diff --git a/src/core/arm/skyeye_common/vfp/vfp.cpp b/src/core/arm/skyeye_common/vfp/vfp.cpp index 8887091248..1cf146c531 100644 --- a/src/core/arm/skyeye_common/vfp/vfp.cpp +++ b/src/core/arm/skyeye_common/vfp/vfp.cpp @@ -773,8 +773,8 @@ void vfp_raise_exceptions(ARMul_State* state, u32 exceptions, u32 inst, u32 fpsc * Comparison instructions always return at least one of * these flags set. */ - if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V)) - fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V); + if (exceptions & (FPSCR_NFLAG|FPSCR_ZFLAG|FPSCR_CFLAG|FPSCR_VFLAG)) + fpscr &= ~(FPSCR_NFLAG|FPSCR_ZFLAG|FPSCR_CFLAG|FPSCR_VFLAG); fpscr |= exceptions; diff --git a/src/core/arm/skyeye_common/vfp/vfp_helper.h b/src/core/arm/skyeye_common/vfp/vfp_helper.h index 581f0358f6..6e63d59ec2 100644 --- a/src/core/arm/skyeye_common/vfp/vfp_helper.h +++ b/src/core/arm/skyeye_common/vfp/vfp_helper.h @@ -45,444 +45,403 @@ #define do_div(n, base) {n/=base;} -/* From vfpinstr.h */ +enum : u32 { + FOP_MASK = 0x00b00040, + FOP_FMAC = 0x00000000, + FOP_FNMAC = 0x00000040, + FOP_FMSC = 0x00100000, + FOP_FNMSC = 0x00100040, + FOP_FMUL = 0x00200000, + FOP_FNMUL = 0x00200040, + FOP_FADD = 0x00300000, + FOP_FSUB = 0x00300040, + FOP_FDIV = 0x00800000, + FOP_EXT = 0x00b00040 +}; -#define INST_CPRTDO(inst) (((inst) & 0x0f000000) == 0x0e000000) -#define INST_CPRT(inst) ((inst) & (1 << 4)) -#define INST_CPRT_L(inst) ((inst) & (1 << 20)) -#define INST_CPRT_Rd(inst) (((inst) & (15 << 12)) >> 12) -#define INST_CPRT_OP(inst) (((inst) >> 21) & 7) -#define INST_CPNUM(inst) ((inst) & 0xf00) -#define CPNUM(cp) ((cp) << 8) +#define FOP_TO_IDX(inst) ((inst & 0x00b00000) >> 20 | (inst & (1 << 6)) >> 4) -#define FOP_MASK (0x00b00040) -#define FOP_FMAC (0x00000000) -#define FOP_FNMAC (0x00000040) -#define FOP_FMSC (0x00100000) -#define FOP_FNMSC (0x00100040) -#define FOP_FMUL (0x00200000) -#define FOP_FNMUL (0x00200040) -#define FOP_FADD (0x00300000) -#define FOP_FSUB (0x00300040) -#define FOP_FDIV (0x00800000) -#define FOP_EXT (0x00b00040) +enum : u32 { + FEXT_MASK = 0x000f0080, + FEXT_FCPY = 0x00000000, + FEXT_FABS = 0x00000080, + FEXT_FNEG = 0x00010000, + FEXT_FSQRT = 0x00010080, + FEXT_FCMP = 0x00040000, + FEXT_FCMPE = 0x00040080, + FEXT_FCMPZ = 0x00050000, + FEXT_FCMPEZ = 0x00050080, + FEXT_FCVT = 0x00070080, + FEXT_FUITO = 0x00080000, + FEXT_FSITO = 0x00080080, + FEXT_FTOUI = 0x000c0000, + FEXT_FTOUIZ = 0x000c0080, + FEXT_FTOSI = 0x000d0000, + FEXT_FTOSIZ = 0x000d0080 +}; -#define FOP_TO_IDX(inst) ((inst & 0x00b00000) >> 20 | (inst & (1 << 6)) >> 4) +#define FEXT_TO_IDX(inst) ((inst & 0x000f0000) >> 15 | (inst & (1 << 7)) >> 7) -#define FEXT_MASK (0x000f0080) -#define FEXT_FCPY (0x00000000) -#define FEXT_FABS (0x00000080) -#define FEXT_FNEG (0x00010000) -#define FEXT_FSQRT (0x00010080) -#define FEXT_FCMP (0x00040000) -#define FEXT_FCMPE (0x00040080) -#define FEXT_FCMPZ (0x00050000) -#define FEXT_FCMPEZ (0x00050080) -#define FEXT_FCVT (0x00070080) -#define FEXT_FUITO (0x00080000) -#define FEXT_FSITO (0x00080080) -#define FEXT_FTOUI (0x000c0000) -#define FEXT_FTOUIZ (0x000c0080) -#define FEXT_FTOSI (0x000d0000) -#define FEXT_FTOSIZ (0x000d0080) +#define vfp_get_sd(inst) ((inst & 0x0000f000) >> 11 | (inst & (1 << 22)) >> 22) +#define vfp_get_dd(inst) ((inst & 0x0000f000) >> 12 | (inst & (1 << 22)) >> 18) +#define vfp_get_sm(inst) ((inst & 0x0000000f) << 1 | (inst & (1 << 5)) >> 5) +#define vfp_get_dm(inst) ((inst & 0x0000000f) | (inst & (1 << 5)) >> 1) +#define vfp_get_sn(inst) ((inst & 0x000f0000) >> 15 | (inst & (1 << 7)) >> 7) +#define vfp_get_dn(inst) ((inst & 0x000f0000) >> 16 | (inst & (1 << 7)) >> 3) -#define FEXT_TO_IDX(inst) ((inst & 0x000f0000) >> 15 | (inst & (1 << 7)) >> 7) - -#define vfp_get_sd(inst) ((inst & 0x0000f000) >> 11 | (inst & (1 << 22)) >> 22) -#define vfp_get_dd(inst) ((inst & 0x0000f000) >> 12 | (inst & (1 << 22)) >> 18) -#define vfp_get_sm(inst) ((inst & 0x0000000f) << 1 | (inst & (1 << 5)) >> 5) -#define vfp_get_dm(inst) ((inst & 0x0000000f) | (inst & (1 << 5)) >> 1) -#define vfp_get_sn(inst) ((inst & 0x000f0000) >> 15 | (inst & (1 << 7)) >> 7) -#define vfp_get_dn(inst) ((inst & 0x000f0000) >> 16 | (inst & (1 << 7)) >> 3) - -#define vfp_single(inst) (((inst) & 0x0000f00) == 0xa00) - -#define FPSCR_N (1 << 31) -#define FPSCR_Z (1 << 30) -#define FPSCR_C (1 << 29) -#define FPSCR_V (1 << 28) +#define vfp_single(inst) (((inst) & 0x0000f00) == 0xa00) static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift) { - if (shift) { - if (shift < 32) - val = val >> shift | ((val << (32 - shift)) != 0); - else - val = val != 0; - } - return val; + if (shift) { + if (shift < 32) + val = val >> shift | ((val << (32 - shift)) != 0); + else + val = val != 0; + } + return val; } static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift) { - if (shift) { - if (shift < 64) - val = val >> shift | ((val << (64 - shift)) != 0); - else - val = val != 0; - } - return val; + if (shift) { + if (shift < 64) + val = val >> shift | ((val << (64 - shift)) != 0); + else + val = val != 0; + } + return val; } static inline u32 vfp_hi64to32jamming(u64 val) { - u32 v; - u32 highval = val >> 32; - u32 lowval = val & 0xffffffff; + u32 v; + u32 highval = val >> 32; + u32 lowval = val & 0xffffffff; - if (lowval >= 1) - v = highval | 1; - else - v = highval; + if (lowval >= 1) + v = highval | 1; + else + v = highval; - return v; + return v; } -static inline void add128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml) +static inline void add128(u64* resh, u64* resl, u64 nh, u64 nl, u64 mh, u64 ml) { - *resl = nl + ml; - *resh = nh + mh; - if (*resl < nl) - *resh += 1; + *resl = nl + ml; + *resh = nh + mh; + if (*resl < nl) + *resh += 1; } -static inline void sub128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml) +static inline void sub128(u64* resh, u64* resl, u64 nh, u64 nl, u64 mh, u64 ml) { - *resl = nl - ml; - *resh = nh - mh; - if (*resl > nl) - *resh -= 1; + *resl = nl - ml; + *resh = nh - mh; + if (*resl > nl) + *resh -= 1; } -static inline void mul64to128(u64 *resh, u64 *resl, u64 n, u64 m) +static inline void mul64to128(u64* resh, u64* resl, u64 n, u64 m) { - u32 nh, nl, mh, ml; - u64 rh, rma, rmb, rl; + u32 nh, nl, mh, ml; + u64 rh, rma, rmb, rl; - nl = n; - ml = m; - rl = (u64)nl * ml; + nl = n; + ml = m; + rl = (u64)nl * ml; - nh = n >> 32; - rma = (u64)nh * ml; + nh = n >> 32; + rma = (u64)nh * ml; - mh = m >> 32; - rmb = (u64)nl * mh; - rma += rmb; + mh = m >> 32; + rmb = (u64)nl * mh; + rma += rmb; - rh = (u64)nh * mh; - rh += ((u64)(rma < rmb) << 