
1, // R16F
1, // R16U
1, // R16S
1, // R16UI
1, // R16I
1, // RG16
1, // RG16F
1, // RG16UI
1, // RG16I
1, // RG16S
1, // RGB32F
1, // RGBA8_SRGB
1, // RG8U
1, // RG8S
1, // RG32UI
1, // R32UI
4, // ASTC_2D_8X8
4, // ASTC_2D_8X5
4, // ASTC_2D_5X4
1, // BGRA8_SRGB
4, // DXT1_SRGB
4, // DXT23_SRGB
4, // DXT45_SRGB
4, // BC7U_SRGB
4, // ASTC_2D_4X4_SRGB
4, // ASTC_2D_8X8_SRGB
4, // ASTC_2D_8X5_SRGB
4, // ASTC_2D_5X4_SRGB
4, // ASTC_2D_5X5
4, // ASTC_2D_5X5_SRGB
4, // ASTC_2D_10X8
4, // ASTC_2D_10X8_SRGB
1, // Z32F
1, // Z16
1, // Z24S8
1, // S8Z24
1, // Z32FS8
constexpr std::array<u32, MaxPixelFormat> compression_factor_shift_table = {{
0, // ABGR8U
0, // ABGR8S
0, // ABGR8UI
0, // B5G6R5U
0, // A2B10G10R10U
0, // A1B5G5R5U
0, // R8U
0, // R8UI
0, // RGBA16F
0, // RGBA16U
0, // RGBA16UI
0, // R11FG11FB10F
0, // RGBA32UI
2, // DXT1
2, // DXT23
2, // DXT45
2, // DXN1
2, // DXN2UNORM
2, // DXN2SNORM
2, // BC7U
2, // BC6H_UF16
2, // BC6H_SF16
2, // ASTC_2D_4X4
0, // BGRA8
0, // RGBA32F
0, // RG32F
0, // R32F
0, // R16F
0, // R16U
0, // R16S
0, // R16UI
0, // R16I
0, // RG16
0, // RG16F
0, // RG16UI
0, // RG16I
0, // RG16S
0, // RGB32F
0, // RGBA8_SRGB
0, // RG8U
0, // RG8S
0, // RG32UI
0, // R32UI
2, // ASTC_2D_8X8
2, // ASTC_2D_8X5
2, // ASTC_2D_5X4
0, // BGRA8_SRGB
2, // DXT1_SRGB
2, // DXT23_SRGB
2, // DXT45_SRGB
2, // BC7U_SRGB
2, // ASTC_2D_4X4_SRGB
2, // ASTC_2D_8X8_SRGB
2, // ASTC_2D_8X5_SRGB
2, // ASTC_2D_5X4_SRGB
2, // ASTC_2D_5X5
2, // ASTC_2D_5X5_SRGB
2, // ASTC_2D_10X8
2, // ASTC_2D_10X8_SRGB
0, // Z32F
0, // Z16
0, // Z24S8
0, // S8Z24
0, // Z32FS8
}};
/**
@ -195,12 +196,14 @@ constexpr std::array<u32, MaxPixelFormat> compression_factor_table = {{
* compressed image. This is used for maintaining proper surface sizes for compressed
* texture formats.
*/
static constexpr u32 GetCompressionFactor(PixelFormat format) {
if (format == PixelFormat::Invalid)
return 0;
inline constexpr u32 GetCompressionFactorShift(PixelFormat format) {
DEBUG_ASSERT(format != PixelFormat::Invalid);
DEBUG_ASSERT(static_cast<std::size_t>(format) < compression_factor_shift_table.size());
return compression_factor_shift_table[static_cast<std::size_t>(format)];
}
ASSERT(static_cast<std::size_t>(format) < compression_factor_table.size());
return compression_factor_table[static_cast<std::size_t>(format)];
inline constexpr u32 GetCompressionFactor(PixelFormat format) {
return 1U << GetCompressionFactorShift(format);
}
constexpr std::array<u32, MaxPixelFormat> block_width_table = {{
@ -436,6 +439,88 @@ static constexpr u32 GetBytesPerPixel(PixelFormat pixel_format) {
return GetFormatBpp(pixel_format) / CHAR_BIT;
}
enum class SurfaceCompression {
None, // Not compressed
Compressed, // Texture is compressed
Converted, // Texture is converted before upload or after download
Rearranged, // Texture is swizzled before upload or after download
};
constexpr std::array<SurfaceCompression, MaxPixelFormat> compression_type_table = {{
SurfaceCompression::None, // ABGR8U
SurfaceCompression::None, // ABGR8S
SurfaceCompression::None, // ABGR8UI
SurfaceCompression::None, // B5G6R5U
SurfaceCompression::None, // A2B10G10R10U
SurfaceCompression::None, // A1B5G5R5U
SurfaceCompression::None, // R8U
SurfaceCompression::None, // R8UI
SurfaceCompression::None, // RGBA16F
SurfaceCompression::None, // RGBA16U
SurfaceCompression::None, // RGBA16UI
SurfaceCompression::None, // R11FG11FB10F
SurfaceCompression::None, // RGBA32UI
SurfaceCompression::Compressed, // DXT1
SurfaceCompression::Compressed, // DXT23
SurfaceCompression::Compressed, // DXT45
SurfaceCompression::Compressed, // DXN1
SurfaceCompression::Compressed, // DXN2UNORM
SurfaceCompression::Compressed, // DXN2SNORM
SurfaceCompression::Compressed, // BC7U
SurfaceCompression::Compressed, // BC6H_UF16
SurfaceCompression::Compressed, // BC6H_SF16
SurfaceCompression::Converted, // ASTC_2D_4X4
SurfaceCompression::None, // BGRA8
SurfaceCompression::None, // RGBA32F
SurfaceCompression::None, // RG32F
SurfaceCompression::None, // R32F
SurfaceCompression::None, // R16F
SurfaceCompression::None, // R16U
SurfaceCompression::None, // R16S
SurfaceCompression::None, // R16UI
SurfaceCompression::None, // R16I
SurfaceCompression::None, // RG16
SurfaceCompression::None, // RG16F
SurfaceCompression::None, // RG16UI
SurfaceCompression::None, // RG16I
SurfaceCompression::None, // RG16S
SurfaceCompression::None, // RGB32F
SurfaceCompression::None, // RGBA8_SRGB
SurfaceCompression::None, // RG8U
SurfaceCompression::None, // RG8S
SurfaceCompression::None, // RG32UI
SurfaceCompression::None, // R32UI
SurfaceCompression::Converted, // ASTC_2D_8X8
SurfaceCompression::Converted, // ASTC_2D_8X5
SurfaceCompression::Converted, // ASTC_2D_5X4
SurfaceCompression::None, // BGRA8_SRGB
SurfaceCompression::Compressed, // DXT1_SRGB
SurfaceCompression::Compressed, // DXT23_SRGB
SurfaceCompression::Compressed, // DXT45_SRGB
SurfaceCompression::Compressed, // BC7U_SRGB
SurfaceCompression::Converted, // ASTC_2D_4X4_SRGB
SurfaceCompression::Converted, // ASTC_2D_8X8_SRGB
SurfaceCompression::Converted, // ASTC_2D_8X5_SRGB
SurfaceCompression::Converted, // ASTC_2D_5X4_SRGB
SurfaceCompression::Converted, // ASTC_2D_5X5
SurfaceCompression::Converted, // ASTC_2D_5X5_SRGB
SurfaceCompression::Converted, // ASTC_2D_10X8
SurfaceCompression::Converted, // ASTC_2D_10X8_SRGB
SurfaceCompression::None, // Z32F
SurfaceCompression::None, // Z16
SurfaceCompression::None, // Z24S8
SurfaceCompression::Rearranged, // S8Z24
SurfaceCompression::None, // Z32FS8
}};
constexpr SurfaceCompression GetFormatCompressionType(PixelFormat format) {
if (format == PixelFormat::Invalid) {
return SurfaceCompression::None;
}
DEBUG_ASSERT(static_cast<std::size_t>(format) < compression_type_table.size());
return compression_type_table[static_cast<std::size_t>(format)];
}
SurfaceTarget SurfaceTargetFromTextureType(Tegra::Texture::TextureType texture_type);
bool SurfaceTargetIsLayered(SurfaceTarget target);

View file

@ -1,386 +0,0 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/alignment.h"
#include "common/assert.h"
#include "common/cityhash.h"
#include "common/common_types.h"
#include "core/core.h"
#include "video_core/surface.h"
#include "video_core/texture_cache.h"
#include "video_core/textures/decoders.h"
#include "video_core/textures/texture.h"
namespace VideoCommon {
using VideoCore::Surface::SurfaceTarget;
using VideoCore::Surface::ComponentTypeFromDepthFormat;
using VideoCore::Surface::ComponentTypeFromRenderTarget;
using VideoCore::Surface::ComponentTypeFromTexture;
using VideoCore::Surface::PixelFormatFromDepthFormat;
using VideoCore::Surface::PixelFormatFromRenderTargetFormat;
using VideoCore::Surface::PixelFormatFromTextureFormat;
using VideoCore::Surface::SurfaceTargetFromTextureType;
constexpr u32 GetMipmapSize(bool uncompressed, u32 mip_size, u32 tile) {
return uncompressed ? mip_size : std::max(1U, (mip_size + tile - 1) / tile);
}
SurfaceParams SurfaceParams::CreateForTexture(Core::System& system,
const Tegra::Texture::FullTextureInfo& config) {
SurfaceParams params;
params.is_tiled = config.tic.IsTiled();
params.block_width = params.is_tiled ? config.tic.BlockWidth() : 0,
params.block_height = params.is_tiled ? config.tic.BlockHeight() : 0,
params.block_depth = params.is_tiled ? config.tic.BlockDepth() : 0,
params.tile_width_spacing = params.is_tiled ? (1 << config.tic.tile_width_spacing.Value()) : 1;
params.pixel_format =
PixelFormatFromTextureFormat(config.tic.format, config.tic.r_type.Value(), false);
params.component_type = ComponentTypeFromTexture(config.tic.r_type.Value());
params.type = GetFormatType(params.pixel_format);
params.target = SurfaceTargetFromTextureType(config.tic.texture_type);
params.width = Common::AlignUp(config.tic.Width(), GetCompressionFactor(params.pixel_format));
params.height = Common::AlignUp(config.tic.Height(), GetCompressionFactor(params.pixel_format));
params.depth = config.tic.Depth();
if (params.target == SurfaceTarget::TextureCubemap ||
params.target == SurfaceTarget::TextureCubeArray) {
params.depth *= 6;
}
params.pitch = params.is_tiled ? 0 : config.tic.Pitch();
params.unaligned_height = config.tic.Height();
params.num_levels = config.tic.max_mip_level + 1;
params.CalculateCachedValues();
return params;
}
SurfaceParams SurfaceParams::CreateForDepthBuffer(
Core::System& system, u32 zeta_width, u32 zeta_height, Tegra::DepthFormat format,
u32 block_width, u32 block_height, u32 block_depth,
Tegra::Engines::Maxwell3D::Regs::InvMemoryLayout type) {
SurfaceParams params;
params.is_tiled = type == Tegra::Engines::Maxwell3D::Regs::InvMemoryLayout::BlockLinear;
params.block_width = 1 << std::min(block_width, 5U);
params.block_height = 1 << std::min(block_height, 5U);
params.block_depth = 1 << std::min(block_depth, 5U);
params.tile_width_spacing = 1;
params.pixel_format = PixelFormatFromDepthFormat(format);
params.component_type = ComponentTypeFromDepthFormat(format);
params.type = GetFormatType(params.pixel_format);
params.width = zeta_width;
params.height = zeta_height;
params.unaligned_height = zeta_height;
params.target = SurfaceTarget::Texture2D;
params.depth = 1;
params.num_levels = 1;
params.CalculateCachedValues();
return params;
}
SurfaceParams SurfaceParams::CreateForFramebuffer(Core::System& system, std::size_t index) {
const auto& config{system.GPU().Maxwell3D().regs.rt[index]};
SurfaceParams params;
params.is_tiled =
config.memory_layout.type == Tegra::Engines::Maxwell3D::Regs::InvMemoryLayout::BlockLinear;
params.block_width = 1 << config.memory_layout.block_width;
params.block_height = 1 << config.memory_layout.block_height;
params.block_depth = 1 << config.memory_layout.block_depth;
params.tile_width_spacing = 1;
params.pixel_format = PixelFormatFromRenderTargetFormat(config.format);
params.component_type = ComponentTypeFromRenderTarget(config.format);
params.type = GetFormatType(params.pixel_format);
if (params.is_tiled) {
params.width = config.width;
} else {
const u32 bpp = GetFormatBpp(params.pixel_format) / CHAR_BIT;
params.pitch = config.width;
params.width = params.pitch / bpp;
}
params.height = config.height;
params.depth = 1;
params.unaligned_height = config.height;
params.target = SurfaceTarget::Texture2D;
params.num_levels = 1;
params.CalculateCachedValues();
return params;
}
SurfaceParams SurfaceParams::CreateForFermiCopySurface(
const Tegra::Engines::Fermi2D::Regs::Surface& config) {
SurfaceParams params{};
params.is_tiled = !config.linear;
params.block_width = params.is_tiled ? std::min(config.BlockWidth(), 32U) : 0,
params.block_height = params.is_tiled ? std::min(config.BlockHeight(), 32U) : 0,
params.block_depth = params.is_tiled ? std::min(config.BlockDepth(), 32U) : 0,
params.tile_width_spacing = 1;
params.pixel_format = PixelFormatFromRenderTargetFormat(config.format);
params.component_type = ComponentTypeFromRenderTarget(config.format);
params.type = GetFormatType(params.pixel_format);
params.width = config.width;
params.height = config.height;
params.unaligned_height = config.height;
// TODO(Rodrigo): Try to guess the surface target from depth and layer parameters
params.target = SurfaceTarget::Texture2D;
params.depth = 1;
params.num_levels = 1;
params.CalculateCachedValues();
return params;
}
u32 SurfaceParams::GetMipWidth(u32 level) const {
return std::max(1U, width >> level);
}
u32 SurfaceParams::GetMipHeight(u32 level) const {
return std::max(1U, height >> level);
}
u32 SurfaceParams::GetMipDepth(u32 level) const {
return IsLayered() ? depth : std::max(1U, depth >> level);
}
bool SurfaceParams::IsLayered() const {
switch (target) {
case SurfaceTarget::Texture1DArray:
case SurfaceTarget::Texture2DArray:
case SurfaceTarget::TextureCubeArray:
case SurfaceTarget::TextureCubemap:
return true;
default:
return false;
}
}
u32 SurfaceParams::GetMipBlockHeight(u32 level) const {
// Auto block resizing algorithm from:
// https://cgit.freedesktop.org/mesa/mesa/tree/src/gallium/drivers/nouveau/nv50/nv50_miptree.c
if (level == 0) {
return block_height;
}
const u32 height{GetMipHeight(level)};
const u32 default_block_height{GetDefaultBlockHeight(pixel_format)};
const u32 blocks_in_y{(height + default_block_height - 1) / default_block_height};
u32 block_height = 16;
while (block_height > 1 && blocks_in_y <= block_height * 4) {
block_height >>= 1;
}
return block_height;
}
u32 SurfaceParams::GetMipBlockDepth(u32 level) const {
if (level == 0)
return block_depth;
if (target != SurfaceTarget::Texture3D)
return 1;
const u32 depth{GetMipDepth(level)};
u32 block_depth = 32;
while (block_depth > 1 && depth * 2 <= block_depth) {
block_depth >>= 1;
}
if (block_depth == 32 && GetMipBlockHeight(level) >= 4) {
return 16;
}
return block_depth;
}
std::size_t SurfaceParams::GetGuestMipmapLevelOffset(u32 level) const {
std::size_t offset = 0;
for (u32 i = 0; i < level; i++) {
offset += GetInnerMipmapMemorySize(i, false, IsLayered(), false);
}
return offset;
}
std::size_t SurfaceParams::GetHostMipmapLevelOffset(u32 level) const {
std::size_t offset = 0;
for (u32 i = 0; i < level; i++) {
offset += GetInnerMipmapMemorySize(i, true, false, false);
}
return offset;
}
std::size_t SurfaceParams::GetGuestLayerSize() const {
return GetInnerMemorySize(false, true, false);
}
std::size_t SurfaceParams::GetHostLayerSize(u32 level) const {
return GetInnerMipmapMemorySize(level, true, IsLayered(), false);
}
bool SurfaceParams::IsFamiliar(const SurfaceParams& view_params) const {
if (std::tie(is_tiled, tile_width_spacing, pixel_format, component_type, type) !=
std::tie(view_params.is_tiled, view_params.tile_width_spacing, view_params.pixel_format,
view_params.component_type, view_params.type)) {
return false;
}
const SurfaceTarget view_target{view_params.target};
if (view_target == target) {
return true;
}
switch (target) {
case SurfaceTarget::Texture1D:
case SurfaceTarget::Texture2D:
case SurfaceTarget::Texture3D:
return false;
case SurfaceTarget::Texture1DArray:
return view_target == SurfaceTarget::Texture1D;
case SurfaceTarget::Texture2DArray:
return view_target == SurfaceTarget::Texture2D;
case SurfaceTarget::TextureCubemap:
return view_target == SurfaceTarget::Texture2D ||
view_target == SurfaceTarget::Texture2DArray;
case SurfaceTarget::TextureCubeArray:
return view_target == SurfaceTarget::Texture2D ||
view_target == SurfaceTarget::Texture2DArray ||
view_target == SurfaceTarget::TextureCubemap;
default:
UNIMPLEMENTED_MSG("Unimplemented texture family={}", static_cast<u32>(target));
return false;
}
}
bool SurfaceParams::IsPixelFormatZeta() const {
return pixel_format >= VideoCore::Surface::PixelFormat::MaxColorFormat &&
pixel_format < VideoCore::Surface::PixelFormat::MaxDepthStencilFormat;
}
void SurfaceParams::CalculateCachedValues() {
guest_size_in_bytes = GetInnerMemorySize(false, false, false);
// ASTC is uncompressed in software, in emulated as RGBA8
if (IsPixelFormatASTC(pixel_format)) {
host_size_in_bytes = width * height * depth * 4;
} else {
host_size_in_bytes = GetInnerMemorySize(true, false, false);
}
switch (target) {
case SurfaceTarget::Texture1D:
case SurfaceTarget::Texture2D:
case SurfaceTarget::Texture3D:
num_layers = 1;
break;
case SurfaceTarget::Texture1DArray:
case SurfaceTarget::Texture2DArray:
case SurfaceTarget::TextureCubemap:
case SurfaceTarget::TextureCubeArray:
num_layers = depth;
break;
default:
UNREACHABLE();
}
}
std::size_t SurfaceParams::GetInnerMipmapMemorySize(u32 level, bool as_host_size, bool layer_only,
bool uncompressed) const {
const bool tiled{as_host_size ? false : is_tiled};
const u32 tile_x{GetDefaultBlockWidth(pixel_format)};
const u32 tile_y{GetDefaultBlockHeight(pixel_format)};
const u32 width{GetMipmapSize(uncompressed, GetMipWidth(level), tile_x)};
const u32 height{GetMipmapSize(uncompressed, GetMipHeight(level), tile_y)};
const u32 depth{layer_only ? 1U : GetMipDepth(level)};
return Tegra::Texture::CalculateSize(tiled, GetBytesPerPixel(pixel_format), width, height,
depth, GetMipBlockHeight(level), GetMipBlockDepth(level));
}
std::size_t SurfaceParams::GetInnerMemorySize(bool as_host_size, bool layer_only,
bool uncompressed) const {
std::size_t size = 0;
for (u32 level = 0; level < num_levels; ++level) {
size += GetInnerMipmapMemorySize(level, as_host_size, layer_only, uncompressed);
}
if (!as_host_size && is_tiled) {
size = Common::AlignUp(size, Tegra::Texture::GetGOBSize() * block_height * block_depth);
}
return size;
}
std::map<u64, std::pair<u32, u32>> SurfaceParams::CreateViewOffsetMap() const {
std::map<u64, std::pair<u32, u32>> view_offset_map;
switch (target) {
case SurfaceTarget::Texture1D:
case SurfaceTarget::Texture2D:
case SurfaceTarget::Texture3D: {
constexpr u32 layer = 0;
for (u32 level = 0; level < num_levels; ++level) {
const std::size_t offset{GetGuestMipmapLevelOffset(level)};
view_offset_map.insert({offset, {layer, level}});
}
break;
}
case SurfaceTarget::Texture1DArray:
case SurfaceTarget::Texture2DArray:
case SurfaceTarget::TextureCubemap:
case SurfaceTarget::TextureCubeArray: {
const std::size_t layer_size{GetGuestLayerSize()};
for (u32 level = 0; level < num_levels; ++level) {
const std::size_t level_offset{GetGuestMipmapLevelOffset(level)};
for (u32 layer = 0; layer < num_layers; ++layer) {
const auto layer_offset{static_cast<std::size_t>(layer_size * layer)};
const std::size_t offset{level_offset + layer_offset};
view_offset_map.insert({offset, {layer, level}});
}
}
break;
}
default:
UNIMPLEMENTED_MSG("Unimplemented surface target {}", static_cast<u32>(target));
}
return view_offset_map;
}
bool SurfaceParams::IsViewValid(const SurfaceParams& view_params, u32 layer, u32 level) const {
return IsDimensionValid(view_params, level) && IsDepthValid(view_params, level) &&
IsInBounds(view_params, layer, level);
}
bool SurfaceParams::IsDimensionValid(const SurfaceParams& view_params, u32 level) const {
return view_params.width == GetMipWidth(level) && view_params.height == GetMipHeight(level);
}
bool SurfaceParams::IsDepthValid(const SurfaceParams& view_params, u32 level) const {
if (view_params.target != SurfaceTarget::Texture3D) {
return true;
}
return view_params.depth == GetMipDepth(level);
}
bool SurfaceParams::IsInBounds(const SurfaceParams& view_params, u32 layer, u32 level) const {
return layer + view_params.num_layers <= num_layers &&
level + view_params.num_levels <= num_levels;
}
std::size_t HasheableSurfaceParams::Hash() const {
return static_cast<std::size_t>(
Common::CityHash64(reinterpret_cast<const char*>(this), sizeof(*this)));
}
bool HasheableSurfaceParams::operator==(const HasheableSurfaceParams& rhs) const {
return std::tie(is_tiled, block_width, block_height, block_depth, tile_width_spacing, width,
height, depth, pitch, unaligned_height, num_levels, pixel_format,
component_type, type, target) ==
std::tie(rhs.is_tiled, rhs.block_width, rhs.block_height, rhs.block_depth,
rhs.tile_width_spacing, rhs.width, rhs.height, rhs.depth, rhs.pitch,
rhs.unaligned_height, rhs.num_levels, rhs.pixel_format, rhs.component_type,
rhs.type, rhs.target);
}
std::size_t ViewKey::Hash() const {
return static_cast<std::size_t>(
Common::CityHash64(reinterpret_cast<const char*>(this), sizeof(*this)));
}
bool ViewKey::operator==(const ViewKey& rhs) const {
return std::tie(base_layer, num_layers, base_level, num_levels) ==
std::tie(rhs.base_layer, rhs.num_layers, rhs.base_level, rhs.num_levels);
}
} // namespace VideoCommon

