Now that we have all of the rearranging and proper structure sizes in
place, it's fairly trivial to implement svcGetThreadContext(). In the
64-bit case we can more or less just write out the context as is, minus
some minor value sanitizing. In the 32-bit case we'll need to clear out
the registers that wouldn't normally be accessible from a 32-bit
AArch32 exectuable (or process).
This will be necessary for the implementation of svcGetThreadContext(),
as the kernel checks whether or not the process that owns the thread
that has it context being retrieved is a 64-bit or 32-bit process.
If the process is 32-bit, then the upper 15 general-purpose registers
and upper 16 vector registers are cleared to zero (as AArch32 only has
15 GPRs and 16 128-bit vector registers. not 31 general-purpose
registers and 32 128-bit vector registers like AArch64).
Makes the public interface consistent in terms of how accesses are done
on a process object. It also makes it slightly nicer to reason about the
logic of the process class, as we don't want to expose everything to
external code.
boost::static_pointer_cast for boost::intrusive_ptr (what SharedPtr is),
takes its parameter by const reference. Given that, it means that this
std::move doesn't actually do anything other than obscure what the
function's actual behavior is, so we can remove this. To clarify, this
would only do something if the parameter was either taking its argument
by value, by non-const ref, or by rvalue-reference.
The locations of these can actually vary depending on the address space
layout, so we shouldn't be using these when determining where to map
memory or be using them as offsets for calculations. This keeps all the
memory ranges flexible and malleable based off of the virtual memory
manager instance state.
Previously, these were reporting hardcoded values, but given the regions
can change depending on the requested address spaces, these need to
report the values that the memory manager contains.
Rather than hard-code the address range to be 36-bit, we can derive the
parameters from supplied NPDM metadata if the supplied exectuable
supports it. This is the bare minimum necessary for this to be possible.
The following commits will rework the memory code further to adjust to
this.
* Implemented fatal:u properly
fatal:u now is properly implemented with all the ipc cmds. Error reports/Crash reports are also now implemented for fatal:u. Crash reports save to yuzu/logs/crash_reports/
The register dump is currently known as sysmodules send all zeros. If there are any non zero values for the "registers" or the unknown values, let me know!
* Fatal:U fixups
* Made fatal:u execution break more clear
* Fatal fixups
* Stubbed IRS
Currently we have no ideal way of implementing IRS. For the time being we should have the functions stubbed until we come up with a way to emulate IRS properly.
* Added IRS to logging backend
* Forward declared shared memory for irs
Preserves the meaning/type-safetiness of the stream state instead of
making it an opaque u32. This makes it usable for other things outside
of the service HLE context.
Even though setting this value to 3 is more correct. We break more games than we fix due to missing implementations. We should keep this as 0 for the time being
The owning process of a thread is required to exist before the thread,
so we can enforce this API-wise by using a reference. We can also avoid
the reliance on the system instance by using that parameter to access
the page table that needs to be set.
* Reworked incorrect nifm stubs
Need confirmation on `CreateTemporaryNetworkProfile`, unsure which game uses it but according to reversing. It should return a uuid which we currently don't do.
Any 0 client id is considered an invalid client id.
GetRequestState 0 is considered invalid.
* Fixups for nifm
* Fix bug where default username value for yuzu_cmd create an userprofile with uninitialize data as username
* Fix format
* Apply code review changes
* Remove nullptr check
This can just be a regular function, getting rid of the need to also
explicitly undef the define at the end of the file. Given FuncReturn()
was already converted into a function, it's #undef can also be removed.
This modifies the CPU interface to more accurately match an
AArch64-supporting CPU as opposed to an ARM11 one. Two of the methods
don't even make sense to keep around for this interface, as Adv Simd is
used, rather than the VFP in the primary execution state. This is
essentially a modernization change that should have occurred from the
get-go.
The kernel does the equivalent of the following check before proceeding:
if (address + 0x8000000000 < 0x7FFFE00000) {
return ERR_INVALID_MEMORY_STATE;
}
which is essentially what our IsKernelVirtualAddress() function does. So
we should also be checking for this.
The kernel also checks if the given input addresses are 4-byte aligned,
however our Mutex::TryAcquire() and Mutex::Release() functions already
handle this, so we don't need to add code for this case.