32) + (rma >> 32); + rh = (u64)nh * mh; + rh += ((u64)(rma < rmb) << 32) + (rma >> 32); - rma <<= 32; - rl += rma; - rh += (rl < rma); + rma <<= 32; + rl += rma; + rh += (rl < rma); - *resl = rl; - *resh = rh; + *resl = rl; + *resh = rh; } -static inline void shift64left(u64 *resh, u64 *resl, u64 n) +static inline void shift64left(u64* resh, u64* resl, u64 n) { - *resh = n >> 63; - *resl = n << 1; + *resh = n >> 63; + *resl = n << 1; } static inline u64 vfp_hi64multiply64(u64 n, u64 m) { - u64 rh, rl; - mul64to128(&rh, &rl, n, m); - return rh | (rl != 0); + u64 rh, rl; + mul64to128(&rh, &rl, n, m); + return rh | (rl != 0); } static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m) { - u64 mh, ml, remh, reml, termh, terml, z; + u64 mh, ml, remh, reml, termh, terml, z; - if (nh >= m) - return ~0ULL; - mh = m >> 32; - if (mh << 32 <= nh) { - z = 0xffffffff00000000ULL; - } else { - z = nh; - do_div(z, mh); - z <<= 32; - } - mul64to128(&termh, &terml, m, z); - sub128(&remh, &reml, nh, nl, termh, terml); - ml = m << 32; - while ((s64)remh < 0) { - z -= 0x100000000ULL; - add128(&remh, &reml, remh, reml, mh, ml); - } - remh = (remh << 32) | (reml >> 32); - if (mh << 32 <= remh) { - z |= 0xffffffff; - } else { - do_div(remh, mh); - z |= remh; - } - return z; + if (nh >= m) + return ~0ULL; + mh = m >> 32; + if (mh << 32 <= nh) { + z = 0xffffffff00000000ULL; + } else { + z = nh; + do_div(z, mh); + z <<= 32; + } + mul64to128(&termh, &terml, m, z); + sub128(&remh, &reml, nh, nl, termh, terml); + ml = m << 32; + while ((s64)remh < 0) { + z -= 0x100000000ULL; + add128(&remh, &reml, remh, reml, mh, ml); + } + remh = (remh << 32) | (reml >> 32); + if (mh << 32 <= remh) { + z |= 0xffffffff; + } else { + do_div(remh, mh); + z |= remh; + } + return z; } -/* - * Operations on unpacked elements - */ -#define vfp_sign_negate(sign) (sign ^ 0x8000) +// Operations on unpacked elements +#define vfp_sign_negate(sign) (sign ^ 0x8000) -/* - * Single-precision - */ +// Single-precision struct vfp_single { - s16 exponent; - u16 sign; - u32 significand; + s16 exponent; + u16 sign; + u32 significand; }; -/* - * VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa - * VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent - * VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand - * which are not propagated to the float upon packing. - */ -#define VFP_SINGLE_MANTISSA_BITS (23) -#define VFP_SINGLE_EXPONENT_BITS (8) -#define VFP_SINGLE_LOW_BITS (32 - VFP_SINGLE_MANTISSA_BITS - 2) -#define VFP_SINGLE_LOW_BITS_MASK ((1 << VFP_SINGLE_LOW_BITS) - 1) +// VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa +// VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent +// VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand +// which are not propagated to the float upon packing. +#define VFP_SINGLE_MANTISSA_BITS (23) +#define VFP_SINGLE_EXPONENT_BITS (8) +#define VFP_SINGLE_LOW_BITS (32 - VFP_SINGLE_MANTISSA_BITS - 2) +#define VFP_SINGLE_LOW_BITS_MASK ((1 << VFP_SINGLE_LOW_BITS) - 1) -/* - * The bit in an unpacked float which indicates that it is a quiet NaN - */ +// The bit in an unpacked float which indicates that it is a quiet NaN #define VFP_SINGLE_SIGNIFICAND_QNAN (1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS)) -/* - * Operations