General: Initial Setup for Single Core.

This commit is contained in:
Fernando Sahmkow 2020-03-08 22:39:41 -04:00
parent 391f5f360d
commit ab9aae28bf
8 changed files with 232 additions and 38 deletions

View file

@ -149,6 +149,9 @@ struct System::Impl {
device_memory = std::make_unique<Core::DeviceMemory>(system); device_memory = std::make_unique<Core::DeviceMemory>(system);
kernel.SetMulticore(Settings::values.use_multi_core);
cpu_manager.SetMulticore(Settings::values.use_multi_core);
core_timing.Initialize([&system]() { system.RegisterHostThread(); }); core_timing.Initialize([&system]() { system.RegisterHostThread(); });
kernel.Initialize(); kernel.Initialize();
cpu_manager.Initialize(); cpu_manager.Initialize();

View file

@ -26,9 +26,13 @@ void CpuManager::ThreadStart(CpuManager& cpu_manager, std::size_t core) {
void CpuManager::Initialize() { void CpuManager::Initialize() {
running_mode = true; running_mode = true;
for (std::size_t core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) { if (is_multicore) {
core_data[core].host_thread = for (std::size_t core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
std::make_unique<std::thread>(ThreadStart, std::ref(*this), core); core_data[core].host_thread =
std::make_unique<std::thread>(ThreadStart, std::ref(*this), core);
}
} else {
core_data[0].host_thread = std::make_unique<std::thread>(ThreadStart, std::ref(*this), 0);
} }
} }
@ -41,26 +45,6 @@ void CpuManager::Shutdown() {
} }
} }
void CpuManager::GuestThreadFunction(void* cpu_manager_) {
CpuManager* cpu_manager = static_cast<CpuManager*>(cpu_manager_);
cpu_manager->RunGuestThread();
}
void CpuManager::GuestRewindFunction(void* cpu_manager_) {
CpuManager* cpu_manager = static_cast<CpuManager*>(cpu_manager_);
cpu_manager->RunGuestLoop();
}
void CpuManager::IdleThreadFunction(void* cpu_manager_) {
CpuManager* cpu_manager = static_cast<CpuManager*>(cpu_manager_);
cpu_manager->RunIdleThread();
}
void CpuManager::SuspendThreadFunction(void* cpu_manager_) {
CpuManager* cpu_manager = static_cast<CpuManager*>(cpu_manager_);
cpu_manager->RunSuspendThread();
}
std::function<void(void*)> CpuManager::GetGuestThreadStartFunc() { std::function<void(void*)> CpuManager::GetGuestThreadStartFunc() {
return std::function<void(void*)>(GuestThreadFunction); return std::function<void(void*)>(GuestThreadFunction);
} }
@ -73,20 +57,60 @@ std::function<void(void*)> CpuManager::GetSuspendThreadStartFunc() {
return std::function<void(void*)>(SuspendThreadFunction); return std::function<void(void*)>(SuspendThreadFunction);
} }
void CpuManager::GuestThreadFunction(void* cpu_manager_) {
CpuManager* cpu_manager = static_cast<CpuManager*>(cpu_manager_);
if (cpu_manager->is_multicore) {
cpu_manager->MultiCoreRunGuestThread();
} else {
cpu_manager->SingleCoreRunGuestThread();
}
}
void CpuManager::GuestRewindFunction(void* cpu_manager_) {
CpuManager* cpu_manager = static_cast<CpuManager*>(cpu_manager_);
if (cpu_manager->is_multicore) {
cpu_manager->MultiCoreRunGuestLoop();
} else {
cpu_manager->SingleCoreRunGuestLoop();
}
}
void CpuManager::IdleThreadFunction(void* cpu_manager_) {
CpuManager* cpu_manager = static_cast<CpuManager*>(cpu_manager_);
if (cpu_manager->is_multicore) {
cpu_manager->MultiCoreRunIdleThread();
} else {
cpu_manager->SingleCoreRunIdleThread();
}
}
void CpuManager::SuspendThreadFunction(void* cpu_manager_) {
CpuManager* cpu_manager = static_cast<CpuManager*>(cpu_manager_);
if (cpu_manager->is_multicore) {
cpu_manager->MultiCoreRunSuspendThread();
} else {
cpu_manager->SingleCoreRunSuspendThread();
}
}
void* CpuManager::GetStartFuncParamater() { void* CpuManager::GetStartFuncParamater() {
return static_cast<void*>(this); return static_cast<void*>(this);
} }
void CpuManager::RunGuestThread() { ///////////////////////////////////////////////////////////////////////////////
/// MultiCore ///
///////////////////////////////////////////////////////////////////////////////
void CpuManager::MultiCoreRunGuestThread() {
auto& kernel = system.Kernel(); auto& kernel = system.Kernel();
{ {
auto& sched = kernel.CurrentScheduler(); auto& sched = kernel.CurrentScheduler();
sched.OnThreadStart(); sched.OnThreadStart();
} }
RunGuestLoop(); MultiCoreRunGuestLoop();
} }
void CpuManager::RunGuestLoop() { void CpuManager::MultiCoreRunGuestLoop() {
auto& kernel = system.Kernel(); auto& kernel = system.Kernel();
auto* thread = kernel.CurrentScheduler().GetCurrentThread(); auto* thread = kernel.CurrentScheduler().GetCurrentThread();
auto host_context = thread->GetHostContext(); auto host_context = thread->GetHostContext();
@ -103,7 +127,7 @@ void CpuManager::RunGuestLoop() {
} }