View file

@ -1,586 +0,0 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <list>
#include <memory>
#include <set>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <boost/icl/interval_map.hpp>
#include <boost/range/iterator_range.hpp>
#include "common/assert.h"
#include "common/common_types.h"
#include "core/memory.h"
#include "video_core/engines/fermi_2d.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/gpu.h"
#include "video_core/rasterizer_interface.h"
#include "video_core/surface.h"
namespace Core {
class System;
}
namespace Tegra::Texture {
struct FullTextureInfo;
}
namespace VideoCore {
class RasterizerInterface;
}
namespace VideoCommon {
class HasheableSurfaceParams {
public:
std::size_t Hash() const;
bool operator==(const HasheableSurfaceParams& rhs) const;
protected:
// Avoid creation outside of a managed environment.
HasheableSurfaceParams() = default;
bool is_tiled;
u32 block_width;
u32 block_height;
u32 block_depth;
u32 tile_width_spacing;
u32 width;
u32 height;
u32 depth;
u32 pitch;
u32 unaligned_height;
u32 num_levels;
VideoCore::Surface::PixelFormat pixel_format;
VideoCore::Surface::ComponentType component_type;
VideoCore::Surface::SurfaceType type;
VideoCore::Surface::SurfaceTarget target;
};
class SurfaceParams final : public HasheableSurfaceParams {
public:
/// Creates SurfaceCachedParams from a texture configuration.
static SurfaceParams CreateForTexture(Core::System& system,
const Tegra::Texture::FullTextureInfo& config);
/// Creates SurfaceCachedParams for a depth buffer configuration.
static SurfaceParams CreateForDepthBuffer(
Core::System& system, u32 zeta_width, u32 zeta_height, Tegra::DepthFormat format,
u32 block_width, u32 block_height, u32 block_depth,
Tegra::Engines::Maxwell3D::Regs::InvMemoryLayout type);
/// Creates SurfaceCachedParams from a framebuffer configuration.
static SurfaceParams CreateForFramebuffer(Core::System& system, std::size_t index);
/// Creates SurfaceCachedParams from a Fermi2D surface configuration.
static SurfaceParams CreateForFermiCopySurface(
const Tegra::Engines::Fermi2D::Regs::Surface& config);
bool IsTiled() const {
return is_tiled;
}
u32 GetBlockWidth() const {
return block_width;
}
u32 GetTileWidthSpacing() const {
return tile_width_spacing;
}
u32 GetWidth() const {
return width;
}
u32 GetHeight() const {
return height;
}
u32 GetDepth() const {
return depth;
}
u32 GetPitch() const {
return pitch;
}
u32 GetNumLevels() const {
return num_levels;
}
VideoCore::Surface::PixelFormat GetPixelFormat() const {
return pixel_format;
}
VideoCore::Surface::ComponentType GetComponentType() const {
return component_type;
}
VideoCore::Surface::SurfaceTarget GetTarget() const {
return target;
}
VideoCore::Surface::SurfaceType GetType() const {
return type;
}
std::size_t GetGuestSizeInBytes() const {
return guest_size_in_bytes;
}
std::size_t GetHostSizeInBytes() const {
return host_size_in_bytes;
}
u32 GetNumLayers() const {
return num_layers;
}
/// Returns the width of a given mipmap level.
u32 GetMipWidth(u32 level) const;
/// Returns the height of a given mipmap level.
u32 GetMipHeight(u32 level) const;
/// Returns the depth of a given mipmap level.
u32 GetMipDepth(u32 level) const;
/// Returns true if these parameters are from a layered surface.
bool IsLayered() const;
/// Returns the block height of a given mipmap level.
u32 GetMipBlockHeight(u32 level) const;
/// Returns the block depth of a given mipmap level.
u32 GetMipBlockDepth(u32 level) const;
/// Returns the offset in bytes in guest memory of a given mipmap level.
std::size_t GetGuestMipmapLevelOffset(u32 level) const;
/// Returns the offset in bytes in host memory (linear) of a given mipmap level.
std::size_t GetHostMipmapLevelOffset(u32 level) const;
/// Returns the size of a layer in bytes in guest memory.
std::size_t GetGuestLayerSize() const;
/// Returns the size of a layer in bytes in host memory for a given mipmap level.
std::size_t GetHostLayerSize(u32 level) const;
/// Returns true if another surface can be familiar with this. This is a loosely defined term
/// that reflects the possibility of these two surface parameters potentially being part of a
/// bigger superset.
bool IsFamiliar(const SurfaceParams& view_params) const;
/// Returns true if the pixel format is a depth and/or stencil format.
bool IsPixelFormatZeta() const;
/// Creates a map that redirects an address difference to a layer and mipmap level.
std::map<u64, std::pair<u32, u32>> CreateViewOffsetMap() const;
/// Returns true if the passed surface view parameters is equal or a valid subset of this.
bool IsViewValid(const SurfaceParams& view_params, u32 layer, u32 level) const;
private:
/// Calculates values that can be deduced from HasheableSurfaceParams.
void CalculateCachedValues();
/// Returns the size of a given mipmap level.
std::size_t GetInnerMipmapMemorySize(u32 level, bool as_host_size, bool layer_only,
bool uncompressed) const;
/// Returns the size of all mipmap levels and aligns as needed.
std::size_t GetInnerMemorySize(bool as_host_size, bool layer_only, bool uncompressed) const;
/// Returns true if the passed view width and height match the size of this params in a given
/// mipmap level.
bool IsDimensionValid(const SurfaceParams& view_params, u32 level) const;
/// Returns true if the passed view depth match the size of this params in a given mipmap level.
bool IsDepthValid(const SurfaceParams& view_params, u32 level) const;
/// Returns true if the passed view layers and mipmap levels are in bounds.
bool IsInBounds(const SurfaceParams& view_params, u32 layer, u32 level) const;
std::size_t guest_size_in_bytes;
std::size_t host_size_in_bytes;
u32 num_layers;
};
struct ViewKey {
std::size_t Hash() const;
bool operator==(const ViewKey& rhs) const;
u32 base_layer{};
u32 num_layers{};
u32 base_level{};
u32 num_levels{};
};
} // namespace VideoCommon
namespace std {
template <>
struct hash<VideoCommon::SurfaceParams> {
std::size_t operator()(const VideoCommon::SurfaceParams& k) const noexcept {
return k.Hash();
}
};
template <>
struct hash<VideoCommon::ViewKey> {
std::size_t operator()(const VideoCommon::ViewKey& k) const noexcept {
return k.Hash();
}
};
} // namespace std
namespace VideoCommon {
template <typename TView, typename TExecutionContext>
class SurfaceBase {
static_assert(std::is_trivially_copyable_v<TExecutionContext>);
public:
virtual void LoadBuffer() = 0;
virtual TExecutionContext FlushBuffer(TExecutionContext exctx) = 0;
virtual TExecutionContext UploadTexture(TExecutionContext exctx) = 0;
TView* TryGetView(VAddr view_addr, const SurfaceParams& view_params) {
if (view_addr < cpu_addr || !params.IsFamiliar(view_params)) {
// It can't be a view if it's in a prior address.
return {};
}
const auto relative_offset{static_cast<u64>(view_addr - cpu_addr)};
const auto it{view_offset_map.find(relative_offset)};
if (it == view_offset_map.end()) {
// Couldn't find an aligned view.
return {};
}
const auto [layer, level] = it->second;
if (!params.IsViewValid(view_params, layer, level)) {
return {};
}
return GetView(layer, view_params.GetNumLayers(), level, view_params.GetNumLevels());
}
VAddr GetCpuAddr() const {
ASSERT(is_registered);
return cpu_addr;
}
u8* GetHostPtr() const {
ASSERT(is_registered);
return host_ptr;
}
CacheAddr GetCacheAddr() const {
ASSERT(is_registered);
return cache_addr;
}
std::size_t GetSizeInBytes() const {
return params.GetGuestSizeInBytes();
}
void MarkAsModified(bool is_modified_) {
is_modified = is_modified_;
}
const SurfaceParams& GetSurfaceParams() const {
return params;
}
TView* GetView(VAddr view_addr, const SurfaceParams& view_params) {
TView* view{TryGetView(view_addr, view_params)};
ASSERT(view != nullptr);
return view;
}
void Register(VAddr cpu_addr_, u8* host_ptr_) {
ASSERT(!is_registered);
is_registered = true;
cpu_addr = cpu_addr_;
host_ptr = host_ptr_;
cache_addr = ToCacheAddr(host_ptr_);
}
void Register(VAddr cpu_addr_) {
Register(cpu_addr_, Memory::GetPointer(cpu_addr_));
}
void Unregister() {
ASSERT(is_registered);
is_registered = false;
}
bool IsRegistered() const {
return is_registered;
}
protected:
explicit SurfaceBase(const SurfaceParams& params)
: params{params}, view_offset_map{params.CreateViewOffsetMap()} {}
~SurfaceBase() = default;
virtual std::unique_ptr<TView> CreateView(const ViewKey& view_key) = 0;
bool IsModified() const {
return is_modified;
}
const SurfaceParams params;
private:
TView* GetView(u32 base_layer, u32 num_layers, u32 base_level, u32 num_levels) {
const ViewKey key{base_layer, num_layers, base_level, num_levels};
const auto [entry, is_cache_miss] = views.try_emplace(key);
auto& view{entry->second};
if (is_cache_miss) {
view = CreateView(key);
}
return view.get();
}
const std::map<u64, std::pair<u32, u32>> view_offset_map;
VAddr cpu_addr{};
u8* host_ptr{};
CacheAddr cache_addr{};
bool is_modified{};
bool is_registered{};
std::unordered_map<ViewKey, std::unique_ptr<TView>> views;
};
template <typename TSurface, typename TView, typename TExecutionContext>
class TextureCache {
static_assert(std::is_trivially_copyable_v<TExecutionContext>);
using ResultType = std::tuple<TView*, TExecutionContext>;
using IntervalMap = boost::icl::interval_map<CacheAddr, std::set<TSurface*>>;
using IntervalType = typename IntervalMap::interval_type;
public:
void InvalidateRegion(CacheAddr addr, std::size_t size) {
for (TSurface* surface : GetSurfacesInRegion(addr, size)) {
if (!surface->IsRegistered()) {
// Skip duplicates
continue;
}
Unregister(surface);
}
}
ResultType GetTextureSurface(TExecutionContext exctx,
const Tegra::Texture::FullTextureInfo& config) {
auto& memory_manager{system.GPU().MemoryManager()};
const auto cpu_addr{memory_manager.GpuToCpuAddress(config.tic.Address())};
if (!cpu_addr) {
return {{}, exctx};
}
const auto params{SurfaceParams::CreateForTexture(system, config)};
return GetSurfaceView(exctx, *cpu_addr, params, true);
}
ResultType GetDepthBufferSurface(TExecutionContext exctx, bool preserve_contents) {
const auto& regs{system.GPU().Maxwell3D().regs};
if (!regs.zeta.Address() || !regs.zeta_enable) {
return {{}, exctx};
}
auto& memory_manager{system.GPU().MemoryManager()};
const auto cpu_addr{memory_manager.GpuToCpuAddress(regs.zeta.Address())};
if (!cpu_addr) {
return {{}, exctx};
}
const auto depth_params{SurfaceParams::CreateForDepthBuffer(
system, regs.zeta_width, regs.zeta_height, regs.zeta.format,
regs.zeta.memory_layout.block_width, regs.zeta.memory_layout.block_height,
regs.zeta.memory_layout.block_depth, regs.zeta.memory_layout.type)};
return GetSurfaceView(exctx, *cpu_addr, depth_params, preserve_contents);
}
ResultType GetColorBufferSurface(TExecutionContext exctx, std::size_t index,
bool preserve_contents) {
ASSERT(index < Tegra::Engines::Maxwell3D::Regs::NumRenderTargets);
const auto& regs{system.GPU().Maxwell3D().regs};
if (index >= regs.rt_control.count || regs.rt[index].Address() == 0 ||
regs.rt[index].format == Tegra::RenderTargetFormat::NONE) {
return {{}, exctx};
}
auto& memory_manager{system.GPU().MemoryManager()};
const auto& config{system.GPU().Maxwell3D().regs.rt[index]};
const auto cpu_addr{memory_manager.GpuToCpuAddress(
config.Address() + config.base_layer * config.layer_stride * sizeof(u32))};
if (!cpu_addr) {
return {{}, exctx};
}
return GetSurfaceView(exctx, *cpu_addr, SurfaceParams::CreateForFramebuffer(system, index),
preserve_contents);
}
ResultType GetFermiSurface(TExecutionContext exctx,
const Tegra::Engines::Fermi2D::Regs::Surface& config) {
const auto cpu_addr{system.GPU().MemoryManager().GpuToCpuAddress(config.Address())};
ASSERT(cpu_addr);
return GetSurfaceView(exctx, *cpu_addr, SurfaceParams::CreateForFermiCopySurface(config),
true);
}
TSurface* TryFindFramebufferSurface(const u8* host_ptr) const {
const auto it{registered_surfaces.find(ToCacheAddr(host_ptr))};
return it != registered_surfaces.end() ? *it->second.begin() : nullptr;
}
protected:
TextureCache(Core::System& system, VideoCore::RasterizerInterface& rasterizer)
: system{system}, rasterizer{rasterizer} {}
~TextureCache() = default;
virtual ResultType TryFastGetSurfaceView(TExecutionContext exctx, VAddr cpu_addr, u8* host_ptr,
const SurfaceParams& params, bool preserve_contents,
const std::vector<TSurface*>& overlaps) = 0;
virtual std::unique_ptr<TSurface> CreateSurface(const SurfaceParams& params) = 0;
void Register(TSurface* surface, VAddr cpu_addr, u8* host_ptr) {
surface->Register(cpu_addr, host_ptr);
registered_surfaces.add({GetSurfaceInterval(surface), {surface}});
rasterizer.UpdatePagesCachedCount(surface->GetCpuAddr(), surface->GetSizeInBytes(), 1);
}
void Unregister(TSurface* surface) {
registered_surfaces.subtract({GetSurfaceInterval(surface), {surface}});
rasterizer.UpdatePagesCachedCount(surface->GetCpuAddr(), surface->GetSizeInBytes(), -1);
surface->Unregister();
}
TSurface* GetUncachedSurface(const SurfaceParams& params) {
if (TSurface* surface = TryGetReservedSurface(params); surface)
return surface;
// No reserved surface available, create a new one and reserve it
auto new_surface{CreateSurface(params)};
TSurface* surface{new_surface.get()};
ReserveSurface(params, std::move(new_surface));
return surface;
}
Core::System& system;
private:
ResultType GetSurfaceView(TExecutionContext exctx, VAddr cpu_addr, const SurfaceParams& params,
bool preserve_contents) {
const auto host_ptr{Memory::GetPointer(cpu_addr)};
const auto cache_addr{ToCacheAddr(host_ptr)};
const auto overlaps{GetSurfacesInRegion(cache_addr, params.GetGuestSizeInBytes())};
if (overlaps.empty()) {
return LoadSurfaceView(exctx, cpu_addr, host_ptr, params, preserve_contents);
}
if (overlaps.size() == 1) {
if (TView* view = overlaps[0]->TryGetView(cpu_addr, params); view)
return {view, exctx};
}
TView* fast_view;
std::tie(fast_view, exctx) =
TryFastGetSurfaceView(exctx, cpu_addr, host_ptr, params, preserve_contents, overlaps);
for (TSurface* surface : overlaps) {
if (!fast_view) {
// Flush even when we don't care about the contents, to preserve memory not written
// by the new surface.
exctx = surface->FlushBuffer(exctx);
}
Unregister(surface);
}
if (fast_view) {
return {fast_view, exctx};
}
return LoadSurfaceView(exctx, cpu_addr, host_ptr, params, preserve_contents);
}
ResultType LoadSurfaceView(TExecutionContext exctx, VAddr cpu_addr, u8* host_ptr,
const SurfaceParams& params, bool preserve_contents) {
TSurface* new_surface{GetUncachedSurface(params)};
Register(new_surface, cpu_addr, host_ptr);
if (preserve_contents) {
exctx = LoadSurface(exctx, new_surface);
}
return {new_surface->GetView(cpu_addr, params), exctx};
}
TExecutionContext LoadSurface(TExecutionContext exctx, TSurface* surface) {
surface->LoadBuffer();
exctx = surface->UploadTexture(exctx);
surface->MarkAsModified(false);
return exctx;
}
std::vector<TSurface*> GetSurfacesInRegion(CacheAddr cache_addr, std::size_t size) const {
if (size == 0) {
return {};
}
const IntervalType interval{cache_addr, cache_addr + size};
std::vector<TSurface*> surfaces;
for (auto& pair : boost::make_iterator_range(registered_surfaces.equal_range(interval))) {
surfaces.push_back(*pair.second.begin());
}
return surfaces;
}
void ReserveSurface(const SurfaceParams& params, std::unique_ptr<TSurface> surface) {
surface_reserve[params].push_back(std::move(surface));
}
TSurface* TryGetReservedSurface(const SurfaceParams& params) {
auto search{surface_reserve.find(params)};
if (search == surface_reserve.end()) {
return {};
}
for (auto& surface : search->second) {
if (!surface->IsRegistered()) {
return surface.get();
}
}
return {};
}
IntervalType GetSurfaceInterval(TSurface* surface) const {
return IntervalType::right_open(surface->GetCacheAddr(),
surface->GetCacheAddr() + surface->GetSizeInBytes());
}
VideoCore::RasterizerInterface& rasterizer;
IntervalMap registered_surfaces;
/// The surface reserve is a "backup" cache, this is where we put unique surfaces that have
/// previously been used. This is to prevent surfaces from being constantly created and
/// destroyed when used with different surface parameters.
std::unordered_map<SurfaceParams, std::list<std::unique_ptr<TSurface>>> surface_reserve;
};
} // namespace VideoCommon