on packed single-precision numbers - */ -#define vfp_single_packed_sign(v) ((v) & 0x80000000) -#define vfp_single_packed_negate(v) ((v) ^ 0x80000000) -#define vfp_single_packed_abs(v) ((v) & ~0x80000000) -#define vfp_single_packed_exponent(v) (((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1)) -#define vfp_single_packed_mantissa(v) ((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1)) +// Operations on packed single-precision numbers +#define vfp_single_packed_sign(v) ((v) & 0x80000000) +#define vfp_single_packed_negate(v) ((v) ^ 0x80000000) +#define vfp_single_packed_abs(v) ((v) & ~0x80000000) +#define vfp_single_packed_exponent(v) (((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1)) +#define vfp_single_packed_mantissa(v) ((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1)) -/* - * Unpack a single-precision float. Note that this returns the magnitude - * of the single-precision float mantissa with the 1. if necessary, - * aligned to bit 30. - */ -static inline void vfp_single_unpack(struct vfp_single *s, s32 val) +// Unpack a single-precision float. Note that this returns the magnitude +// of the single-precision float mantissa with the 1. if necessary, +// aligned to bit 30. +static inline void vfp_single_unpack(vfp_single* s, s32 val) { - u32 significand; + u32 significand; - s->sign = vfp_single_packed_sign(val) >> 16, - s->exponent = vfp_single_packed_exponent(val); + s->sign = vfp_single_packed_sign(val) >> 16, + s->exponent = vfp_single_packed_exponent(val); - significand = (u32) val; - significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2; - if (s->exponent && s->exponent != 255) - significand |= 0x40000000; - s->significand = significand; + significand = (u32) val; + significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2; + if (s->exponent && s->exponent != 255) + significand |= 0x40000000; + s->significand = significand; } -/* - * Re-pack a single-precision float. This assumes that the float is - * already normalised such that the MSB is bit 30, _not_ bit 31. - */ -static inline s32 vfp_single_pack(struct vfp_single *s) +// Re-pack a single-precision float. This assumes that the float is +// already normalised such that the MSB is bit 30, _not_ bit 31. +static inline s32 vfp_single_pack(vfp_single* s) { - u32 val; - val = (s->sign << 16) + - (s->exponent << VFP_SINGLE_MANTISSA_BITS) + - (s->significand >> VFP_SINGLE_LOW_BITS); - return (s32)val; + u32 val = (s->sign << 16) + + (s->exponent << VFP_SINGLE_MANTISSA_BITS) + + (s->significand >> VFP_SINGLE_LOW_BITS); + return (s32)val; } -#define VFP_NUMBER (1<<0) -#define VFP_ZERO (1<<1) -#define VFP_DENORMAL (1<<2) -#define VFP_INFINITY (1<<3) -#define VFP_NAN (1<<4) -#define VFP_NAN_SIGNAL (1<<5) +enum : u32 { + VFP_NUMBER = (1 << 0), + VFP_ZERO = (1 << 1), + VFP_DENORMAL = (1 << 2), + VFP_INFINITY = (1 << 3), + VFP_NAN = (1 << 4), + VFP_NAN_SIGNAL = (1 << 5), -#define VFP_QNAN (VFP_NAN) -#define VFP_SNAN (VFP_NAN|VFP_NAN_SIGNAL) - -static inline int vfp_single_type(struct vfp_single *s) -{ - int type = VFP_NUMBER; - if (s->exponent == 255) { - if (s->significand == 0) - type = VFP_INFINITY; - else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN) - type = VFP_QNAN; - else - type = VFP_SNAN; - } else if (s->exponent == 0) { - if (s->significand == 0) - type |= VFP_ZERO; - else - type |= VFP_DENORMAL; - } - return type; -} - - -u32 vfp_single_normaliseround(ARMul_State* state, int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func); - -/* - * Double-precision - */ -struct vfp_double { - s16 exponent; - u16 sign; - u64 significand; + VFP_QNAN = (VFP_NAN), + VFP_SNAN = (VFP_NAN|VFP_NAN_SIGNAL) }; -/* - * VFP_REG_ZERO is a special register number for vfp_get_double - * which returns (double)0.0. This is useful for the compare with - * zero instructions. - */ +static inline int vfp_single_type(vfp_single* s) +{ + int type = VFP_NUMBER; + if (s->exponent == 255) { + if (s->significand == 0) + type = VFP_INFINITY; + else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN) + type = VFP_QNAN; + else + type = VFP_SNAN; + } else if (s->exponent == 0) { + if (s->significand == 0) + type |= VFP_ZERO; + else + type |= VFP_DENORMAL; + } + return type; +} + + +u32 vfp_single_normaliseround(ARMul_State* state, int sd, vfp_single* vs, u32 fpscr, u32 exceptions, const char* func); + +// Double-precision +struct vfp_double { + s16 exponent; + u16 sign; + u64 significand; +}; + +// VFP_REG_ZERO is a special register number for vfp_get_double +// which returns (double)0.0. This is useful for the compare with +// zero instructions. #ifdef CONFIG_VFPv3 -#define VFP_REG_ZERO 32 +#define VFP_REG_ZERO 32 #else -#define VFP_REG_ZERO 16 +#define VFP_REG_ZERO 16 #endif -#define VFP_DOUBLE_MANTISSA_BITS (52) -#define VFP_DOUBLE_EXPONENT_BITS (11) -#define VFP_DOUBLE_LOW_BITS (64 - VFP_DOUBLE_MANTISSA_BITS - 2) -#define VFP_DOUBLE_LOW_BITS_MASK ((1 << VFP_DOUBLE_LOW_BITS) - 1) +#define VFP_DOUBLE_MANTISSA_BITS (52) +#define VFP_DOUBLE_EXPONENT_BITS (11) +#define VFP_DOUBLE_LOW_BITS (64 - VFP_DOUBLE_MANTISSA_BITS - 2) +#define VFP_DOUBLE_LOW_BITS_MASK ((1 << VFP_DOUBLE_LOW_BITS) - 1) -/* - * The bit in an unpacked double which indicates that it is a quiet NaN - */ -#define VFP_DOUBLE_SIGNIFICAND_QNAN (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS)) +// The bit in an unpacked double which indicates that it is a quiet NaN +#define VFP_DOUBLE_SIGNIFICAND_QNAN (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS)) -/* - * Operations on packed single-precision numbers - */ -#define vfp_double_packed_sign(v) ((v) & (1ULL << 63)) -#define vfp_double_packed_negate(v) ((v) ^ (1ULL << 63)) -#define vfp_double_packed_abs(v) ((v) & ~(1ULL << 63)) -#define vfp_double_packed_exponent(v) (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1)) -#define vfp_double_packed_mantissa(v) ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1)) +// Operations on packed single-precision numbers +#define vfp_double_packed_sign(v) ((v) & (1ULL << 63)) +#define vfp_double_packed_negate(v) ((v) ^ (1ULL << 63)) +#define vfp_double_packed_abs(v) ((v) & ~(1ULL << 63)) +#define vfp_double_packed_exponent(v) (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1)) +#define vfp_double_packed_mantissa(v) ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1)) -/* - * Unpack a double-precision float. Note that this returns the magnitude - * of the double-precision float mantissa with the 1. if necessary, - * aligned to bit 62. - */ -static inline void vfp_double_unpack(struct