Many of the member variables of the thread class aren't even used
outside of the class itself, so there's no need to make those variables
public. This change follows in the steps of the previous changes that
made other kernel types' members private.
The main motivation behind this is that the Thread class will likely
change in the future as emulation becomes more accurate, and letting
random bits of the emulator access data members of the Thread class
directly makes it a pain to shuffle around and/or modify internals.
Having all data members public like this also makes it difficult to
reason about certain bits of behavior without first verifying what parts
of the core actually use them.
Everything being public also generally follows the tendency for changes
to be introduced in completely different translation units that would
otherwise be better introduced as an addition to the Thread class'
public interface.
Previously, these were sitting outside of the Kernel namespace, which
doesn't really make sense, given they're related to the Thread class
which is within the Kernel namespace.
The follow-up to e2457418da, which
replaces most of the includes in the core header with forward declarations.
This makes it so that if any of the headers the core header was
previously including change, then no one will need to rebuild the bulk
of the core, due to core.h being quite a prevalent inclusion.
This should make turnaround for changes much faster for developers.
As means to pave the way for getting rid of global state within core,
This eliminates kernel global state by removing all globals. Instead
this introduces a KernelCore class which acts as a kernel instance. This
instance lives in the System class, which keeps its lifetime contained
to the lifetime of the System class.
This also forces the kernel types to actually interact with the main
kernel instance itself instead of having transient kernel state placed
all over several translation units, keeping everything together. It also
has a nice consequence of making dependencies much more explicit.
This also makes our initialization a tad bit more correct. Previously we
were creating a kernel process before the actual kernel was initialized,
which doesn't really make much sense.
The KernelCore class itself follows the PImpl idiom, which allows
keeping all the implementation details sealed away from everything else,
which forces the use of the exposed API and allows us to avoid any
unnecessary inclusions within the main kernel header.