} }
void CpuManager::RunIdleThread() { void CpuManager::MultiCoreRunIdleThread() {
auto& kernel = system.Kernel(); auto& kernel = system.Kernel();
while (true) { while (true) {
auto& physical_core = kernel.CurrentPhysicalCore(); auto& physical_core = kernel.CurrentPhysicalCore();
@ -113,7 +137,7 @@ void CpuManager::RunIdleThread() {
} }
} }
void CpuManager::RunSuspendThread() { void CpuManager::MultiCoreRunSuspendThread() {
auto& kernel = system.Kernel(); auto& kernel = system.Kernel();
{ {
auto& sched = kernel.CurrentScheduler(); auto& sched = kernel.CurrentScheduler();
@ -130,7 +154,7 @@ void CpuManager::RunSuspendThread() {
} }
} }
void CpuManager::Pause(bool paused) { void CpuManager::MultiCorePause(bool paused) {
if (!paused) { if (!paused) {
bool all_not_barrier = false; bool all_not_barrier = false;
while (!all_not_barrier) { while (!all_not_barrier) {
@ -171,10 +195,120 @@ void CpuManager::Pause(bool paused) {
paused_state = paused; paused_state = paused;
} }
///////////////////////////////////////////////////////////////////////////////
/// SingleCore ///
///////////////////////////////////////////////////////////////////////////////
void CpuManager::SingleCoreRunGuestThread() {
auto& kernel = system.Kernel();
{
auto& sched = kernel.CurrentScheduler();
sched.OnThreadStart();
}
SingleCoreRunGuestLoop();
}
void CpuManager::SingleCoreRunGuestLoop() {
auto& kernel = system.Kernel();
auto* thread = kernel.CurrentScheduler().GetCurrentThread();
auto host_context = thread->GetHostContext();
host_context->SetRewindPoint(std::function<void(void*)>(GuestRewindFunction), this);
host_context.reset();
while (true) {
auto& physical_core = kernel.CurrentPhysicalCore();
while (!physical_core.IsInterrupted()) {
physical_core.Run();
preemption_count++;
if (preemption_count % max_cycle_runs == 0) {
break;
}
}
physical_core.ClearExclusive();
PreemptSingleCore();
auto& scheduler = physical_core.Scheduler();
scheduler.TryDoContextSwitch();
}
}
void CpuManager::SingleCoreRunIdleThread() {
auto& kernel = system.Kernel();
while (true) {
auto& physical_core = kernel.CurrentPhysicalCore();
PreemptSingleCore();
auto& scheduler = physical_core.Scheduler();
scheduler.TryDoContextSwitch();
}
}
void CpuManager::SingleCoreRunSuspendThread() {
auto& kernel = system.Kernel();
{
auto& sched = kernel.CurrentScheduler();
sched.OnThreadStart();
}
while (true) {
auto core = kernel.GetCurrentHostThreadID();
auto& scheduler = kernel.CurrentScheduler();
Kernel::Thread* current_thread = scheduler.GetCurrentThread();
Common::Fiber::YieldTo(current_thread->GetHostContext(), core_data[0].host_context);
ASSERT(scheduler.ContextSwitchPending());
ASSERT(core == kernel.GetCurrentHostThreadID());
scheduler.TryDoContextSwitch();
}
}
void CpuManager::PreemptSingleCore() {
preemption_count = 0;
std::size_t old_core = current_core;
current_core = (current_core + 1) % Core::Hardware::NUM_CPU_CORES;
auto& scheduler = system.Kernel().Scheduler(old_core);
Kernel::Thread* current_thread = system.Kernel().Scheduler(old_core).GetCurrentThread();
Kernel::Thread* next_thread = system.Kernel().Scheduler(current_core).GetCurrentThread();
Common::Fiber::YieldTo(current_thread->GetHostContext(), next_thread->GetHostContext());
}
void CpuManager::SingleCorePause(bool paused) {
if (!paused) {
bool all_not_barrier = false;
while (!all_not_barrier) {
all_not_barrier = !core_data[0].is_running.load() && core_data[0].initialized.load();
}
core_data[0].enter_barrier->Set();
if (paused_state.load()) {
bool all_barrier = false;
while (!all_barrier) {
all_barrier = core_data[0].is_paused.load() && core_data[0].initialized.load();
}
core_data[0].exit_barrier->Set();
}
} else {
/// Wait until all cores are paused.
bool all_barrier = false;
while (!all_barrier) {
all_barrier = core_data[0].is_paused.load() && core_data[0].initialized.load();
}
/// Don't release the barrier
}
paused_state = paused;
}
void CpuManager::Pause(bool paused) {
if (is_multicore) {
MultiCorePause(paused);
} else {
SingleCorePause(paused);
}
}
void CpuManager::RunThread(std::size_t core) { void CpuManager::RunThread(std::size_t core) {
/// Initialization /// Initialization
system.RegisterCoreThread(core); system.RegisterCoreThread(core);
std::string name = "yuzu:CoreHostThread_" + std::to_string(core); std::string name;
if (is_multicore) {
name = "yuzu:CoreCPUThread_" + std::to_string(core);
} else {
name = "yuzu:CPUThread";
}
MicroProfileOnThreadCreate(name.c_str()); MicroProfileOnThreadCreate(name.c_str());
Common::SetCurrentThreadName(name.c_str()); Common::SetCurrentThreadName(name.c_str());
auto& data = core_data[core]; auto& data = core_data[core];