vfp_double *s, s64 val) +// Unpack a double-precision float. Note that this returns the magnitude +// of the double-precision float mantissa with the 1. if necessary, +// aligned to bit 62. +static inline void vfp_double_unpack(vfp_double* s, s64 val) { - u64 significand; + u64 significand; - s->sign = vfp_double_packed_sign(val) >> 48; - s->exponent = vfp_double_packed_exponent(val); + s->sign = vfp_double_packed_sign(val) >> 48; + s->exponent = vfp_double_packed_exponent(val); - significand = (u64) val; - significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2; - if (s->exponent && s->exponent != 2047) - significand |= (1ULL << 62); - s->significand = significand; + significand = (u64) val; + significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2; + if (s->exponent && s->exponent != 2047) + significand |= (1ULL << 62); + s->significand = significand; } -/* - * Re-pack a double-precision float. This assumes that the float is - * already normalised such that the MSB is bit 30, _not_ bit 31. - */ -static inline s64 vfp_double_pack(struct vfp_double *s) +// Re-pack a double-precision float. This assumes that the float is +// already normalised such that the MSB is bit 30, _not_ bit 31. +static inline s64 vfp_double_pack(vfp_double* s) { - u64 val; - val = ((u64)s->sign << 48) + - ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) + - (s->significand >> VFP_DOUBLE_LOW_BITS); - return (s64)val; + u64 val = ((u64)s->sign << 48) + + ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) + + (s->significand >> VFP_DOUBLE_LOW_BITS); + return (s64)val; } -static inline int vfp_double_type(struct vfp_double *s) +static inline int vfp_double_type(vfp_double* s) { - int type = VFP_NUMBER; - if (s->exponent == 2047) { - if (s->significand == 0) - type = VFP_INFINITY; - else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN) - type = VFP_QNAN; - else - type = VFP_SNAN; - } else if (s->exponent == 0) { - if (s->significand == 0) - type |= VFP_ZERO; - else - type |= VFP_DENORMAL; - } - return type; + int type = VFP_NUMBER; + if (s->exponent == 2047) { + if (s->significand == 0) + type = VFP_INFINITY; + else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN) + type = VFP_QNAN; + else + type = VFP_SNAN; + } else if (s->exponent == 0) { + if (s->significand == 0) + type |= VFP_ZERO; + else + type |= VFP_DENORMAL; + } + return type; } -u32 vfp_double_normaliseround(ARMul_State* state, int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func); +u32 vfp_double_normaliseround(ARMul_State* state, int dd, vfp_double* vd, u32 fpscr, u32 exceptions, const char* func); u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand); -/* - * A special flag to tell the normalisation code not to normalise. - */ -#define VFP_NAN_FLAG 0x100 +// A special flag to tell the normalisation code not to normalise. +#define VFP_NAN_FLAG 0x100 -/* - * A bit pattern used to indicate the initial (unset) value of the - * exception mask, in case nothing handles an instruction. This - * doesn't include the NAN flag, which get masked out before - * we check for an error. - */ -#define VFP_EXCEPTION_ERROR ((u32)-1 & ~VFP_NAN_FLAG) +// A bit pattern used to indicate the initial (unset) value of the +// exception mask, in case nothing handles an