View file

@ -0,0 +1,36 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include "common/common_types.h"
namespace VideoCommon {
struct CopyParams {
constexpr CopyParams(u32 source_x, u32 source_y, u32 source_z, u32 dest_x, u32 dest_y,
u32 dest_z, u32 source_level, u32 dest_level, u32 width, u32 height,
u32 depth)
: source_x{source_x}, source_y{source_y}, source_z{source_z}, dest_x{dest_x},
dest_y{dest_y}, dest_z{dest_z}, source_level{source_level},
dest_level{dest_level}, width{width}, height{height}, depth{depth} {}
constexpr CopyParams(u32 width, u32 height, u32 depth, u32 level)
: source_x{}, source_y{}, source_z{}, dest_x{}, dest_y{}, dest_z{}, source_level{level},
dest_level{level}, width{width}, height{height}, depth{depth} {}
u32 source_x;
u32 source_y;
u32 source_z;
u32 dest_x;
u32 dest_y;
u32 dest_z;
u32 source_level;
u32 dest_level;
u32 width;
u32 height;
u32 depth;
};
} // namespace VideoCommon

View file

@ -0,0 +1,300 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/assert.h"
#include "common/common_types.h"
#include "common/microprofile.h"
#include "video_core/memory_manager.h"
#include "video_core/texture_cache/surface_base.h"
#include "video_core/texture_cache/surface_params.h"
#include "video_core/textures/convert.h"
namespace VideoCommon {
MICROPROFILE_DEFINE(GPU_Load_Texture, "GPU", "Texture Load", MP_RGB(128, 192, 128));
MICROPROFILE_DEFINE(GPU_Flush_Texture, "GPU", "Texture Flush", MP_RGB(128, 192, 128));
using Tegra::Texture::ConvertFromGuestToHost;
using VideoCore::MortonSwizzleMode;
using VideoCore::Surface::SurfaceCompression;
StagingCache::StagingCache() = default;
StagingCache::~StagingCache() = default;
SurfaceBaseImpl::SurfaceBaseImpl(GPUVAddr gpu_addr, const SurfaceParams& params)
: params{params}, mipmap_sizes(params.num_levels),
mipmap_offsets(params.num_levels), gpu_addr{gpu_addr}, host_memory_size{
params.GetHostSizeInBytes()} {
std::size_t offset = 0;
for (u32 level = 0; level < params.num_levels; ++level) {
const std::size_t mipmap_size{params.GetGuestMipmapSize(level)};
mipmap_sizes[level] = mipmap_size;
mipmap_offsets[level] = offset;
offset += mipmap_size;
}
layer_size = offset;
if (params.is_layered) {
if (params.is_tiled) {
layer_size =
SurfaceParams::AlignLayered(layer_size, params.block_height, params.block_depth);
}
guest_memory_size = layer_size * params.depth;
} else {
guest_memory_size = layer_size;
}
}
MatchTopologyResult SurfaceBaseImpl::MatchesTopology(const SurfaceParams& rhs) const {
const u32 src_bpp{params.GetBytesPerPixel()};
const u32 dst_bpp{rhs.GetBytesPerPixel()};
const bool ib1 = params.IsBuffer();
const bool ib2 = rhs.IsBuffer();
if (std::tie(src_bpp, params.is_tiled, ib1) == std::tie(dst_bpp, rhs.is_tiled, ib2)) {
const bool cb1 = params.IsCompressed();
const bool cb2 = rhs.IsCompressed();
if (cb1 == cb2) {
return MatchTopologyResult::FullMatch;
}
return MatchTopologyResult::CompressUnmatch;
}
return MatchTopologyResult::None;
}
MatchStructureResult SurfaceBaseImpl::MatchesStructure(const SurfaceParams& rhs) const {
// Buffer surface Check
if (params.IsBuffer()) {
const std::size_t wd1 = params.width * params.GetBytesPerPixel();
const std::size_t wd2 = rhs.width * rhs.GetBytesPerPixel();
if (wd1 == wd2) {
return MatchStructureResult::FullMatch;
}
return MatchStructureResult::None;
}
// Linear Surface check
if (!params.is_tiled) {
if (std::tie(params.width, params.height, params.pitch) ==
std::tie(rhs.width, rhs.height, rhs.pitch)) {
return MatchStructureResult::FullMatch;
}
return MatchStructureResult::None;
}
// Tiled Surface check
if (std::tie(params.depth, params.block_width, params.block_height, params.block_depth,
params.tile_width_spacing, params.num_levels) ==
std::tie(rhs.depth, rhs.block_width, rhs.block_height, rhs.block_depth,
rhs.tile_width_spacing, rhs.num_levels)) {
if (std::tie(params.width, params.height) == std::tie(rhs.width, rhs.height)) {
return MatchStructureResult::FullMatch;
}
const u32 ws = SurfaceParams::ConvertWidth(rhs.GetBlockAlignedWidth(), params.pixel_format,
rhs.pixel_format);
const u32 hs =
SurfaceParams::ConvertHeight(rhs.height, params.pixel_format, rhs.pixel_format);
const u32 w1 = params.GetBlockAlignedWidth();
if (std::tie(w1, params.height) == std::tie(ws, hs)) {
return MatchStructureResult::SemiMatch;
}
}
return MatchStructureResult::None;
}
std::optional<std::pair<u32, u32>> SurfaceBaseImpl::GetLayerMipmap(
const GPUVAddr candidate_gpu_addr) const {
if (gpu_addr == candidate_gpu_addr) {
return {{0, 0}};
}
if (candidate_gpu_addr < gpu_addr) {
return {};
}
const auto relative_address{static_cast<GPUVAddr>(candidate_gpu_addr - gpu_addr)};
const auto layer{static_cast<u32>(relative_address / layer_size)};
const GPUVAddr mipmap_address = relative_address - layer_size * layer;
const auto mipmap_it =
Common::BinaryFind(mipmap_offsets.begin(), mipmap_offsets.end(), mipmap_address);
if (mipmap_it == mipmap_offsets.end()) {
return {};
}
const auto level{static_cast<u32>(std::distance(mipmap_offsets.begin(), mipmap_it))};
return std::make_pair(layer, level);
}
std::vector<CopyParams> SurfaceBaseImpl::BreakDownLayered(const SurfaceParams& in_params) const {
const u32 layers{params.depth};
const u32 mipmaps{params.num_levels};
std::vector<CopyParams> result;
result.reserve(static_cast<std::size_t>(layers) * static_cast<std::size_t>(mipmaps));
for (u32 layer = 0; layer < layers; layer++) {
for (u32 level = 0; level < mipmaps; level++) {
const u32 width = SurfaceParams::IntersectWidth(params, in_params, level, level);
const u32 height = SurfaceParams::IntersectHeight(params, in_params, level, level);
result.emplace_back(width, height, layer, level);
}
}
return result;
}
std::vector<CopyParams> SurfaceBaseImpl::BreakDownNonLayered(const SurfaceParams& in_params) const {
const u32 mipmaps{params.num_levels};
std::vector<CopyParams> result;
result.reserve(mipmaps);
for (u32 level = 0; level < mipmaps; level++) {
const u32 width = SurfaceParams::IntersectWidth(params, in_params, level, level);
const u32 height = SurfaceParams::IntersectHeight(params, in_params, level, level);
const u32 depth{std::min(params.GetMipDepth(level), in_params.GetMipDepth(level))};
result.emplace_back(width, height, depth, level);
}
return result;
}
void SurfaceBaseImpl::SwizzleFunc(MortonSwizzleMode mode, u8* memory, const SurfaceParams& params,
u8* buffer, u32 level) {
const u32 width{params.GetMipWidth(level)};
const u32 height{params.GetMipHeight(level)};
const u32 block_height{params.GetMipBlockHeight(level)};
const u32 block_depth{params.GetMipBlockDepth(level)};
std::size_t guest_offset{mipmap_offsets[level]};
if (params.is_layered) {
std::size_t host_offset{0};
const std::size_t guest_stride = layer_size;
const std::size_t host_stride = params.GetHostLayerSize(level);
for (u32 layer = 0; layer < params.depth; ++layer) {
MortonSwizzle(mode, params.pixel_format, width, block_height, height, block_depth, 1,
params.tile_width_spacing, buffer + host_offset, memory + guest_offset);
guest_offset += guest_stride;
host_offset += host_stride;
}
} else {
MortonSwizzle(mode, params.pixel_format, width, block_height, height, block_depth,
params.GetMipDepth(level), params.tile_width_spacing, buffer,
memory + guest_offset);
}
}
void SurfaceBaseImpl::LoadBuffer(Tegra::MemoryManager& memory_manager,
StagingCache& staging_cache) {
MICROPROFILE_SCOPE(GPU_Load_Texture);
auto& staging_buffer = staging_cache.GetBuffer(0);
u8* host_ptr;
is_continuous = memory_manager.IsBlockContinuous(gpu_addr, guest_memory_size);
// Handle continuouty
if (is_continuous) {
// Use physical memory directly
host_ptr = memory_manager.GetPointer(gpu_addr);
if (!host_ptr) {
return;
}
} else {
// Use an extra temporal buffer
auto& tmp_buffer = staging_cache.GetBuffer(1);
tmp_buffer.resize(guest_memory_size);
host_ptr = tmp_buffer.data();
memory_manager.ReadBlockUnsafe(gpu_addr, host_ptr, guest_memory_size);
}
if (params.is_tiled) {
ASSERT_MSG(params.block_width == 0, "Block width is defined as {} on texture target {}",
params.block_width, static_cast<u32>(params.target));
for (u32 level = 0; level < params.num_levels; ++level) {
const std::size_t host_offset{params.GetHostMipmapLevelOffset(level)};
SwizzleFunc(MortonSwizzleMode::MortonToLinear, host_ptr, params,
staging_buffer.data() + host_offset, level);
}
} else {
ASSERT_MSG(params.num_levels == 1, "Linear mipmap loading is not implemented");
const u32 bpp{params.GetBytesPerPixel()};
const u32 block_width{params.GetDefaultBlockWidth()};
const u32 block_height{params.GetDefaultBlockHeight()};
const u32 width{(params.width + block_width - 1) / block_width};
const u32 height{(params.height + block_height - 1) / block_height};
const u32 copy_size{width * bpp};
if (params.pitch == copy_size) {
std::memcpy(staging_buffer.data(), host_ptr, params.GetHostSizeInBytes());
} else {
const u8* start{host_ptr};
u8* write_to{staging_buffer.data()};
for (u32 h = height; h > 0; --h) {
std::memcpy(write_to, start, copy_size);
start += params.pitch;
write_to += copy_size;
}
}
}
auto compression_type = params.GetCompressionType();
if (compression_type == SurfaceCompression::None ||
compression_type == SurfaceCompression::Compressed)
return;
for (u32 level_up = params.num_levels; level_up > 0; --level_up) {
const u32 level = level_up - 1;
const std::size_t in_host_offset{params.GetHostMipmapLevelOffset(level)};
const std::size_t out_host_offset = compression_type == SurfaceCompression::Rearranged
? in_host_offset
: params.GetConvertedMipmapOffset(level);
u8* in_buffer = staging_buffer.data() + in_host_offset;
u8* out_buffer = staging_buffer.data() + out_host_offset;
ConvertFromGuestToHost(in_buffer, out_buffer, params.pixel_format,
params.GetMipWidth(level), params.GetMipHeight(level),
params.GetMipDepth(level), true, true);
}
}
void SurfaceBaseImpl::FlushBuffer(Tegra::MemoryManager& memory_manager,
StagingCache& staging_cache) {
MICROPROFILE_SCOPE(GPU_Flush_Texture);
auto& staging_buffer = staging_cache.GetBuffer(0);
u8* host_ptr;
// Handle continuouty
if (is_continuous) {
// Use physical memory directly
host_ptr = memory_manager.GetPointer(gpu_addr);
if (!host_ptr) {
return;
}
} else {
// Use an extra temporal buffer
auto& tmp_buffer = staging_cache.GetBuffer(1);
tmp_buffer.resize(guest_memory_size);
host_ptr = tmp_buffer.data();
}
if (params.is_tiled) {
ASSERT_MSG(params.block_width == 0, "Block width is defined as {}", params.block_width);
for (u32 level = 0; level < params.num_levels; ++level) {
const std::size_t host_offset{params.GetHostMipmapLevelOffset(level)};
SwizzleFunc(MortonSwizzleMode::LinearToMorton, host_ptr, params,
staging_buffer.data() + host_offset, level);
}
} else {
ASSERT(params.target == SurfaceTarget::Texture2D);
ASSERT(params.num_levels == 1);
const u32 bpp{params.GetBytesPerPixel()};
const u32 copy_size{params.width * bpp};
if (params.pitch == copy_size) {
std::memcpy(host_ptr, staging_buffer.data(), guest_memory_size);
} else {
u8* start{host_ptr};
const u8* read_to{staging_buffer.data()};
for (u32 h = params.height; h > 0; --h) {
std::memcpy(start, read_to, copy_size);
start += params.pitch;
read_to += copy_size;
}
}
}
if (!is_continuous) {
memory_manager.WriteBlockUnsafe(gpu_addr, host_ptr, guest_memory_size);
}
}
} // namespace VideoCommon