Courtesy of @ogniK5377.
This also moves them into the cpp file and limits the visibility to
where they're directly used. It also gets rid of unused or duplicate
error codes.
The kernel caps the size limit of shared memory to 8589930496 bytes (or
(1GB - 512 bytes) * 8), so approximately 8GB, where every GB has a 512
byte sector taken off of it.
It also ensures the shared memory is created with either read or
read/write permissions for both permission types passed in, allowing the
remote permissions to also be set as "don't care".
Part of the checking done by the kernel is to check if the given
address and size are 4KB aligned, as well as checking if the size isn't
zero. It also only allows mapping shared memory as readable or
read/write, but nothing else, and so we shouldn't allow mapping as
anything else either.
Previously, these were sitting outside of the Kernel namespace, which
doesn't really make sense, given they're related to the Thread class
which is within the Kernel namespace.
There were a few places where nested namespace specifiers weren't being
used where they could be within the service code. This amends that to
make the namespacing a tiny bit more compact.
While unlikely, it does avoid constructing a std::string and
unnecessarily calling into the memory code if a game or executable
decides to be really silly about their logging.
This places the font data within cpp files, which mitigates the
possibility of the font data being duplicated within the binary if it's
referred to in more than one translation unit in the future. It also
stores the data within a std::array, which is more flexible when it
comes to operating with the standard library.
Furthermore, it makes the data arrays const. This is what we want, as it
allows the compiler to store the data within the read-only segment. As
it is, having several large sections of mutable data like this just
leaves spots in memory that we can accidentally write to (via accidental
overruns, what have you) and actually have it work. This ensures the
font data remains the same no matter what.
When a destructor isn't defaulted into a cpp file, it can cause the use
of forward declarations to seemingly fail to compile for non-obvious
reasons. It also allows inlining of the construction/destruction logic
all over the place where a constructor or destructor is invoked, which
can lead to code bloat. This isn't so much a worry here, given the
services won't be created and destroyed frequently.
The cause of the above mentioned non-obvious errors can be demonstrated
as follows:
------- Demonstrative example, if you know how the described error happens, skip forwards -------
Assume we have the following in the header, which we'll call "thing.h":
\#include <memory>
// Forward declaration. For example purposes, assume the definition
// of Object is in some header named "object.h"
class Object;
class Thing {
public:
// assume no constructors or destructors are specified here,
// or the constructors/destructors are defined as:
//
// Thing() = default;
// ~Thing() = default;
//
// ... Some interface member functions would be defined here
private:
std::shared_ptr<Object> obj;
};
If this header is included in a cpp file, (which we'll call "main.cpp"),
this will result in a compilation error, because even though no
destructor is specified, the destructor will still need to be generated by
the compiler because std::shared_ptr's destructor is *not* trivial (in
other words, it does something other than nothing), as std::shared_ptr's
destructor needs to do two things:
1. Decrement the shared reference count of the object being pointed to,
and if the reference count decrements to zero,
2. Free the Object instance's memory (aka deallocate the memory it's
pointing to).
And so the compiler generates the code for the destructor doing this inside main.cpp.
Now, keep in mind, the Object forward declaration is not a complete type. All it
does is tell the compiler "a type named Object exists" and allows us to
use the name in certain situations to avoid a header dependency. So the
compiler needs to generate destruction code for Object, but the compiler
doesn't know *how* to destruct it. A forward declaration doesn't tell
the compiler anything about Object's constructor or destructor. So, the
compiler will issue an error in this case because it's undefined
behavior to try and deallocate (or construct) an incomplete type and
std::shared_ptr and std::unique_ptr make sure this isn't the case
internally.
Now, if we had defaulted the destructor in "thing.cpp", where we also
include "object.h", this would never be an issue, as the destructor
would only have its code generated in one place, and it would be in a
place where the full class definition of Object would be visible to the
compiler.
---------------------- End example ----------------------------
Given these service classes are more than certainly going to change in
the future, this defaults the constructors and destructors into the
relevant cpp files to make the construction and destruction of all of
the services consistent and unlikely to run into cases where forward
declarations are indirectly causing compilation errors. It also has the
plus of avoiding the need to rebuild several services if destruction
logic changes, since it would only be necessary to recompile the single
cpp file.