instruction. This +// doesn't include the NAN flag, which get masked out before +// we check for an error. +#define VFP_EXCEPTION_ERROR ((u32)-1 & ~VFP_NAN_FLAG) -/* - * A flag to tell vfp instruction type. - * OP_SCALAR - this operation always operates in scalar mode - * OP_SD - the instruction exceptionally writes to a single precision result. - * OP_DD - the instruction exceptionally writes to a double precision result. - * OP_SM - the instruction exceptionally reads from a single precision operand. - */ -#define OP_SCALAR (1 << 0) -#define OP_SD (1 << 1) -#define OP_DD (1 << 1) -#define OP_SM (1 << 2) +// A flag to tell vfp instruction type. +// OP_SCALAR - This operation always operates in scalar mode +// OP_SD - The instruction exceptionally writes to a single precision result. +// OP_DD - The instruction exceptionally writes to a double precision result. +// OP_SM - The instruction exceptionally reads from a single precision operand. +enum : u32 { + OP_SCALAR = (1 << 0), + OP_SD = (1 << 1), + OP_DD = (1 << 1), + OP_SM = (1 << 2) +}; struct op { - u32 (* const fn)(ARMul_State* state, int dd, int dn, int dm, u32 fpscr); - u32 flags; + u32 (* const fn)(ARMul_State* state, int dd, int dn, int dm, u32 fpscr); + u32 flags; }; static inline u32 fls(ARMword x) { - int r = 32; + int r = 32; - if (!x) - return 0; - if (!(x & 0xffff0000u)) { - x <<= 16; - r -= 16; - } - if (!(x & 0xff000000u)) { - x <<= 8; - r -= 8; - } - if (!(x & 0xf0000000u)) { - x <<= 4; - r -= 4; - } - if (!(x & 0xc0000000u)) { - x <<= 2; - r -= 2; - } - if (!(x & 0x80000000u)) { - x <<= 1; - r -= 1; - } - return r; + if (!x) + return 0; + if (!(x & 0xffff0000u)) { + x <<= 16; + r -= 16; + } + if (!(x & 0xff000000u)) { + x <<= 8; + r -= 8; + } + if (!(x & 0xf0000000u)) { + x <<= 4; + r -= 4; + } + if (!(x & 0xc0000000u)) { + x <<= 2; + r -= 2; + } + if (!(x & 0x80000000u)) { + x <<= 1; + r -= 1; + } + return r; } -u32 vfp_double_normaliseroundintern(ARMul_State* state, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func); -u32 vfp_double_multiply(struct vfp_double *vdd, struct vfp_double *vdn, struct vfp_double *vdm, u32 fpscr); -u32 vfp_double_add(struct vfp_double *vdd, struct vfp_double *vdn, struct vfp_double *vdm, u32 fpscr); -u32 vfp_double_fcvtsinterncutting(ARMul_State* state, int sd, struct vfp_double* dm, u32 fpscr); +u32 vfp_double_normaliseroundintern(ARMul_State* state, vfp_double* vd, u32 fpscr, u32 exceptions, const char* func); +u32 vfp_double_multiply(vfp_double* vdd, vfp_double* vdn, vfp_double* vdm, u32 fpscr); +u32 vfp_double_add(vfp_double* vdd, vfp_double* vdn, vfp_double *vdm, u32 fpscr); +u32 vfp_double_fcvtsinterncutting(ARMul_State* state, int sd, vfp_double* dm, u32 fpscr); diff --git a/src/core/arm/skyeye_common/vfp/vfpdouble.cpp b/src/core/arm/skyeye_common/vfp/vfpdouble.cpp index d35ca510ae..a05db0a455 100644 --- a/src/core/arm/skyeye_common/vfp/vfpdouble.cpp +++ b/src/core/arm/skyeye_common/vfp/vfpdouble.cpp @@ -511,7 +511,7 @@ static u32 vfp_compare(ARMul_State* state, int dd, int signal_on_qnan, int dm, u LOG_TRACE(Core_ARM11, "In %s, state=0x%x, fpscr=0x%x\n", __FUNCTION__, state, fpscr); m = vfp_get_double(state, dm); if (vfp_double_packed_exponent(m) == 2047 && vfp_double_packed_mantissa(m)) { - ret |= FPSCR_C | FPSCR_V; + ret |= FPSCR_CFLAG | FPSCR_VFLAG; if (signal_on_qnan || !