View file

@ -0,0 +1,317 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <algorithm>
#include <unordered_map>
#include <vector>
#include "common/assert.h"
#include "common/binary_find.h"
#include "common/common_types.h"
#include "video_core/gpu.h"
#include "video_core/morton.h"
#include "video_core/texture_cache/copy_params.h"
#include "video_core/texture_cache/surface_params.h"
#include "video_core/texture_cache/surface_view.h"
namespace Tegra {
class MemoryManager;
}
namespace VideoCommon {
using VideoCore::MortonSwizzleMode;
using VideoCore::Surface::SurfaceTarget;
enum class MatchStructureResult : u32 {
FullMatch = 0,
SemiMatch = 1,
None = 2,
};
enum class MatchTopologyResult : u32 {
FullMatch = 0,
CompressUnmatch = 1,
None = 2,
};
class StagingCache {
public:
explicit StagingCache();
~StagingCache();
std::vector<u8>& GetBuffer(std::size_t index) {
return staging_buffer[index];
}
const std::vector<u8>& GetBuffer(std::size_t index) const {
return staging_buffer[index];
}
void SetSize(std::size_t size) {
staging_buffer.resize(size);
}
private:
std::vector<std::vector<u8>> staging_buffer;
};
class SurfaceBaseImpl {
public:
void LoadBuffer(Tegra::MemoryManager& memory_manager, StagingCache& staging_cache);
void FlushBuffer(Tegra::MemoryManager& memory_manager, StagingCache& staging_cache);
GPUVAddr GetGpuAddr() const {
return gpu_addr;
}
bool Overlaps(const CacheAddr start, const CacheAddr end) const {
return (cache_addr < end) && (cache_addr_end > start);
}
bool IsInside(const GPUVAddr other_start, const GPUVAddr other_end) {
const GPUVAddr gpu_addr_end = gpu_addr + guest_memory_size;
return (gpu_addr <= other_start && other_end <= gpu_addr_end);
}
// Use only when recycling a surface
void SetGpuAddr(const GPUVAddr new_addr) {
gpu_addr = new_addr;
}
VAddr GetCpuAddr() const {
return cpu_addr;
}
void SetCpuAddr(const VAddr new_addr) {
cpu_addr = new_addr;
}
CacheAddr GetCacheAddr() const {
return cache_addr;
}
CacheAddr GetCacheAddrEnd() const {
return cache_addr_end;
}
void SetCacheAddr(const CacheAddr new_addr) {
cache_addr = new_addr;
cache_addr_end = new_addr + guest_memory_size;
}
const SurfaceParams& GetSurfaceParams() const {
return params;
}
std::size_t GetSizeInBytes() const {
return guest_memory_size;
}
std::size_t GetHostSizeInBytes() const {
return host_memory_size;
}
std::size_t GetMipmapSize(const u32 level) const {
return mipmap_sizes[level];
}
void MarkAsContinuous(const bool is_continuous) {
this->is_continuous = is_continuous;
}
bool IsContinuous() const {
return is_continuous;
}
bool IsLinear() const {
return !params.is_tiled;
}
bool MatchFormat(VideoCore::Surface::PixelFormat pixel_format) const {
return params.pixel_format == pixel_format;
}
VideoCore::Surface::PixelFormat GetFormat() const {
return params.pixel_format;
}
bool MatchTarget(VideoCore::Surface::SurfaceTarget target) const {
return params.target == target;
}
MatchTopologyResult MatchesTopology(const SurfaceParams& rhs) const;
MatchStructureResult MatchesStructure(const SurfaceParams& rhs) const;
bool MatchesSubTexture(const SurfaceParams& rhs, const GPUVAddr other_gpu_addr) const {
return std::tie(gpu_addr, params.target, params.num_levels) ==
std::tie(other_gpu_addr, rhs.target, rhs.num_levels) &&
params.target == SurfaceTarget::Texture2D && params.num_levels == 1;
}
std::optional<std::pair<u32, u32>> GetLayerMipmap(const GPUVAddr candidate_gpu_addr) const;
std::vector<CopyParams> BreakDown(const SurfaceParams& in_params) const {
return params.is_layered ? BreakDownLayered(in_params) : BreakDownNonLayered(in_params);
}
protected:
explicit SurfaceBaseImpl(GPUVAddr gpu_addr, const SurfaceParams& params);
~SurfaceBaseImpl() = default;
virtual void DecorateSurfaceName() = 0;
const SurfaceParams params;
std::size_t layer_size;
std::size_t guest_memory_size;
const std::size_t host_memory_size;
GPUVAddr gpu_addr{};
CacheAddr cache_addr{};
CacheAddr cache_addr_end{};
VAddr cpu_addr{};
bool is_continuous{};
std::vector<std::size_t> mipmap_sizes;
std::vector<std::size_t> mipmap_offsets;
private:
void SwizzleFunc(MortonSwizzleMode mode, u8* memory, const SurfaceParams& params, u8* buffer,
u32 level);
std::vector<CopyParams> BreakDownLayered(const SurfaceParams& in_params) const;
std::vector<CopyParams> BreakDownNonLayered(const SurfaceParams& in_params) const;
};
template <typename TView>
class SurfaceBase : public SurfaceBaseImpl {
public:
virtual void UploadTexture(const std::vector<u8>& staging_buffer) = 0;
virtual void DownloadTexture(std::vector<u8>& staging_buffer) = 0;
void MarkAsModified(const bool is_modified_, const u64 tick) {
is_modified = is_modified_ || is_target;
modification_tick = tick;
}
void MarkAsRenderTarget(const bool is_target) {
this->is_target = is_target;
}
void MarkAsPicked(const bool is_picked) {
this->is_picked = is_picked;
}
bool IsModified() const {
return is_modified;
}
bool IsProtected() const {
// Only 3D Slices are to be protected
return is_target && params.block_depth > 0;
}
bool IsRenderTarget() const {
return is_target;
}
bool IsRegistered() const {
return is_registered;
}
bool IsPicked() const {
return is_picked;
}
void MarkAsRegistered(bool is_reg) {
is_registered = is_reg;
}
u64 GetModificationTick() const {
return modification_tick;
}
TView EmplaceOverview(const SurfaceParams& overview_params) {
const u32 num_layers{(params.is_layered && !overview_params.is_layered) ? 1 : params.depth};
return GetView(ViewParams(overview_params.target, 0, num_layers, 0, params.num_levels));
}
std::optional<TView> EmplaceIrregularView(const SurfaceParams& view_params,
const GPUVAddr view_addr,
const std::size_t candidate_size, const u32 mipmap,
const u32 layer) {
const auto layer_mipmap{GetLayerMipmap(view_addr + candidate_size)};
if (!layer_mipmap) {
return {};
}
const u32 end_layer{layer_mipmap->first};
const u32 end_mipmap{layer_mipmap->second};
if (layer != end_layer) {
if (mipmap == 0 && end_mipmap == 0) {
return GetView(ViewParams(view_params.target, layer, end_layer - layer + 1, 0, 1));
}
return {};
} else {
return GetView(
ViewParams(view_params.target, layer, 1, mipmap, end_mipmap - mipmap + 1));
}
}
std::optional<TView> EmplaceView(const SurfaceParams& view_params, const GPUVAddr view_addr,
const std::size_t candidate_size) {
if (params.target == SurfaceTarget::Texture3D ||
(params.num_levels == 1 && !params.is_layered) ||
view_params.target == SurfaceTarget::Texture3D) {
return {};
}
const auto layer_mipmap{GetLayerMipmap(view_addr)};
if (!layer_mipmap) {
return {};
}
const u32 layer{layer_mipmap->first};
const u32 mipmap{layer_mipmap->second};
if (GetMipmapSize(mipmap) != candidate_size) {
return EmplaceIrregularView(view_params, view_addr, candidate_size, mipmap, layer);
}
return GetView(ViewParams(view_params.target, layer, 1, mipmap, 1));
}
TView GetMainView() const {
return main_view;
}
protected:
explicit SurfaceBase(const GPUVAddr gpu_addr, const SurfaceParams& params)
: SurfaceBaseImpl(gpu_addr, params) {}
~SurfaceBase() = default;
virtual TView CreateView(const ViewParams& view_key) = 0;
TView main_view;
std::unordered_map<ViewParams, TView> views;
private:
TView GetView(const ViewParams& key) {
const auto [entry, is_cache_miss] = views.try_emplace(key);
auto& view{entry->second};
if (is_cache_miss) {
view = CreateView(key);
}
return view;
}
bool is_modified{};
bool is_target{};
bool is_registered{};
bool is_picked{};
u64 modification_tick{};
};
} // namespace VideoCommon