View file

@ -30,6 +30,10 @@ public:
CpuManager& operator=(const CpuManager&) = delete; CpuManager& operator=(const CpuManager&) = delete;
CpuManager& operator=(CpuManager&&) = delete; CpuManager& operator=(CpuManager&&) = delete;
/// Sets if emulation is multicore or single core, must be set before Initialize
void SetMulticore(bool is_multicore) {
this->is_multicore = is_multicore;
}
void Initialize(); void Initialize();
void Shutdown(); void Shutdown();
@ -40,21 +44,34 @@ public:
std::function<void(void*)> GetSuspendThreadStartFunc(); std::function<void(void*)> GetSuspendThreadStartFunc();
void* GetStartFuncParamater(); void* GetStartFuncParamater();
std::size_t CurrentCore() const {
return current_core;
}
private: private:
static void GuestThreadFunction(void* cpu_manager); static void GuestThreadFunction(void* cpu_manager);
static void GuestRewindFunction(void* cpu_manager); static void GuestRewindFunction(void* cpu_manager);
static void IdleThreadFunction(void* cpu_manager); static void IdleThreadFunction(void* cpu_manager);
static void SuspendThreadFunction(void* cpu_manager); static void SuspendThreadFunction(void* cpu_manager);
void RunGuestThread(); void MultiCoreRunGuestThread();
void RunGuestLoop(); void MultiCoreRunGuestLoop();
void RunIdleThread(); void MultiCoreRunIdleThread();
void RunSuspendThread(); void MultiCoreRunSuspendThread();
void MultiCorePause(bool paused);
void SingleCoreRunGuestThread();
void SingleCoreRunGuestLoop();
void SingleCoreRunIdleThread();
void SingleCoreRunSuspendThread();
void SingleCorePause(bool paused);
static void ThreadStart(CpuManager& cpu_manager, std::size_t core); static void ThreadStart(CpuManager& cpu_manager, std::size_t core);
void RunThread(std::size_t core); void RunThread(std::size_t core);
void PreemptSingleCore();
struct CoreData { struct CoreData {
std::shared_ptr<Common::Fiber> host_context; std::shared_ptr<Common::Fiber> host_context;
std::unique_ptr<Common::Event> enter_barrier; std::unique_ptr<Common::Event> enter_barrier;
@ -70,6 +87,11 @@ private:
std::array<CoreData, Core::Hardware::NUM_CPU_CORES> core_data{}; std::array<CoreData, Core::Hardware::NUM_CPU_CORES> core_data{};
bool is_multicore{};
std::size_t current_core{};
std::size_t preemption_count{};
static constexpr std::size_t max_cycle_runs = 5;
System& system; System& system;
}; };