(vfp_double_packed_mantissa(m) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1)))) /* * Signalling NaN, or signalling on quiet NaN @@ -521,7 +521,7 @@ static u32 vfp_compare(ARMul_State* state, int dd, int signal_on_qnan, int dm, u d = vfp_get_double(state, dd); if (vfp_double_packed_exponent(d) == 2047 && vfp_double_packed_mantissa(d)) { - ret |= FPSCR_C | FPSCR_V; + ret |= FPSCR_CFLAG | FPSCR_VFLAG; if (signal_on_qnan || !(vfp_double_packed_mantissa(d) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1)))) /* * Signalling NaN, or signalling on quiet NaN @@ -535,7 +535,7 @@ static u32 vfp_compare(ARMul_State* state, int dd, int signal_on_qnan, int dm, u /* * equal */ - ret |= FPSCR_Z | FPSCR_C; + ret |= FPSCR_ZFLAG | FPSCR_CFLAG; //printf("In %s,1 ret=0x%x\n", __FUNCTION__, ret); } else if (vfp_double_packed_sign(d ^ m)) { /* @@ -545,22 +545,22 @@ static u32 vfp_compare(ARMul_State* state, int dd, int signal_on_qnan, int dm, u /* * d is negative, so d < m */ - ret |= FPSCR_N; + ret |= FPSCR_NFLAG; else /* * d is positive, so d > m */ - ret |= FPSCR_C; + ret |= FPSCR_CFLAG; } else if ((vfp_double_packed_sign(d) != 0) ^ (d < m)) { /* * d < m */ - ret |= FPSCR_N; + ret |= FPSCR_NFLAG; } else if ((vfp_double_packed_sign(d) != 0) ^ (d > m)) { /* * d > m */ - ret |= FPSCR_C; + ret |= FPSCR_CFLAG; } } LOG_TRACE(Core_ARM11, "In %s, state=0x%x, ret=0x%x\n", __FUNCTION__, state, ret); diff --git a/src/core/arm/skyeye_common/vfp/vfpsingle.cpp b/src/core/arm/skyeye_common/vfp/vfpsingle.cpp index b7872bdc4f..da4d2d3844 100644 --- a/src/core/arm/skyeye_common/vfp/vfpsingle.cpp +++ b/src/core/arm/skyeye_common/vfp/vfpsingle.cpp @@ -419,7 +419,7 @@ static u32 vfp_compare(ARMul_State* state, int sd, int signal_on_qnan, s32 m, u3 d = vfp_get_float(state, sd); if (vfp_single_packed_exponent(m) == 255 && vfp_single_packed_mantissa(m)) { - ret |= FPSCR_C | FPSCR_V; + ret |= FPSCR_CFLAG | FPSCR_VFLAG; if (signal_on_qnan || !(vfp_single_packed_mantissa(m) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1)))) /* * Signalling NaN, or signalling on quiet NaN @@ -428,7 +428,7 @@ static u32 vfp_compare(ARMul_State* state, int sd, int signal_on_qnan, s32 m, u3 } if (vfp_single_packed_exponent(d) == 255 && vfp_single_packed_mantissa(d)) { - ret |= FPSCR_C | FPSCR_V; + ret |= FPSCR_CFLAG | FPSCR_VFLAG; if (signal_on_qnan || !(vfp_single_packed_mantissa(d) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1)))) /* * Signalling NaN, or signalling on quiet NaN @@ -441,7 +441,7 @@ static u32 vfp_compare(ARMul_State* state, int sd, int signal_on_qnan, s32 m, u3 /* * equal */ - ret |= FPSCR_Z | FPSCR_C; + ret |= FPSCR_ZFLAG | FPSCR_CFLAG; } else if (vfp_single_packed_sign(d ^ m)) { /* * different signs @@ -450,22 +450,22 @@ static u32 vfp_compare(ARMul_State* state, int sd, int signal_on_qnan, s32 m, u3 /* * d is negative, so d < m */ - ret |= FPSCR_N; + ret |= FPSCR_NFLAG; else /* * d is positive, so d > m */ - ret |= FPSCR_C; + ret |= FPSCR_CFLAG; } else if ((vfp_single_packed_sign(d) != 0) ^ (d < m)) { /* * d < m */ - ret |= FPSCR_N; + ret |= FPSCR_NFLAG; } else if ((vfp_single_packed_sign(d) != 0) ^ (d > m)) { /* * d > m */ - ret |= FPSCR_C; + ret |= FPSCR_CFLAG; } } return ret;