View file

@ -0,0 +1,334 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <map>
#include "common/alignment.h"
#include "common/bit_util.h"
#include "core/core.h"
#include "video_core/engines/shader_bytecode.h"
#include "video_core/surface.h"
#include "video_core/texture_cache/surface_params.h"
namespace VideoCommon {
using VideoCore::Surface::ComponentTypeFromDepthFormat;
using VideoCore::Surface::ComponentTypeFromRenderTarget;
using VideoCore::Surface::ComponentTypeFromTexture;
using VideoCore::Surface::PixelFormat;
using VideoCore::Surface::PixelFormatFromDepthFormat;
using VideoCore::Surface::PixelFormatFromRenderTargetFormat;
using VideoCore::Surface::PixelFormatFromTextureFormat;
using VideoCore::Surface::SurfaceTarget;
using VideoCore::Surface::SurfaceTargetFromTextureType;
using VideoCore::Surface::SurfaceType;
SurfaceTarget TextureType2SurfaceTarget(Tegra::Shader::TextureType type, bool is_array) {
switch (type) {
case Tegra::Shader::TextureType::Texture1D: {
if (is_array)
return SurfaceTarget::Texture1DArray;
else
return SurfaceTarget::Texture1D;
}
case Tegra::Shader::TextureType::Texture2D: {
if (is_array)
return SurfaceTarget::Texture2DArray;
else
return SurfaceTarget::Texture2D;
}
case Tegra::Shader::TextureType::Texture3D: {
ASSERT(!is_array);
return SurfaceTarget::Texture3D;
}
case Tegra::Shader::TextureType::TextureCube: {
if (is_array)
return SurfaceTarget::TextureCubeArray;
else
return SurfaceTarget::TextureCubemap;
}
default: {
UNREACHABLE();
return SurfaceTarget::Texture2D;
}
}
}
namespace {
constexpr u32 GetMipmapSize(bool uncompressed, u32 mip_size, u32 tile) {
return uncompressed ? mip_size : std::max(1U, (mip_size + tile - 1) / tile);
}
} // Anonymous namespace
SurfaceParams SurfaceParams::CreateForTexture(Core::System& system,
const Tegra::Texture::FullTextureInfo& config,
const VideoCommon::Shader::Sampler& entry) {
SurfaceParams params;
params.is_tiled = config.tic.IsTiled();
params.srgb_conversion = config.tic.IsSrgbConversionEnabled();
params.block_width = params.is_tiled ? config.tic.BlockWidth() : 0,
params.block_height = params.is_tiled ? config.tic.BlockHeight() : 0,
params.block_depth = params.is_tiled ? config.tic.BlockDepth() : 0,
params.tile_width_spacing = params.is_tiled ? (1 << config.tic.tile_width_spacing.Value()) : 1;
params.pixel_format = PixelFormatFromTextureFormat(config.tic.format, config.tic.r_type.Value(),
params.srgb_conversion);
params.type = GetFormatType(params.pixel_format);
if (entry.IsShadow() && params.type == SurfaceType::ColorTexture) {
switch (params.pixel_format) {
case PixelFormat::R16U:
case PixelFormat::R16F: {
params.pixel_format = PixelFormat::Z16;
break;
}
case PixelFormat::R32F: {
params.pixel_format = PixelFormat::Z32F;
break;
}
default: {
UNIMPLEMENTED_MSG("Unimplemented shadow convert format: {}",
static_cast<u32>(params.pixel_format));
}
}
params.type = GetFormatType(params.pixel_format);
}
params.component_type = ComponentTypeFromTexture(config.tic.r_type.Value());
params.type = GetFormatType(params.pixel_format);
// TODO: on 1DBuffer we should use the tic info.
if (!config.tic.IsBuffer()) {
params.target = TextureType2SurfaceTarget(entry.GetType(), entry.IsArray());
params.width = config.tic.Width();
params.height = config.tic.Height();
params.depth = config.tic.Depth();
params.pitch = params.is_tiled ? 0 : config.tic.Pitch();
if (params.target == SurfaceTarget::TextureCubemap ||
params.target == SurfaceTarget::TextureCubeArray) {
params.depth *= 6;
}
params.num_levels = config.tic.max_mip_level + 1;
params.emulated_levels = std::min(params.num_levels, params.MaxPossibleMipmap());
params.is_layered = params.IsLayered();
} else {
params.target = SurfaceTarget::TextureBuffer;
params.width = config.tic.Width();
params.pitch = params.width * params.GetBytesPerPixel();
params.height = 1;
params.depth = 1;
params.num_levels = 1;
params.emulated_levels = 1;
params.is_layered = false;
}
return params;
}
SurfaceParams SurfaceParams::CreateForDepthBuffer(
Core::System& system, u32 zeta_width, u32 zeta_height, Tegra::DepthFormat format,
u32 block_width, u32 block_height, u32 block_depth,
Tegra::Engines::Maxwell3D::Regs::InvMemoryLayout type) {
SurfaceParams params;
params.is_tiled = type == Tegra::Engines::Maxwell3D::Regs::InvMemoryLayout::BlockLinear;
params.srgb_conversion = false;
params.block_width = std::min(block_width, 5U);
params.block_height = std::min(block_height, 5U);
params.block_depth = std::min(block_depth, 5U);
params.tile_width_spacing = 1;
params.pixel_format = PixelFormatFromDepthFormat(format);
params.component_type = ComponentTypeFromDepthFormat(format);
params.type = GetFormatType(params.pixel_format);
params.width = zeta_width;
params.height = zeta_height;
params.target = SurfaceTarget::Texture2D;
params.depth = 1;
params.pitch = 0;
params.num_levels = 1;
params.emulated_levels = 1;
params.is_layered = false;
return params;
}
SurfaceParams SurfaceParams::CreateForFramebuffer(Core::System& system, std::size_t index) {
const auto& config{system.GPU().Maxwell3D().regs.rt[index]};
SurfaceParams params;
params.is_tiled =
config.memory_layout.type == Tegra::Engines::Maxwell3D::Regs::InvMemoryLayout::BlockLinear;
params.srgb_conversion = config.format == Tegra::RenderTargetFormat::BGRA8_SRGB ||
config.format == Tegra::RenderTargetFormat::RGBA8_SRGB;
params.block_width = config.memory_layout.block_width;
params.block_height = config.memory_layout.block_height;
params.block_depth = config.memory_layout.block_depth;
params.tile_width_spacing = 1;
params.pixel_format = PixelFormatFromRenderTargetFormat(config.format);
params.component_type = ComponentTypeFromRenderTarget(config.format);
params.type = GetFormatType(params.pixel_format);
if (params.is_tiled) {
params.pitch = 0;
params.width = config.width;
} else {
const u32 bpp = GetFormatBpp(params.pixel_format) / CHAR_BIT;
params.pitch = config.width;
params.width = params.pitch / bpp;
}
params.height = config.height;
params.depth = 1;
params.target = SurfaceTarget::Texture2D;
params.num_levels = 1;
params.emulated_levels = 1;
params.is_layered = false;
return params;
}
SurfaceParams SurfaceParams::CreateForFermiCopySurface(
const Tegra::Engines::Fermi2D::Regs::Surface& config) {
SurfaceParams params{};
params.is_tiled = !config.linear;
params.srgb_conversion = config.format == Tegra::RenderTargetFormat::BGRA8_SRGB ||
config.format == Tegra::RenderTargetFormat::RGBA8_SRGB;
params.block_width = params.is_tiled ? std::min(config.BlockWidth(), 5U) : 0,
params.block_height = params.is_tiled ? std::min(config.BlockHeight(), 5U) : 0,
params.block_depth = params.is_tiled ? std::min(config.BlockDepth(), 5U) : 0,
params.tile_width_spacing = 1;
params.pixel_format = PixelFormatFromRenderTargetFormat(config.format);
params.component_type = ComponentTypeFromRenderTarget(config.format);
params.type = GetFormatType(params.pixel_format);
params.width = config.width;
params.height = config.height;
params.pitch = config.pitch;
// TODO(Rodrigo): Try to guess the surface target from depth and layer parameters
params.target = SurfaceTarget::Texture2D;
params.depth = 1;
params.num_levels = 1;
params.emulated_levels = 1;
params.is_layered = params.IsLayered();
return params;
}
bool SurfaceParams::IsLayered() const {
switch (target) {
case SurfaceTarget::Texture1DArray:
case SurfaceTarget::Texture2DArray:
case SurfaceTarget::TextureCubemap:
case SurfaceTarget::TextureCubeArray:
return true;
default:
return false;
}
}
// Auto block resizing algorithm from:
// https://cgit.freedesktop.org/mesa/mesa/tree/src/gallium/drivers/nouveau/nv50/nv50_miptree.c
u32 SurfaceParams::GetMipBlockHeight(u32 level) const {
if (level == 0) {
return this->block_height;
}
const u32 height_new{GetMipHeight(level)};
const u32 default_block_height{GetDefaultBlockHeight()};
const u32 blocks_in_y{(height_new + default_block_height - 1) / default_block_height};
const u32 block_height_new = Common::Log2Ceil32(blocks_in_y);
return std::clamp(block_height_new, 3U, 7U) - 3U;
}
u32 SurfaceParams::GetMipBlockDepth(u32 level) const {
if (level == 0) {
return this->block_depth;
}
if (is_layered) {
return 0;
}
const u32 depth_new{GetMipDepth(level)};
const u32 block_depth_new = Common::Log2Ceil32(depth_new);
if (block_depth_new > 4) {
return 5 - (GetMipBlockHeight(level) >= 2);
}
return block_depth_new;
}
std::size_t SurfaceParams::GetGuestMipmapLevelOffset(u32 level) const {
std::size_t offset = 0;
for (u32 i = 0; i < level; i++) {
offset += GetInnerMipmapMemorySize(i, false, false);
}
return offset;
}
std::size_t SurfaceParams::GetHostMipmapLevelOffset(u32 level) const {
std::size_t offset = 0;
for (u32 i = 0; i < level; i++) {
offset += GetInnerMipmapMemorySize(i, true, false) * GetNumLayers();
}
return offset;
}
std::size_t SurfaceParams::GetConvertedMipmapOffset(u32 level) const {
std::size_t offset = 0;
for (u32 i = 0; i < level; i++) {
offset += GetConvertedMipmapSize(i);
}
return offset;
}
std::size_t SurfaceParams::GetConvertedMipmapSize(u32 level) const {
constexpr std::size_t rgba8_bpp = 4ULL;
const std::size_t width_t = GetMipWidth(level);
const std::size_t height_t = GetMipHeight(level);
const std::size_t depth_t = is_layered ? depth : GetMipDepth(level);
return width_t * height_t * depth_t * rgba8_bpp;
}
std::size_t SurfaceParams::GetLayerSize(bool as_host_size, bool uncompressed) const {
std::size_t size = 0;
for (u32 level = 0; level < num_levels; ++level) {
size += GetInnerMipmapMemorySize(level, as_host_size, uncompressed);
}
if (is_tiled && is_layered) {
return Common::AlignBits(size,
Tegra::Texture::GetGOBSizeShift() + block_height + block_depth);
}
return size;
}
std::size_t SurfaceParams::GetInnerMipmapMemorySize(u32 level, bool as_host_size,
bool uncompressed) const {
const bool tiled{as_host_size ? false : is_tiled};
const u32 width{GetMipmapSize(uncompressed, GetMipWidth(level), GetDefaultBlockWidth())};
const u32 height{GetMipmapSize(uncompressed, GetMipHeight(level), GetDefaultBlockHeight())};
const u32 depth{is_layered ? 1U : GetMipDepth(level)};
return Tegra::Texture::CalculateSize(tiled, GetBytesPerPixel(), width, height, depth,
GetMipBlockHeight(level), GetMipBlockDepth(level));
}
bool SurfaceParams::operator==(const SurfaceParams& rhs) const {
return std::tie(is_tiled, block_width, block_height, block_depth, tile_width_spacing, width,
height, depth, pitch, num_levels, pixel_format, component_type, type, target) ==
std::tie(rhs.is_tiled, rhs.block_width, rhs.block_height, rhs.block_depth,
rhs.tile_width_spacing, rhs.width, rhs.height, rhs.depth, rhs.pitch,
rhs.num_levels, rhs.pixel_format, rhs.component_type, rhs.type, rhs.target);
}
std::string SurfaceParams::TargetName() const {
switch (target) {
case SurfaceTarget::Texture1D:
return "1D";
case SurfaceTarget::TextureBuffer:
return "TexBuffer";
case SurfaceTarget::Texture2D:
return "2D";
case SurfaceTarget::Texture3D:
return "3D";
case SurfaceTarget::Texture1DArray:
return "1DArray";
case SurfaceTarget::Texture2DArray:
return "2DArray";
case SurfaceTarget::TextureCubemap:
return "Cube";
case SurfaceTarget::TextureCubeArray:
return "CubeArray";
default:
LOG_CRITICAL(HW_GPU, "Unimplemented surface_target={}", static_cast<u32>(target));
UNREACHABLE();
return fmt::format("TUK({})", static_cast<u32>(target));
}
}
} // namespace VideoCommon

View file

@ -0,0 +1,286 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <map>
#include "common/alignment.h"
#include "common/bit_util.h"
#include "common/cityhash.h"
#include "common/common_types.h"
#include "video_core/engines/fermi_2d.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/shader/shader_ir.h"
#include "video_core/surface.h"
#include "video_core/textures/decoders.h"
namespace VideoCommon {
using VideoCore::Surface::SurfaceCompression;
class SurfaceParams {
public:
/// Creates SurfaceCachedParams from a texture configuration.
static SurfaceParams CreateForTexture(Core::System& system,
const Tegra::Texture::FullTextureInfo& config,
const VideoCommon::Shader::Sampler& entry);
/// Creates SurfaceCachedParams for a depth buffer configuration.
static SurfaceParams CreateForDepthBuffer(
Core::System& system, u32 zeta_width, u32 zeta_height, Tegra::DepthFormat format,
u32 block_width, u32 block_height, u32 block_depth,
Tegra::Engines::Maxwell3D::Regs::InvMemoryLayout type);
/// Creates SurfaceCachedParams from a framebuffer configuration.
static SurfaceParams CreateForFramebuffer(Core::System& system, std::size_t index);
/// Creates SurfaceCachedParams from a Fermi2D surface configuration.
static SurfaceParams CreateForFermiCopySurface(
const Tegra::Engines::Fermi2D::Regs::Surface& config);
std::size_t Hash() const {
return static_cast<std::size_t>(
Common::CityHash64(reinterpret_cast<const char*>(this), sizeof(*this)));
}
bool operator==(const SurfaceParams& rhs) const;
bool operator!=(const SurfaceParams& rhs) const {
return !operator==(rhs);
}
std::size_t GetGuestSizeInBytes() const {
return GetInnerMemorySize(false, false, false);
}
std::size_t GetHostSizeInBytes() const {
std::size_t host_size_in_bytes;
if (GetCompressionType() == SurfaceCompression::Converted) {
constexpr std::size_t rgb8_bpp = 4ULL;
// ASTC is uncompressed in software, in emulated as RGBA8
host_size_in_bytes = 0;
for (u32 level = 0; level < num_levels; ++level) {
host_size_in_bytes += GetConvertedMipmapSize(level);
}
} else {
host_size_in_bytes = GetInnerMemorySize(true, false, false);
}
return host_size_in_bytes;
}
u32 GetBlockAlignedWidth() const {
return Common::AlignUp(width, 64 / GetBytesPerPixel());
}
/// Returns the width of a given mipmap level.
u32 GetMipWidth(u32 level) const {
return std::max(1U, width >> level);
}
/// Returns the height of a given mipmap level.
u32 GetMipHeight(u32 level) const {
return std::max(1U, height >> level);
}
/// Returns the depth of a given mipmap level.
u32 GetMipDepth(u32 level) const {
return is_layered ? depth : std::max(1U, depth >> level);
}
/// Returns the block height of a given mipmap level.
u32 GetMipBlockHeight(u32 level) const;
/// Returns the block depth of a given mipmap level.
u32 GetMipBlockDepth(u32 level) const;
/// Returns the best possible row/pitch alignment for the surface.
u32 GetRowAlignment(u32 level) const {
const u32 bpp =
GetCompressionType() == SurfaceCompression::Converted ? 4 : GetBytesPerPixel();
return 1U << Common::CountTrailingZeroes32(GetMipWidth(level) * bpp);
}
/// Returns the offset in bytes in guest memory of a given mipmap level.
std::size_t GetGuestMipmapLevelOffset(u32 level) const;
/// Returns the offset in bytes in host memory (linear) of a given mipmap level.
std::size_t GetHostMipmapLevelOffset(u32 level) const;
/// Returns the offset in bytes in host memory (linear) of a given mipmap level
/// for a texture that is converted in host gpu.
std::size_t GetConvertedMipmapOffset(u32 level) const;
/// Returns the size in bytes in guest memory of a given mipmap level.
std::size_t GetGuestMipmapSize(u32 level) const {
return GetInnerMipmapMemorySize(level, false, false);
}
/// Returns the size in bytes in host memory (linear) of a given mipmap level.
std::size_t GetHostMipmapSize(u32 level) const {
return GetInnerMipmapMemorySize(level, true, false) * GetNumLayers();
}
std::size_t GetConvertedMipmapSize(u32 level) const;
/// Returns the size of a layer in bytes in guest memory.
std::size_t GetGuestLayerSize() const {
return GetLayerSize(false, false);
}
/// Returns the size of a layer in bytes in host memory for a given mipmap level.
std::size_t GetHostLayerSize(u32 level) const {
ASSERT(target != VideoCore::Surface::SurfaceTarget::Texture3D);
return GetInnerMipmapMemorySize(level, true, false);
}
/// Returns the max possible mipmap that the texture can have in host gpu
u32 MaxPossibleMipmap() const {
const u32 max_mipmap_w = Common::Log2Ceil32(width) + 1U;
const u32 max_mipmap_h = Common::Log2Ceil32(height) + 1U;
const u32 max_mipmap = std::max(max_mipmap_w, max_mipmap_h);
if (target != VideoCore::Surface::SurfaceTarget::Texture3D)
return max_mipmap;
return std::max(max_mipmap, Common::Log2Ceil32(depth) + 1U);
}
/// Returns if the guest surface is a compressed surface.
bool IsCompressed() const {
return GetDefaultBlockHeight() > 1 || GetDefaultBlockWidth() > 1;
}
/// Returns the default block width.
u32 GetDefaultBlockWidth() const {
return VideoCore::Surface::GetDefaultBlockWidth(pixel_format);
}
/// Returns the default block height.
u32 GetDefaultBlockHeight() const {
return VideoCore::Surface::GetDefaultBlockHeight(pixel_format);
}
/// Returns the bits per pixel.
u32 GetBitsPerPixel() const {
return VideoCore::Surface::GetFormatBpp(pixel_format);
}
/// Returns the bytes per pixel.
u32 GetBytesPerPixel() const {
return VideoCore::Surface::GetBytesPerPixel(pixel_format);
}
/// Returns true if the pixel format is a depth and/or stencil format.
bool IsPixelFormatZeta() const {
return pixel_format >= VideoCore::Surface::PixelFormat::MaxColorFormat &&
pixel_format < VideoCore::Surface::PixelFormat::MaxDepthStencilFormat;
}
/// Returns how the compression should be handled for this texture.
SurfaceCompression GetCompressionType() const {
return VideoCore::Surface::GetFormatCompressionType(pixel_format);
}
/// Returns is the surface is a TextureBuffer type of surface.
bool IsBuffer() const {
return target == VideoCore::Surface::SurfaceTarget::TextureBuffer;
}
/// Returns the debug name of the texture for use in graphic debuggers.
std::string TargetName() const;
// Helper used for out of class size calculations
static std::size_t AlignLayered(const std::size_t out_size, const u32 block_height,
const u32 block_depth) {
return Common::AlignBits(out_size,
Tegra::Texture::GetGOBSizeShift() + block_height + block_depth);
}
/// Converts a width from a type of surface into another. This helps represent the
/// equivalent value between compressed/non-compressed textures.
static u32 ConvertWidth(u32 width, VideoCore::Surface::PixelFormat pixel_format_from,
VideoCore::Surface::PixelFormat pixel_format_to) {
const u32 bw1 = VideoCore::Surface::GetDefaultBlockWidth(pixel_format_from);
const u32 bw2 = VideoCore::Surface::GetDefaultBlockWidth(pixel_format_to);
return (width * bw2 + bw1 - 1) / bw1;
}
/// Converts a height from a type of surface into another. This helps represent the
/// equivalent value between compressed/non-compressed textures.
static u32 ConvertHeight(u32 height, VideoCore::Surface::PixelFormat pixel_format_from,
VideoCore::Surface::PixelFormat pixel_format_to) {
const u32 bh1 = VideoCore::Surface::GetDefaultBlockHeight(pixel_format_from);
const u32 bh2 = VideoCore::Surface::GetDefaultBlockHeight(pixel_format_to);
return (height * bh2 + bh1 - 1) / bh1;
}
// Finds the maximun possible width between 2 2D layers of different formats
static u32 IntersectWidth(const SurfaceParams& src_params, const SurfaceParams& dst_params,
const u32 src_level, const u32 dst_level) {
const u32 bw1 = src_params.GetDefaultBlockWidth();
const u32 bw2 = dst_params.GetDefaultBlockWidth();
const u32 t_src_width = (src_params.GetMipWidth(src_level) * bw2 + bw1 - 1) / bw1;
const u32 t_dst_width = (dst_params.GetMipWidth(dst_level) * bw1 + bw2 - 1) / bw2;
return std::min(t_src_width, t_dst_width);
}
// Finds the maximun possible height between 2 2D layers of different formats
static u32 IntersectHeight(const SurfaceParams& src_params, const SurfaceParams& dst_params,
const u32 src_level, const u32 dst_level) {
const u32 bh1 = src_params.GetDefaultBlockHeight();
const u32 bh2 = dst_params.GetDefaultBlockHeight();
const u32 t_src_height = (src_params.GetMipHeight(src_level) * bh2 + bh1 - 1) / bh1;
const u32 t_dst_height = (dst_params.GetMipHeight(dst_level) * bh1 + bh2 - 1) / bh2;
return std::min(t_src_height, t_dst_height);
}
bool is_tiled;
bool srgb_conversion;
bool is_layered;
u32 block_width;
u32 block_height;
u32 block_depth;
u32 tile_width_spacing;
u32 width;
u32 height;
u32 depth;
u32 pitch;
u32 num_levels;
u32 emulated_levels;
VideoCore::Surface::PixelFormat pixel_format;
VideoCore::Surface::ComponentType component_type;
VideoCore::Surface::SurfaceType type;
VideoCore::Surface::SurfaceTarget target;
private:
/// Returns the size of a given mipmap level inside a layer.
std::size_t GetInnerMipmapMemorySize(u32 level, bool as_host_size, bool uncompressed) const;
/// Returns the size of all mipmap levels and aligns as needed.
std::size_t GetInnerMemorySize(bool as_host_size, bool layer_only, bool uncompressed) const {
return GetLayerSize(as_host_size, uncompressed) * (layer_only ? 1U : depth);
}
/// Returns the size of a layer
std::size_t GetLayerSize(bool as_host_size, bool uncompressed) const;
std::size_t GetNumLayers() const {
return is_layered ? depth : 1;
}
/// Returns true if these parameters are from a layered surface.
bool IsLayered() const;
};
} // namespace VideoCommon
namespace std {
template <>
struct hash<VideoCommon::SurfaceParams> {
std::size_t operator()(const VideoCommon::SurfaceParams& k) const noexcept {
return k.Hash();
}
};
} // namespace std