View file

@ -113,6 +113,10 @@ struct KernelCore::Impl {
explicit Impl(Core::System& system, KernelCore& kernel) explicit Impl(Core::System& system, KernelCore& kernel)
: global_scheduler{kernel}, synchronization{system}, time_manager{system}, system{system} {} : global_scheduler{kernel}, synchronization{system}, time_manager{system}, system{system} {}
void SetMulticore(bool is_multicore) {
this->is_multicore = is_multicore;
}
void Initialize(KernelCore& kernel) { void Initialize(KernelCore& kernel) {
Shutdown(); Shutdown();
@ -237,6 +241,9 @@ struct KernelCore::Impl {
void RegisterCoreThread(std::size_t core_id) { void RegisterCoreThread(std::size_t core_id) {
std::unique_lock lock{register_thread_mutex}; std::unique_lock lock{register_thread_mutex};
if (!is_multicore) {
single_core_thread_id = std::this_thread::get_id();
}
const std::thread::id this_id = std::this_thread::get_id(); const std::thread::id this_id = std::this_thread::get_id();
const auto it = host_thread_ids.find(this_id); const auto it = host_thread_ids.find(this_id);
ASSERT(core_id < Core::Hardware::NUM_CPU_CORES); ASSERT(core_id < Core::Hardware::NUM_CPU_CORES);
@ -258,6 +265,11 @@ struct KernelCore::Impl {
u32 GetCurrentHostThreadID() const { u32 GetCurrentHostThreadID() const {
const std::thread::id this_id = std::this_thread::get_id(); const std::thread::id this_id = std::this_thread::get_id();
if (!is_multicore) {
if (single_core_thread_id == this_id) {
return static_cast<u32>(system.GetCpuManager().CurrentCore());
}
}
const auto it = host_thread_ids.find(this_id); const auto it = host_thread_ids.find(this_id);
if (it == host_thread_ids.end()) { if (it == host_thread_ids.end()) {
return Core::INVALID_HOST_THREAD_ID; return Core::INVALID_HOST_THREAD_ID;
@ -378,6 +390,9 @@ struct KernelCore::Impl {
std::array<std::shared_ptr<Thread>, Core::Hardware::NUM_CPU_CORES> suspend_threads{}; std::array<std::shared_ptr<Thread>, Core::Hardware::NUM_CPU_CORES> suspend_threads{};
bool is_multicore{};
std::thread::id single_core_thread_id{};
// System context // System context
Core::System& system; Core::System& system;
}; };
@ -387,6 +402,10 @@ KernelCore::~KernelCore() {
Shutdown(); Shutdown();
} }
void KernelCore::SetMulticore(bool is_multicore) {
impl->SetMulticore(is_multicore);
}
void KernelCore::Initialize() { void KernelCore::Initialize() {
impl->Initialize(*this); impl->Initialize(*this);
} }

View file

@ -65,6 +65,9 @@ public:
KernelCore(KernelCore&&) = delete; KernelCore(KernelCore&&) = delete;
KernelCore& operator=(KernelCore&&) = delete; KernelCore& operator=(KernelCore&&) = delete;
/// Sets if emulation is multicore or single core, must be set before Initialize
void SetMulticore(bool is_multicore);
/// Resets the kernel to a clean slate for use. /// Resets the kernel to a clean slate for use.
void Initialize(); void Initialize();

