This allows rendering to 3D textures with more than one slice.
Applications are allowed to render to more than one slice of a texture
using gl_Layer from a VTG shader.
This also requires reworking how 3D texture collisions are handled, for
now, this commit allows rendering to slices but not to miplevels. When a
render target attempts to write to a mipmap, we fallback to the previous
implementation (copying or flushing as needed).
- Fixes color correction 3D textures on UE4 games (rainbow effects).
- Allows Xenoblade games to render to 3D textures directly.
Implement a generic shader cache for fast lookups and invalidations.
Invalidations are cheap but expensive when a shader is invalidated.
Use two mutexes instead of one to avoid locking invalidations for
lookups and vice versa. When a shader has to be removed, lookups are
locked as expected.
Skip fast buffer uploads on Nvidia 443.24 Vulkan beta driver on OpenGL.
This driver throws the following error when calling BufferSubData or
BufferData on buffers that are candidates for fast constant buffer
uploads. This is the equivalens to push constants on Vulkan, except that
they can access the full buffer. The error:
Unknown internal debug message. The NVIDIA OpenGL driver has encountered
an out of memory error. This application might
behave inconsistently and fail.
If this error persists on future drivers, we might have to look deeper
into this issue. For now, we can black list it and log it as a temporary
solution.
Games using D3D idioms can join images and samplers when a shader
executes, instead of baking them into a combined sampler image. This is
also possible on Vulkan.
One approach to this solution would be to use separate samplers on
Vulkan and leave this unimplemented on OpenGL, but we can't do this
because there's no consistent way of determining which constant buffer
holds a sampler and which one an image. We could in theory find the
first bit and if it's in the TIC area, it's an image; but this falls
apart when an image or sampler handle use an index of zero.
The used approach is to track for a LOP.OR operation (this is done at an
IR level, not at an ISA level), track again the constant buffers used as
source and store this pair. Then, outside of shader execution, join
the sample and image pair with a bitwise or operation.
This approach won't work on games that truly use separate samplers in a
meaningful way. For example, pooling textures in a 2D array and
determining at runtime what sampler to use.
This invalidates OpenGL's disk shader cache :)
- Used mostly by D3D ports to Switch
NV_transform_feedback, NV_transform_feedback2 and
ARB_transform_feedback3 with NV_transform_feedback interactions allows
implementing transform feedbacks as dynamic state.
Maxwell implements transform feedbacks as dynamic state, so using these
extensions with TransformFeedbackStreamAttribsNV allows us to properly
emulate transform feedbacks without having to recompile shaders when the
state changes.
On Intel's proprietary drivers, gl_Layer and gl_ViewportIndex are not allowed members of gl_PerVertex block, causing the shader to fail to compile. Fix this by declaring these variables outside of gl_PerVertex.
This avoids using Nvidia's ASTC decoder on OpenGL.
The last time it was profiled, it was slower than yuzu's decoder.
While we are at it, fix a bug in the texture cache when native ASTC is
not supported.
Previously we were disabling compute shaders on Intel's proprietary driver due to broken compute. This has been fixed in the latest Intel drivers. Re-enable compute for Intel proprietary drivers and remove the check for broken compute.
Geometry shaders built from Nvidia's compiler check for bits[16:23] to
be less than or equal to 0 with VSETP to default to a "safe" value of
0x8000'0000 (safe from hardware's perspective). To avoid hitting this
path in the shader, return 0x00ff'0000 from S2R INVOCATION_INFO.
This seems to be the maximum number of vertices a geometry shader can
emit in a primitive.
Implement more surface reconstruct cases. Allow overlaps with more than
one layer and mipmap and copies all of them to the new texture.
- Fixes textures moving around objects on Xenoblade games
Changes many patch_manager functions to use a case-less variant of
GetSubdirectory. Fixes patches not showing up on *nix systems when
patch directories are named with odd cases, i.e. `exeFS'.
Avoid copying to a staging buffer on non-granular memory addresses.
Add a callable argument to StreamBufferUpload to be able to copy to the
staging buffer directly from ReadBlockUnsafe.
Stop ignoring image swizzles on depth and stencil images.
This doesn't fix a known issue on Xenoblade Chronicles 2 where an OpenGL
texture changes swizzles twice before being used. A proper fix would be
having a small texture view cache for this like we do on Vulkan.
While Vulkan was assuming we had no negative viewports, OpenGL code
was assuming we had them. Port the old code from Vulkan to OpenGL,
checking if the first viewport is negative before flipping faces.
This is not a complete implementation since we only check for the first
viewport to be negative. That said, unless a game is using Vulkan,
OpenGL and NVN games should be fine here, and we can always compare with
our Vulkan backend to see if there's a difference.
The check to flip faces when viewports are negative were a left over
from the old OpenGL code. This is not required on Vulkan where we have
negative viewports.
Hardware S2R special registers match gl_Thread*MaskNV. We can trivially
implement these using Nvidia's extension on OpenGL or naively stubbing
them with the ARB instructions to match. This might cause issues if the
host device warp size doesn't match Nvidia's. That said, this is
unlikely on proper shaders.
Refer to the attached url for more documentation about these flags.
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_shader_thread_group.txt
Some operations like atomicMin were ignored because they returned were
being stored to RZ. This operations have a side effect and it was being
ignored.
Drop the std::list hack to allocate memory indefinitely.
Instead use a custom allocator that keeps references valid until
destruction. This allocates fixed chunks of memory and puts pointers in
a free list. When an allocation is no longer used put it back to the
free list, this doesn't heap allocate because std::vector doesn't change
the capacity. If the free list is empty, allocate a new chunk.
Most overlaps in the buffer cache only contain one mapped address.
We can avoid close to all heap allocations once the buffer cache is
warmed up by using a small_vector with a stack size of one.