View file

@ -0,0 +1,23 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <tuple>
#include "common/common_types.h"
#include "video_core/texture_cache/surface_view.h"
namespace VideoCommon {
std::size_t ViewParams::Hash() const {
return static_cast<std::size_t>(base_layer) ^ static_cast<std::size_t>(num_layers << 16) ^
(static_cast<std::size_t>(base_level) << 24) ^
(static_cast<std::size_t>(num_levels) << 32) ^ (static_cast<std::size_t>(target) << 36);
}
bool ViewParams::operator==(const ViewParams& rhs) const {
return std::tie(base_layer, num_layers, base_level, num_levels, target) ==
std::tie(rhs.base_layer, rhs.num_layers, rhs.base_level, rhs.num_levels, rhs.target);
}
} // namespace VideoCommon

View file

@ -0,0 +1,67 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <functional>
#include "common/common_types.h"
#include "video_core/surface.h"
#include "video_core/texture_cache/surface_params.h"
namespace VideoCommon {
struct ViewParams {
ViewParams(VideoCore::Surface::SurfaceTarget target, u32 base_layer, u32 num_layers,
u32 base_level, u32 num_levels)
: target{target}, base_layer{base_layer}, num_layers{num_layers}, base_level{base_level},
num_levels{num_levels} {}
std::size_t Hash() const;
bool operator==(const ViewParams& rhs) const;
VideoCore::Surface::SurfaceTarget target{};
u32 base_layer{};
u32 num_layers{};
u32 base_level{};
u32 num_levels{};
bool IsLayered() const {
switch (target) {
case VideoCore::Surface::SurfaceTarget::Texture1DArray:
case VideoCore::Surface::SurfaceTarget::Texture2DArray:
case VideoCore::Surface::SurfaceTarget::TextureCubemap:
case VideoCore::Surface::SurfaceTarget::TextureCubeArray:
return true;
default:
return false;
}
}
};
class ViewBase {
public:
ViewBase(const ViewParams& params) : params{params} {}
const ViewParams& GetViewParams() const {
return params;
}
protected:
ViewParams params;
};
} // namespace VideoCommon
namespace std {
template <>
struct hash<VideoCommon::ViewParams> {
std::size_t operator()(const VideoCommon::ViewParams& k) const noexcept {
return k.Hash();
}
};
} // namespace std