View file

@ -715,8 +715,8 @@ struct Memory::Impl {
ASSERT_MSG(false, "Mapped memory page without a pointer @ {:016X}", vaddr); ASSERT_MSG(false, "Mapped memory page without a pointer @ {:016X}", vaddr);
break; break;
case Common::PageType::RasterizerCachedMemory: { case Common::PageType::RasterizerCachedMemory: {
u8* host_ptr{GetPointerFromVMA(vaddr)}; u8* host_ptr{GetPointerFromRasterizerCachedMemory(vaddr)};
system.GPU().InvalidateRegion(ToCacheAddr(host_ptr), sizeof(T)); system.GPU().InvalidateRegion(vaddr, sizeof(T));
T volatile* pointer = reinterpret_cast<T volatile*>(&host_ptr); T volatile* pointer = reinterpret_cast<T volatile*>(&host_ptr);
return Common::AtomicCompareAndSwap(pointer, data, expected); return Common::AtomicCompareAndSwap(pointer, data, expected);
break; break;
@ -745,8 +745,8 @@ struct Memory::Impl {
ASSERT_MSG(false, "Mapped memory page without a pointer @ {:016X}", vaddr); ASSERT_MSG(false, "Mapped memory page without a pointer @ {:016X}", vaddr);
break; break;
case Common::PageType::RasterizerCachedMemory: { case Common::PageType::RasterizerCachedMemory: {
u8* host_ptr{GetPointerFromVMA(vaddr)}; u8* host_ptr{GetPointerFromRasterizerCachedMemory(vaddr)};
system.GPU().InvalidateRegion(ToCacheAddr(host_ptr), sizeof(u128)); system.GPU().InvalidateRegion(vaddr, sizeof(u128));
u64 volatile* pointer = reinterpret_cast<u64 volatile*>(&host_ptr); u64 volatile* pointer = reinterpret_cast<u64 volatile*>(&host_ptr);
return Common::AtomicCompareAndSwap(pointer, data, expected); return Common::AtomicCompareAndSwap(pointer, data, expected);
break; break;

View file

@ -23,6 +23,11 @@ ConfigureGeneral::ConfigureGeneral(QWidget* parent)
ConfigureGeneral::~ConfigureGeneral() = default; ConfigureGeneral::~ConfigureGeneral() = default;
void ConfigureGeneral::SetConfiguration() { void ConfigureGeneral::SetConfiguration() {
const bool runtime_lock = !Core::System::GetInstance().IsPoweredOn();
ui->use_multi_core->setEnabled(runtime_lock);
ui->use_multi_core->setChecked(Settings::values.use_multi_core);
ui->toggle_check_exit->setChecked(UISettings::values.confirm_before_closing); ui->toggle_check_exit->setChecked(UISettings::values.confirm_before_closing);
ui->toggle_user_on_boot->setChecked(UISettings::values.select_user_on_boot); ui->toggle_user_on_boot->setChecked(UISettings::values.select_user_on_boot);
ui->toggle_background_pause->setChecked(UISettings::values.pause_when_in_background); ui->toggle_background_pause->setChecked(UISettings::values.pause_when_in_background);
@ -41,6 +46,7 @@ void ConfigureGeneral::ApplyConfiguration() {
Settings::values.use_frame_limit = ui->toggle_frame_limit->isChecked(); Settings::values.use_frame_limit = ui->toggle_frame_limit->isChecked();
Settings::values.frame_limit = ui->frame_limit->value(); Settings::values.frame_limit = ui->frame_limit->value();
Settings::values.use_multi_core = ui->use_multi_core->isChecked();
} }
void ConfigureGeneral::changeEvent(QEvent* event) { void ConfigureGeneral::changeEvent(QEvent* event) {

View file

@ -51,6 +51,13 @@
</item> </item>
</layout> </layout>
</item> </item>
<item>
<widget class="QCheckBox" name="use_multi_core">
<property name="text">
<string>Emulate CPU in Multiple Cores</string>
</property>
</widget>
</item>
<item> <item>
<widget class="QCheckBox" name="toggle_check_exit"> <widget class="QCheckBox" name="toggle_check_exit">
<property name="text"> <property name="text">