View file

@ -0,0 +1,814 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <algorithm>
#include <array>
#include <memory>
#include <mutex>
#include <set>
#include <tuple>
#include <unordered_map>
#include <vector>
#include <boost/icl/interval_map.hpp>
#include <boost/range/iterator_range.hpp>
#include "common/assert.h"
#include "common/common_types.h"
#include "common/math_util.h"
#include "core/core.h"
#include "core/memory.h"
#include "core/settings.h"
#include "video_core/engines/fermi_2d.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/gpu.h"
#include "video_core/memory_manager.h"
#include "video_core/rasterizer_interface.h"
#include "video_core/surface.h"
#include "video_core/texture_cache/copy_params.h"
#include "video_core/texture_cache/surface_base.h"
#include "video_core/texture_cache/surface_params.h"
#include "video_core/texture_cache/surface_view.h"
namespace Tegra::Texture {
struct FullTextureInfo;
}
namespace VideoCore {
class RasterizerInterface;
}
namespace VideoCommon {
using VideoCore::Surface::PixelFormat;
using VideoCore::Surface::SurfaceTarget;
using RenderTargetConfig = Tegra::Engines::Maxwell3D::Regs::RenderTargetConfig;
template <typename TSurface, typename TView>
class TextureCache {
using IntervalMap = boost::icl::interval_map<CacheAddr, std::set<TSurface>>;
using IntervalType = typename IntervalMap::interval_type;
public:
void InvalidateRegion(CacheAddr addr, std::size_t size) {
std::lock_guard lock{mutex};
for (const auto& surface : GetSurfacesInRegion(addr, size)) {
Unregister(surface);
}
}
/***
* `Guard` guarantees that rendertargets don't unregister themselves if the
* collide. Protection is currently only done on 3D slices.
***/
void GuardRenderTargets(bool new_guard) {
guard_render_targets = new_guard;
}
void GuardSamplers(bool new_guard) {
guard_samplers = new_guard;
}
void FlushRegion(CacheAddr addr, std::size_t size) {
std::lock_guard lock{mutex};
auto surfaces = GetSurfacesInRegion(addr, size);
if (surfaces.empty()) {
return;
}
std::sort(surfaces.begin(), surfaces.end(), [](const TSurface& a, const TSurface& b) {
return a->GetModificationTick() < b->GetModificationTick();
});
for (const auto& surface : surfaces) {
FlushSurface(surface);
}
}
TView GetTextureSurface(const Tegra::Texture::FullTextureInfo& config,
const VideoCommon::Shader::Sampler& entry) {
std::lock_guard lock{mutex};
const auto gpu_addr{config.tic.Address()};
if (!gpu_addr) {
return {};
}
const auto params{SurfaceParams::CreateForTexture(system, config, entry)};
const auto [surface, view] = GetSurface(gpu_addr, params, true, false);
if (guard_samplers) {
sampled_textures.push_back(surface);
}
return view;
}
bool TextureBarrier() {
const bool any_rt =
std::any_of(sampled_textures.begin(), sampled_textures.end(),
[](const auto& surface) { return surface->IsRenderTarget(); });
sampled_textures.clear();
return any_rt;
}
TView GetDepthBufferSurface(bool preserve_contents) {
std::lock_guard lock{mutex};
auto& maxwell3d = system.GPU().Maxwell3D();
if (!maxwell3d.dirty_flags.zeta_buffer) {
return depth_buffer.view;
}
maxwell3d.dirty_flags.zeta_buffer = false;
const auto& regs{maxwell3d.regs};
const auto gpu_addr{regs.zeta.Address()};
if (!gpu_addr || !regs.zeta_enable) {
SetEmptyDepthBuffer();
return {};
}
const auto depth_params{SurfaceParams::CreateForDepthBuffer(
system, regs.zeta_width, regs.zeta_height, regs.zeta.format,
regs.zeta.memory_layout.block_width, regs.zeta.memory_layout.block_height,
regs.zeta.memory_layout.block_depth, regs.zeta.memory_layout.type)};
auto surface_view = GetSurface(gpu_addr, depth_params, preserve_contents, true);
if (depth_buffer.target)
depth_buffer.target->MarkAsRenderTarget(false);
depth_buffer.target = surface_view.first;
depth_buffer.view = surface_view.second;
if (depth_buffer.target)
depth_buffer.target->MarkAsRenderTarget(true);
return surface_view.second;
}
TView GetColorBufferSurface(std::size_t index, bool preserve_contents) {
std::lock_guard lock{mutex};
ASSERT(index < Tegra::Engines::Maxwell3D::Regs::NumRenderTargets);
auto& maxwell3d = system.GPU().Maxwell3D();
if (!maxwell3d.dirty_flags.color_buffer[index]) {
return render_targets[index].view;
}
maxwell3d.dirty_flags.color_buffer.reset(index);
const auto& regs{maxwell3d.regs};
if (index >= regs.rt_control.count || regs.rt[index].Address() == 0 ||
regs.rt[index].format == Tegra::RenderTargetFormat::NONE) {
SetEmptyColorBuffer(index);
return {};
}
const auto& config{regs.rt[index]};
const auto gpu_addr{config.Address()};
if (!gpu_addr) {
SetEmptyColorBuffer(index);
return {};
}
auto surface_view = GetSurface(gpu_addr, SurfaceParams::CreateForFramebuffer(system, index),
preserve_contents, true);
if (render_targets[index].target)
render_targets[index].target->MarkAsRenderTarget(false);
render_targets[index].target = surface_view.first;
render_targets[index].view = surface_view.second;
if (render_targets[index].target)
render_targets[index].target->MarkAsRenderTarget(true);
return surface_view.second;
}
void MarkColorBufferInUse(std::size_t index) {
if (auto& render_target = render_targets[index].target) {
render_target->MarkAsModified(true, Tick());
}
}
void MarkDepthBufferInUse() {
if (depth_buffer.target) {
depth_buffer.target->MarkAsModified(true, Tick());
}
}
void SetEmptyDepthBuffer() {
if (depth_buffer.target == nullptr) {
return;
}
depth_buffer.target->MarkAsRenderTarget(false);
depth_buffer.target = nullptr;
depth_buffer.view = nullptr;
}
void SetEmptyColorBuffer(std::size_t index) {
if (render_targets[index].target == nullptr) {
return;
}
render_targets[index].target->MarkAsRenderTarget(false);
render_targets[index].target = nullptr;
render_targets[index].view = nullptr;
}
void DoFermiCopy(const Tegra::Engines::Fermi2D::Regs::Surface& src_config,
const Tegra::Engines::Fermi2D::Regs::Surface& dst_config,
const Tegra::Engines::Fermi2D::Config& copy_config) {
std::lock_guard lock{mutex};
std::pair<TSurface, TView> dst_surface = GetFermiSurface(dst_config);
std::pair<TSurface, TView> src_surface = GetFermiSurface(src_config);
ImageBlit(src_surface.second, dst_surface.second, copy_config);
dst_surface.first->MarkAsModified(true, Tick());
}
TSurface TryFindFramebufferSurface(const u8* host_ptr) {
const CacheAddr cache_addr = ToCacheAddr(host_ptr);
if (!cache_addr) {
return nullptr;
}
const CacheAddr page = cache_addr >> registry_page_bits;
std::vector<TSurface>& list = registry[page];
for (auto& surface : list) {
if (surface->GetCacheAddr() == cache_addr) {
return surface;
}
}
return nullptr;
}
u64 Tick() {
return ++ticks;
}
protected:
TextureCache(Core::System& system, VideoCore::RasterizerInterface& rasterizer)
: system{system}, rasterizer{rasterizer} {
for (std::size_t i = 0; i < Tegra::Engines::Maxwell3D::Regs::NumRenderTargets; i++) {
SetEmptyColorBuffer(i);
}
SetEmptyDepthBuffer();
staging_cache.SetSize(2);
const auto make_siblings = [this](PixelFormat a, PixelFormat b) {
siblings_table[static_cast<std::size_t>(a)] = b;
siblings_table[static_cast<std::size_t>(b)] = a;
};
std::fill(siblings_table.begin(), siblings_table.end(), PixelFormat::Invalid);
make_siblings(PixelFormat::Z16, PixelFormat::R16U);
make_siblings(PixelFormat::Z32F, PixelFormat::R32F);
make_siblings(PixelFormat::Z32FS8, PixelFormat::RG32F);
sampled_textures.reserve(64);
}
~TextureCache() = default;
virtual TSurface CreateSurface(GPUVAddr gpu_addr, const SurfaceParams& params) = 0;
virtual void ImageCopy(TSurface& src_surface, TSurface& dst_surface,
const CopyParams& copy_params) = 0;
virtual void ImageBlit(TView& src_view, TView& dst_view,
const Tegra::Engines::Fermi2D::Config& copy_config) = 0;
// Depending on the backend, a buffer copy can be slow as it means deoptimizing the texture
// and reading it from a sepparate buffer.
virtual void BufferCopy(TSurface& src_surface, TSurface& dst_surface) = 0;
void Register(TSurface surface) {
const GPUVAddr gpu_addr = surface->GetGpuAddr();
const CacheAddr cache_ptr = ToCacheAddr(system.GPU().MemoryManager().GetPointer(gpu_addr));
const std::size_t size = surface->GetSizeInBytes();
const std::optional<VAddr> cpu_addr =
system.GPU().MemoryManager().GpuToCpuAddress(gpu_addr);
if (!cache_ptr || !cpu_addr) {
LOG_CRITICAL(HW_GPU, "Failed to register surface with unmapped gpu_address 0x{:016x}",
gpu_addr);
return;
}
const bool continuous = system.GPU().MemoryManager().IsBlockContinuous(gpu_addr, size);
surface->MarkAsContinuous(continuous);
surface->SetCacheAddr(cache_ptr);
surface->SetCpuAddr(*cpu_addr);
RegisterInnerCache(surface);
surface->MarkAsRegistered(true);
rasterizer.UpdatePagesCachedCount(*cpu_addr, size, 1);
}
void Unregister(TSurface surface) {
if (guard_render_targets && surface->IsProtected()) {
return;
}
const GPUVAddr gpu_addr = surface->GetGpuAddr();
const CacheAddr cache_ptr = surface->GetCacheAddr();
const std::size_t size = surface->GetSizeInBytes();
const VAddr cpu_addr = surface->GetCpuAddr();
rasterizer.UpdatePagesCachedCount(cpu_addr, size, -1);
UnregisterInnerCache(surface);
surface->MarkAsRegistered(false);
ReserveSurface(surface->GetSurfaceParams(), surface);
}
TSurface GetUncachedSurface(const GPUVAddr gpu_addr, const SurfaceParams& params) {
if (const auto surface = TryGetReservedSurface(params); surface) {
surface->SetGpuAddr(gpu_addr);
return surface;
}
// No reserved surface available, create a new one and reserve it
auto new_surface{CreateSurface(gpu_addr, params)};
return new_surface;
}
std::pair<TSurface, TView> GetFermiSurface(
const Tegra::Engines::Fermi2D::Regs::Surface& config) {
SurfaceParams params = SurfaceParams::CreateForFermiCopySurface(config);
const GPUVAddr gpu_addr = config.Address();
return GetSurface(gpu_addr, params, true, false);
}
Core::System& system;
private:
enum class RecycleStrategy : u32 {
Ignore = 0,
Flush = 1,
BufferCopy = 3,
};
/**
* `PickStrategy` takes care of selecting a proper strategy to deal with a texture recycle.
* @param overlaps, the overlapping surfaces registered in the cache.
* @param params, the paremeters on the new surface.
* @param gpu_addr, the starting address of the new surface.
* @param untopological, tells the recycler that the texture has no way to match the overlaps
* due to topological reasons.
**/
RecycleStrategy PickStrategy(std::vector<TSurface>& overlaps, const SurfaceParams& params,
const GPUVAddr gpu_addr, const MatchTopologyResult untopological) {
if (Settings::values.use_accurate_gpu_emulation) {
return RecycleStrategy::Flush;
}
// 3D Textures decision
if (params.block_depth > 1 || params.target == SurfaceTarget::Texture3D) {
return RecycleStrategy::Flush;
}
for (auto s : overlaps) {
const auto& s_params = s->GetSurfaceParams();
if (s_params.block_depth > 1 || s_params.target == SurfaceTarget::Texture3D) {
return RecycleStrategy::Flush;
}
}
// Untopological decision
if (untopological == MatchTopologyResult::CompressUnmatch) {
return RecycleStrategy::Flush;
}
if (untopological == MatchTopologyResult::FullMatch && !params.is_tiled) {
return RecycleStrategy::Flush;
}
return RecycleStrategy::Ignore;
}
/**
* `RecycleSurface` es a method we use to decide what to do with textures we can't resolve in
*the cache It has 2 implemented strategies: Ignore and Flush. Ignore just unregisters all the
*overlaps and loads the new texture. Flush, flushes all the overlaps into memory and loads the
*new surface from that data.
* @param overlaps, the overlapping surfaces registered in the cache.
* @param params, the paremeters on the new surface.
* @param gpu_addr, the starting address of the new surface.
* @param preserve_contents, tells if the new surface should be loaded from meory or left blank
* @param untopological, tells the recycler that the texture has no way to match the overlaps
* due to topological reasons.
**/
std::pair<TSurface, TView> RecycleSurface(std::vector<TSurface>& overlaps,
const SurfaceParams& params, const GPUVAddr gpu_addr,
const bool preserve_contents,
const MatchTopologyResult untopological) {
const bool do_load = preserve_contents && Settings::values.use_accurate_gpu_emulation;
for (auto& surface : overlaps) {
Unregister(surface);
}
switch (PickStrategy(overlaps, params, gpu_addr, untopological)) {
case RecycleStrategy::Ignore: {
return InitializeSurface(gpu_addr, params, do_load);
}
case RecycleStrategy::Flush: {
std::sort(overlaps.begin(), overlaps.end(),
[](const TSurface& a, const TSurface& b) -> bool {
return a->GetModificationTick() < b->GetModificationTick();
});
for (auto& surface : overlaps) {
FlushSurface(surface);
}
return InitializeSurface(gpu_addr, params, preserve_contents);
}
case RecycleStrategy::BufferCopy: {
auto new_surface = GetUncachedSurface(gpu_addr, params);
BufferCopy(overlaps[0], new_surface);
return {new_surface, new_surface->GetMainView()};
}
default: {
UNIMPLEMENTED_MSG("Unimplemented Texture Cache Recycling Strategy!");
return InitializeSurface(gpu_addr, params, do_load);
}
}
}
/**
* `RebuildSurface` this method takes a single surface and recreates into another that
* may differ in format, target or width alingment.
* @param current_surface, the registered surface in the cache which we want to convert.
* @param params, the new surface params which we'll use to recreate the surface.
**/
std::pair<TSurface, TView> RebuildSurface(TSurface current_surface, const SurfaceParams& params,
bool is_render) {
const auto gpu_addr = current_surface->GetGpuAddr();
const auto& cr_params = current_surface->GetSurfaceParams();
TSurface new_surface;
if (cr_params.pixel_format != params.pixel_format && !is_render &&
GetSiblingFormat(cr_params.pixel_format) == params.pixel_format) {
SurfaceParams new_params = params;
new_params.pixel_format = cr_params.pixel_format;
new_params.component_type = cr_params.component_type;
new_params.type = cr_params.type;
new_surface = GetUncachedSurface(gpu_addr, new_params);
} else {
new_surface = GetUncachedSurface(gpu_addr, params);
}
const auto& final_params = new_surface->GetSurfaceParams();
if (cr_params.type != final_params.type ||
(cr_params.component_type != final_params.component_type)) {
BufferCopy(current_surface, new_surface);
} else {
std::vector<CopyParams> bricks = current_surface->BreakDown(final_params);
for (auto& brick : bricks) {
ImageCopy(current_surface, new_surface, brick);
}
}
Unregister(current_surface);
Register(new_surface);
new_surface->MarkAsModified(current_surface->IsModified(), Tick());
return {new_surface, new_surface->GetMainView()};
}
/**
* `ManageStructuralMatch` this method takes a single surface and checks with the new surface's
* params if it's an exact match, we return the main view of the registered surface. If it's
* formats don't match, we rebuild the surface. We call this last method a `Mirage`. If formats
* match but the targets don't, we create an overview View of the registered surface.
* @param current_surface, the registered surface in the cache which we want to convert.
* @param params, the new surface params which we want to check.
**/
std::pair<TSurface, TView> ManageStructuralMatch(TSurface current_surface,
const SurfaceParams& params, bool is_render) {
const bool is_mirage = !current_surface->MatchFormat(params.pixel_format);
const bool matches_target = current_surface->MatchTarget(params.target);
const auto match_check = [&]() -> std::pair<TSurface, TView> {
if (matches_target) {
return {current_surface, current_surface->GetMainView()};
}
return {current_surface, current_surface->EmplaceOverview(params)};
};
if (!is_mirage) {
return match_check();
}
if (!is_render && GetSiblingFormat(current_surface->GetFormat()) == params.pixel_format) {
return match_check();
}
return RebuildSurface(current_surface, params, is_render);
}
/**
* `TryReconstructSurface` unlike `RebuildSurface` where we know the registered surface
* matches the candidate in some way, we got no guarantess here. We try to see if the overlaps
* are sublayers/mipmaps of the new surface, if they all match we end up recreating a surface
* for them, else we return nothing.
* @param overlaps, the overlapping surfaces registered in the cache.
* @param params, the paremeters on the new surface.
* @param gpu_addr, the starting address of the new surface.
**/
std::optional<std::pair<TSurface, TView>> TryReconstructSurface(std::vector<TSurface>& overlaps,
const SurfaceParams& params,
const GPUVAddr gpu_addr) {
if (params.target == SurfaceTarget::Texture3D) {
return {};
}
bool modified = false;
TSurface new_surface = GetUncachedSurface(gpu_addr, params);
u32 passed_tests = 0;
for (auto& surface : overlaps) {
const SurfaceParams& src_params = surface->GetSurfaceParams();
if (src_params.is_layered || src_params.num_levels > 1) {
// We send this cases to recycle as they are more complex to handle
return {};
}
const std::size_t candidate_size = surface->GetSizeInBytes();
auto mipmap_layer{new_surface->GetLayerMipmap(surface->GetGpuAddr())};
if (!mipmap_layer) {
continue;
}
const auto [layer, mipmap] = *mipmap_layer;
if (new_surface->GetMipmapSize(mipmap) != candidate_size) {
continue;
}
modified |= surface->IsModified();
// Now we got all the data set up
const u32 width = SurfaceParams::IntersectWidth(src_params, params, 0, mipmap);
const u32 height = SurfaceParams::IntersectHeight(src_params, params, 0, mipmap);
const CopyParams copy_params(0, 0, 0, 0, 0, layer, 0, mipmap, width, height, 1);
passed_tests++;
ImageCopy(surface, new_surface, copy_params);
}
if (passed_tests == 0) {
return {};
// In Accurate GPU all tests should pass, else we recycle
} else if (Settings::values.use_accurate_gpu_emulation && passed_tests != overlaps.size()) {
return {};
}
for (auto surface : overlaps) {
Unregister(surface);
}
new_surface->MarkAsModified(modified, Tick());
Register(new_surface);
return {{new_surface, new_surface->GetMainView()}};
}
/**
* `GetSurface` gets the starting address and parameters of a candidate surface and tries
* to find a matching surface within the cache. This is done in 3 big steps. The first is to
* check the 1st Level Cache in order to find an exact match, if we fail, we move to step 2.
* Step 2 is checking if there are any overlaps at all, if none, we just load the texture from
* memory else we move to step 3. Step 3 consists on figuring the relationship between the
* candidate texture and the overlaps. We divide the scenarios depending if there's 1 or many
* overlaps. If there's many, we just try to reconstruct a new surface out of them based on the
* candidate's parameters, if we fail, we recycle. When there's only 1 overlap then we have to
* check if the candidate is a view (layer/mipmap) of the overlap or if the registered surface
* is a mipmap/layer of the candidate. In this last case we reconstruct a new surface.
* @param gpu_addr, the starting address of the candidate surface.
* @param params, the paremeters on the candidate surface.
* @param preserve_contents, tells if the new surface should be loaded from meory or left blank.
**/
std::pair<TSurface, TView> GetSurface(const GPUVAddr gpu_addr, const SurfaceParams& params,
bool preserve_contents, bool is_render) {
const auto host_ptr{system.GPU().MemoryManager().GetPointer(gpu_addr)};
const auto cache_addr{ToCacheAddr(host_ptr)};
// Step 0: guarantee a valid surface
if (!cache_addr) {
// Return a null surface if it's invalid
SurfaceParams new_params = params;
new_params.width = 1;
new_params.height = 1;
new_params.depth = 1;
new_params.block_height = 0;
new_params.block_depth = 0;
return InitializeSurface(gpu_addr, new_params, false);
}
// Step 1
// Check Level 1 Cache for a fast structural match. If candidate surface
// matches at certain level we are pretty much done.
if (const auto iter = l1_cache.find(cache_addr); iter != l1_cache.end()) {
TSurface& current_surface = iter->second;
const auto topological_result = current_surface->MatchesTopology(params);
if (topological_result != MatchTopologyResult::FullMatch) {
std::vector<TSurface> overlaps{current_surface};
return RecycleSurface(overlaps, params, gpu_addr, preserve_contents,
topological_result);
}
const auto struct_result = current_surface->MatchesStructure(params);
if (struct_result != MatchStructureResult::None &&
(params.target != SurfaceTarget::Texture3D ||
current_surface->MatchTarget(params.target))) {
if (struct_result == MatchStructureResult::FullMatch) {
return ManageStructuralMatch(current_surface, params, is_render);
} else {
return RebuildSurface(current_surface, params, is_render);
}
}
}
// Step 2
// Obtain all possible overlaps in the memory region
const std::size_t candidate_size = params.GetGuestSizeInBytes();
auto overlaps{GetSurfacesInRegion(cache_addr, candidate_size)};
// If none are found, we are done. we just load the surface and create it.
if (overlaps.empty()) {
return InitializeSurface(gpu_addr, params, preserve_contents);
}
// Step 3
// Now we need to figure the relationship between the texture and its overlaps
// we do a topological test to ensure we can find some relationship. If it fails
// inmediatly recycle the texture
for (const auto& surface : overlaps) {
const auto topological_result = surface->MatchesTopology(params);
if (topological_result != MatchTopologyResult::FullMatch) {
return RecycleSurface(overlaps, params, gpu_addr, preserve_contents,
topological_result);
}
}
// Split cases between 1 overlap or many.
if (overlaps.size() == 1) {
TSurface current_surface = overlaps[0];
// First check if the surface is within the overlap. If not, it means
// two things either the candidate surface is a supertexture of the overlap
// or they don't match in any known way.
if (!current_surface->IsInside(gpu_addr, gpu_addr + candidate_size)) {
if (current_surface->GetGpuAddr() == gpu_addr) {
std::optional<std::pair<TSurface, TView>> view =
TryReconstructSurface(overlaps, params, gpu_addr);
if (view) {
return *view;
}
}
return RecycleSurface(overlaps, params, gpu_addr, preserve_contents,
MatchTopologyResult::FullMatch);
}
// Now we check if the candidate is a mipmap/layer of the overlap
std::optional<TView> view =
current_surface->EmplaceView(params, gpu_addr, candidate_size);
if (view) {
const bool is_mirage = !current_surface->MatchFormat(params.pixel_format);
if (is_mirage) {
// On a mirage view, we need to recreate the surface under this new view
// and then obtain a view again.
SurfaceParams new_params = current_surface->GetSurfaceParams();
const u32 wh = SurfaceParams::ConvertWidth(
new_params.width, new_params.pixel_format, params.pixel_format);
const u32 hh = SurfaceParams::ConvertHeight(
new_params.height, new_params.pixel_format, params.pixel_format);
new_params.width = wh;
new_params.height = hh;
new_params.pixel_format = params.pixel_format;
std::pair<TSurface, TView> pair =
RebuildSurface(current_surface, new_params, is_render);
std::optional<TView> mirage_view =
pair.first->EmplaceView(params, gpu_addr, candidate_size);
if (mirage_view)
return {pair.first, *mirage_view};
return RecycleSurface(overlaps, params, gpu_addr, preserve_contents,
MatchTopologyResult::FullMatch);
}
return {current_surface, *view};
}
// The next case is unsafe, so if we r in accurate GPU, just skip it
if (Settings::values.use_accurate_gpu_emulation) {
return RecycleSurface(overlaps, params, gpu_addr, preserve_contents,
MatchTopologyResult::FullMatch);
}
// This is the case the texture is a part of the parent.
if (current_surface->MatchesSubTexture(params, gpu_addr)) {
return RebuildSurface(current_surface, params, is_render);
}
} else {
// If there are many overlaps, odds are they are subtextures of the candidate
// surface. We try to construct a new surface based on the candidate parameters,
// using the overlaps. If a single overlap fails, this will fail.
std::optional<std::pair<TSurface, TView>> view =
TryReconstructSurface(overlaps, params, gpu_addr);
if (view) {
return *view;
}
}
// We failed all the tests, recycle the overlaps into a new texture.
return RecycleSurface(overlaps, params, gpu_addr, preserve_contents,
MatchTopologyResult::FullMatch);
}
std::pair<TSurface, TView> InitializeSurface(GPUVAddr gpu_addr, const SurfaceParams& params,
bool preserve_contents) {
auto new_surface{GetUncachedSurface(gpu_addr, params)};
Register(new_surface);
if (preserve_contents) {
LoadSurface(new_surface);
}
return {new_surface, new_surface->GetMainView()};
}
void LoadSurface(const TSurface& surface) {
staging_cache.GetBuffer(0).resize(surface->GetHostSizeInBytes());
surface->LoadBuffer(system.GPU().MemoryManager(), staging_cache);
surface->UploadTexture(staging_cache.GetBuffer(0));
surface->MarkAsModified(false, Tick());
}
void FlushSurface(const TSurface& surface) {
if (!surface->IsModified()) {
return;
}
staging_cache.GetBuffer(0).resize(surface->GetHostSizeInBytes());
surface->DownloadTexture(staging_cache.GetBuffer(0));
surface->FlushBuffer(system.GPU().MemoryManager(), staging_cache);
surface->MarkAsModified(false, Tick());
}
void RegisterInnerCache(TSurface& surface) {
const CacheAddr cache_addr = surface->GetCacheAddr();
CacheAddr start = cache_addr >> registry_page_bits;
const CacheAddr end = (surface->GetCacheAddrEnd() - 1) >> registry_page_bits;
l1_cache[cache_addr] = surface;
while (start <= end) {
registry[start].push_back(surface);
start++;
}
}
void UnregisterInnerCache(TSurface& surface) {
const CacheAddr cache_addr = surface->GetCacheAddr();
CacheAddr start = cache_addr >> registry_page_bits;
const CacheAddr end = (surface->GetCacheAddrEnd() - 1) >> registry_page_bits;
l1_cache.erase(cache_addr);
while (start <= end) {
auto& reg{registry[start]};
reg.erase(std::find(reg.begin(), reg.end(), surface));
start++;
}
}
std::vector<TSurface> GetSurfacesInRegion(const CacheAddr cache_addr, const std::size_t size) {
if (size == 0) {
return {};
}
const CacheAddr cache_addr_end = cache_addr + size;
CacheAddr start = cache_addr >> registry_page_bits;
const CacheAddr end = (cache_addr_end - 1) >> registry_page_bits;
std::vector<TSurface> surfaces;
while (start <= end) {
std::vector<TSurface>& list = registry[start];
for (auto& surface : list) {
if (!surface->IsPicked() && surface->Overlaps(cache_addr, cache_addr_end)) {
surface->MarkAsPicked(true);
surfaces.push_back(surface);
}
}
start++;
}
for (auto& surface : surfaces) {
surface->MarkAsPicked(false);
}
return surfaces;
}
void ReserveSurface(const SurfaceParams& params, TSurface surface) {
surface_reserve[params].push_back(std::move(surface));
}
TSurface TryGetReservedSurface(const SurfaceParams& params) {
auto search{surface_reserve.find(params)};
if (search == surface_reserve.end()) {
return {};
}
for (auto& surface : search->second) {
if (!surface->IsRegistered()) {
return surface;
}
}
return {};
}
constexpr PixelFormat GetSiblingFormat(PixelFormat format) const {
return siblings_table[static_cast<std::size_t>(format)];
}
struct FramebufferTargetInfo {
TSurface target;
TView view;
};
VideoCore::RasterizerInterface& rasterizer;
u64 ticks{};
// Guards the cache for protection conflicts.
bool guard_render_targets{};
bool guard_samplers{};
// The siblings table is for formats that can inter exchange with one another
// without causing issues. This is only valid when a conflict occurs on a non
// rendering use.
std::array<PixelFormat, static_cast<std::size_t>(PixelFormat::Max)> siblings_table;
// The internal Cache is different for the Texture Cache. It's based on buckets
// of 1MB. This fits better for the purpose of this cache as textures are normaly
// large in size.
static constexpr u64 registry_page_bits{20};
static constexpr u64 registry_page_size{1 << registry_page_bits};
std::unordered_map<CacheAddr, std::vector<TSurface>> registry;
// The L1 Cache is used for fast texture lookup before checking the overlaps
// This avoids calculating size and other stuffs.
std::unordered_map<CacheAddr, TSurface> l1_cache;
/// The surface reserve is a "backup" cache, this is where we put unique surfaces that have
/// previously been used. This is to prevent surfaces from being constantly created and
/// destroyed when used with different surface parameters.
std::unordered_map<SurfaceParams, std::vector<TSurface>> surface_reserve;
std::array<FramebufferTargetInfo, Tegra::Engines::Maxwell3D::Regs::NumRenderTargets>
render_targets;
FramebufferTargetInfo depth_buffer;
std::vector<TSurface> sampled_textures;
StagingCache staging_cache;
std::recursive_mutex mutex;
};
} // namespace VideoCommon

View file

@ -62,19 +62,19 @@ static void ConvertZ24S8ToS8Z24(u8* data, u32 width, u32 height) {
SwapS8Z24ToZ24S8<true>(data, width, height);
}
void ConvertFromGuestToHost(u8* data, PixelFormat pixel_format, u32 width, u32 height, u32 depth,
bool convert_astc, bool convert_s8z24) {
void ConvertFromGuestToHost(u8* in_data, u8* out_data, PixelFormat pixel_format, u32 width,
u32 height, u32 depth, bool convert_astc, bool convert_s8z24) {
if (convert_astc && IsPixelFormatASTC(pixel_format)) {
// Convert ASTC pixel formats to RGBA8, as most desktop GPUs do not support ASTC.
u32 block_width{};
u32 block_height{};
std::tie(block_width, block_height) = GetASTCBlockSize(pixel_format);
const std::vector<u8> rgba8_data =
Tegra::Texture::ASTC::Decompress(data, width, height, depth, block_width, block_height);
std::copy(rgba8_data.begin(), rgba8_data.end(), data);
const std::vector<u8> rgba8_data = Tegra::Texture::ASTC::Decompress(
in_data, width, height, depth, block_width, block_height);
std::copy(rgba8_data.begin(), rgba8_data.end(), out_data);
} else if (convert_s8z24 && pixel_format == PixelFormat::S8Z24) {
Tegra::Texture::ConvertS8Z24ToZ24S8(data, width, height);
Tegra::Texture::ConvertS8Z24ToZ24S8(in_data, width, height);
}
}
@ -90,4 +90,4 @@ void ConvertFromHostToGuest(u8* data, PixelFormat pixel_format, u32 width, u32 h
}
}
} // namespace Tegra::Texture
} // namespace Tegra::Texture

View file

@ -12,10 +12,11 @@ enum class PixelFormat;
namespace Tegra::Texture {
void ConvertFromGuestToHost(u8* data, VideoCore::Surface::PixelFormat pixel_format, u32 width,
u32 height, u32 depth, bool convert_astc, bool convert_s8z24);
void ConvertFromGuestToHost(u8* in_data, u8* out_data, VideoCore::Surface::PixelFormat pixel_format,
u32 width, u32 height, u32 depth, bool convert_astc,
bool convert_s8z24);
void ConvertFromHostToGuest(u8* data, VideoCore::Surface::PixelFormat pixel_format, u32 width,
u32 height, u32 depth, bool convert_astc, bool convert_s8z24);
} // namespace Tegra::Texture
} // namespace Tegra::Texture

View file

@ -36,10 +36,16 @@ struct alignas(64) SwizzleTable {
std::array<std::array<u16, M>, N> values{};
};
constexpr u32 gob_size_x = 64;
constexpr u32 gob_size_y = 8;
constexpr u32 gob_size_z = 1;
constexpr u32 gob_size = gob_size_x * gob_size_y * gob_size_z;
constexpr u32 gob_size_x_shift = 6;
constexpr u32 gob_size_y_shift = 3;
constexpr u32 gob_size_z_shift = 0;
constexpr u32 gob_size_shift = gob_size_x_shift + gob_size_y_shift + gob_size_z_shift;
constexpr u32 gob_size_x = 1U << gob_size_x_shift;
constexpr u32 gob_size_y = 1U << gob_size_y_shift;
constexpr u32 gob_size_z = 1U << gob_size_z_shift;
constexpr u32 gob_size = 1U << gob_size_shift;
constexpr u32 fast_swizzle_align = 16;
constexpr auto legacy_swizzle_table = SwizzleTable<gob_size_y, gob_size_x, gob_size_z>();
@ -171,14 +177,16 @@ void SwizzledData(u8* const swizzled_data, u8* const unswizzled_data, const bool
void CopySwizzledData(u32 width, u32 height, u32 depth, u32 bytes_per_pixel,
u32 out_bytes_per_pixel, u8* const swizzled_data, u8* const unswizzled_data,
bool unswizzle, u32 block_height, u32 block_depth, u32 width_spacing) {
const u32 block_height_size{1U << block_height};
const u32 block_depth_size{1U << block_depth};
if (bytes_per_pixel % 3 != 0 && (width * bytes_per_pixel) % fast_swizzle_align == 0) {
SwizzledData<true>(swizzled_data, unswizzled_data, unswizzle, width, height, depth,
bytes_per_pixel, out_bytes_per_pixel, block_height, block_depth,
width_spacing);
bytes_per_pixel, out_bytes_per_pixel, block_height_size,
block_depth_size, width_spacing);
} else {
SwizzledData<false>(swizzled_data, unswizzled_data, unswizzle, width, height, depth,
bytes_per_pixel, out_bytes_per_pixel, block_height, block_depth,
width_spacing);
bytes_per_pixel, out_bytes_per_pixel, block_height_size,
block_depth_size, width_spacing);
}
}
@ -248,7 +256,9 @@ std::vector<u8> UnswizzleTexture(u8* address, u32 tile_size_x, u32 tile_size_y,
}
void SwizzleSubrect(u32 subrect_width, u32 subrect_height, u32 source_pitch, u32 swizzled_width,
u32 bytes_per_pixel, u8* swizzled_data, u8* unswizzled_data, u32 block_height) {
u32 bytes_per_pixel, u8* swizzled_data, u8* unswizzled_data,
u32 block_height_bit) {
const u32 block_height = 1U << block_height_bit;
const u32 image_width_in_gobs{(swizzled_width * bytes_per_pixel + (gob_size_x - 1)) /
gob_size_x};
for (u32 line = 0; line < subrect_height; ++line) {
@ -269,8 +279,9 @@ void SwizzleSubrect(u32 subrect_width, u32 subrect_height, u32 source_pitch, u32
}
void UnswizzleSubrect(u32 subrect_width, u32 subrect_height, u32 dest_pitch, u32 swizzled_width,
u32 bytes_per_pixel, u8* swizzled_data, u8* unswizzled_data, u32 block_height,
u32 offset_x, u32 offset_y) {
u32 bytes_per_pixel, u8* swizzled_data, u8* unswizzled_data,
u32 block_height_bit, u32 offset_x, u32 offset_y) {
const u32 block_height = 1U << block_height_bit;
for (u32 line = 0; line < subrect_height; ++line) {
const u32 y2 = line + offset_y;
const u32 gob_address_y = (y2 / (gob_size_y * block_height)) * gob_size * block_height +
@ -289,8 +300,9 @@ void UnswizzleSubrect(u32 subrect_width, u32 subrect_height, u32 dest_pitch, u32
}
void SwizzleKepler(const u32 width, const u32 height, const u32 dst_x, const u32 dst_y,
const u32 block_height, const std::size_t copy_size, const u8* source_data,
const u32 block_height_bit, const std::size_t copy_size, const u8* source_data,
u8* swizzle_data) {
const u32 block_height = 1U << block_height_bit;
const u32 image_width_in_gobs{(width + gob_size_x - 1) / gob_size_x};
std::size_t count = 0;
for (std::size_t y = dst_y; y < height && count < copy_size; ++y) {
@ -356,9 +368,9 @@ std::vector<u8> DecodeTexture(const std::vector<u8>& texture_data, TextureFormat
std::size_t CalculateSize(bool tiled, u32 bytes_per_pixel, u32 width, u32 height, u32 depth,
u32 block_height, u32 block_depth) {
if (tiled) {
const u32 aligned_width = Common::AlignUp(width * bytes_per_pixel, gob_size_x);
const u32 aligned_height = Common::AlignUp(height, gob_size_y * block_height);
const u32 aligned_depth = Common::AlignUp(depth, gob_size_z * block_depth);
const u32 aligned_width = Common::AlignBits(width * bytes_per_pixel, gob_size_x_shift);
const u32 aligned_height = Common::AlignBits(height, gob_size_y_shift + block_height);
const u32 aligned_depth = Common::AlignBits(depth, gob_size_z_shift + block_depth);
return aligned_width * aligned_height * aligned_depth;
} else {
return width * height * depth * bytes_per_pixel;

View file

@ -12,8 +12,8 @@ namespace Tegra::Texture {
// GOBSize constant. Calculated by 64 bytes in x multiplied by 8 y coords, represents
// an small rect of (64/bytes_per_pixel)X8.
inline std::size_t GetGOBSize() {
return 512;
inline std::size_t GetGOBSizeShift() {
return 9;
}
/// Unswizzles a swizzled texture without changing its format.

View file

@ -52,9 +52,9 @@ enum class TextureFormat : u32 {
DXT45 = 0x26,
DXN1 = 0x27,
DXN2 = 0x28,
Z24S8 = 0x29,
S8Z24 = 0x29,
X8Z24 = 0x2a,
S8Z24 = 0x2b,
Z24S8 = 0x2b,
X4V4Z24__COV4R4V = 0x2c,
X4V4Z24__COV8R8V = 0x2d,
V8Z24__COV4R12V = 0x2e,
@ -172,12 +172,16 @@ struct TICEntry {
BitField<26, 1, u32> use_header_opt_control;
BitField<27, 1, u32> depth_texture;
BitField<28, 4, u32> max_mip_level;
BitField<0, 16, u32> buffer_high_width_minus_one;
};
union {
BitField<0, 16, u32> width_minus_1;
BitField<22, 1, u32> srgb_conversion;
BitField<23, 4, TextureType> texture_type;
BitField<29, 3, u32> border_size;
BitField<0, 16, u32> buffer_low_width_minus_one;
};
union {
BitField<0, 16, u32> height_minus_1;
@ -206,7 +210,10 @@ struct TICEntry {
}
u32 Width() const {
return width_minus_1 + 1;
if (header_version != TICHeaderVersion::OneDBuffer) {
return width_minus_1 + 1;
}
return (buffer_high_width_minus_one << 16) | buffer_low_width_minus_one;
}
u32 Height() const {
@ -219,20 +226,17 @@ struct TICEntry {
u32 BlockWidth() const {
ASSERT(IsTiled());
// The block height is stored in log2 format.
return 1 << block_width;
return block_width;
}
u32 BlockHeight() const {
ASSERT(IsTiled());
// The block height is stored in log2 format.
return 1 << block_height;
return block_height;
}
u32 BlockDepth() const {
ASSERT(IsTiled());
// The block height is stored in log2 format.
return 1 << block_depth;
return block_depth;
}
bool IsTiled() const {
@ -240,6 +244,15 @@ struct TICEntry {
header_version == TICHeaderVersion::BlockLinearColorKey;
}
bool IsLineal() const {
return header_version == TICHeaderVersion::Pitch ||
header_version == TICHeaderVersion::PitchColorKey;
}
bool IsBuffer() const {
return header_version == TICHeaderVersion::OneDBuffer;
}
bool IsSrgbConversionEnabled() const {
return srgb_conversion != 0;
}

View file

@ -750,6 +750,9 @@ void GMainWindow::OnDisplayTitleBars(bool show) {
QStringList GMainWindow::GetUnsupportedGLExtensions() {
QStringList unsupported_ext;
if (!GLAD_GL_ARB_buffer_storage) {
unsupported_ext.append(QStringLiteral("ARB_buffer_storage"));
}
if (!GLAD_GL_ARB_direct_state_access) {
unsupported_ext.append(QStringLiteral("ARB_direct_state_access"));
}

View file

@ -52,6 +52,10 @@ private:
bool EmuWindow_SDL2_GL::SupportsRequiredGLExtensions() {
std::vector<std::string> unsupported_ext;
if (!GLAD_GL_ARB_buffer_storage)
unsupported_ext.push_back("ARB_buffer_storage");
if (!GLAD_GL_ARB_direct_state_access)
unsupported_ext.push_back("ARB_direct_state_access");
if (!GLAD_GL_ARB_vertex_type_10f_11f_11f_rev)
unsupported_ext.push_back("ARB_vertex_type_10f_11f_11f_rev");
if (!GLAD_GL_ARB_texture_mirror_clamp_to_edge)