This commit aims to implement the NVDEC (Nvidia Decoder) functionality, with video frame decoding being handled by the FFmpeg library.
The process begins with Ioctl commands being sent to the NVDEC and VIC (Video Image Composer) emulated devices. These allocate the necessary GPU buffers for the frame data, along with providing information on the incoming video data. A Submit command then signals the GPU to process and decode the frame data.
To decode the frame, the respective codec's header must be manually composed from the information provided by NVDEC, then sent with the raw frame data to the ffmpeg library.
Currently, H264 and VP9 are supported, with VP9 having some minor artifacting issues related mainly to the reference frame composition in its uncompressed header.
Async GPU is not properly implemented at the moment.
Co-Authored-By: David <25727384+ogniK5377@users.noreply.github.com>
These compiler flags aren't shared with clang, so specifying these flags
unconditionally can lead to a bit of warning spam.
While we're in the area, we can also enable -Wunused-but-set-parameter
given this is almost always a bug.
This reworks how host<->device synchronization works on the Vulkan
backend. Instead of "protecting" resources with a fence and signalling
these as free when the fence is known to be signalled by the host GPU,
use timeline semaphores.
Vulkan timeline semaphores allow use to work on a subset of D3D12
fences. As far as we are concerned, timeline semaphores are a value set
by the host or the device that can be waited by either of them.
Taking advantange of this, we can have a monolithically increasing
atomic value for each submission to the graphics queue. Instead of
protecting resources with a fence, we simply store the current logical
tick (the atomic value stored in CPU memory). When we want to know if a
resource is free, it can be compared to the current GPU tick.
This greatly simplifies resource management code and the free status of
resources should have less false negatives.
To workaround bugs in validation layers, when these are attached there's
a thread waiting for timeline semaphores.
Add the necessary CMake code to copy the contents in a string source
shader (GLSL or GLASM) to a header file then consumed by video_core
files.
This allows editting GLSL in its own files without having to maintain
them in source files.
For now, only OpenGL presentation shaders are moved, but we can add
GLASM presentation shaders and static SPIR-V generation through
glslangValidator in the future.
Add a flat table to test if it's legal to create a texture view between
two formats or copy betweem them.
This table is based on ARB_copy_image and ARB_texture_view. Copies are
more permissive than views.
Emit code compatible with NV_gpu_program5.
This should emit code compatible with Fermi, but it wasn't tested on
that architecture. Pascal has some issues not present on Turing GPUs.
Implement a generic shader cache for fast lookups and invalidations.
Invalidations are cheap but expensive when a shader is invalidated.
Use two mutexes instead of one to avoid locking invalidations for
lookups and vice versa. When a shader has to be removed, lookups are
locked as expected.
Drop the std::list hack to allocate memory indefinitely.
Instead use a custom allocator that keeps references valid until
destruction. This allocates fixed chunks of memory and puts pointers in
a free list. When an allocation is no longer used put it back to the
free list, this doesn't heap allocate because std::vector doesn't change
the capacity. If the free list is empty, allocate a new chunk.
Deduplicate code shared between vk_pipeline_cache and gl_shader_cache as
well as shader decoder code.
While we are at it, fix a bug in gl_shader_cache where compute shaders
had an start offset of a stage shader.
Adds optional support for Nsight Aftermath. It is enabled through
ENABLE_NSIGHT_AFTERMATH in cmake. A path to the SDK has to be provided
by the environment variable NSIGHT_AFTERMATH_SDK.
Nsight Aftermath allows an application to generate "minidumps" of the
GPU state when a device loss happens. By analysing these on Nsight we
can know what a game was doing and why it triggered a device loss.
The dump is generated inside %APPDATA%\yuzu\log\gpucrash and this
directory is deleted every time a new instance is initialized with
Nsight enabled.
To enable it on yuzu there has a to be a driver and device capable of
running Nsight Aftermath on Vulkan. That means only Turing based GPUs
on the latest stable driver, beta drivers won't work for now.
It is manually enabled in Configuration>Debug>Enable Graphics Debugging
because when using all debugging capabilities there is a runtime cost.
This is a reversed look up table extracted from
https://gist.github.com/rygorous/2203834#file-gistfile1-cpp-L41-L62
that is used in
04d4e9e587/source/maxwell/tsc_generate.cpp (L38)
Games usually bind 0xFD expecting a float texture border of 1.0f.
The conversion previous to this commit was multiplying the uint8 sRGB
texture border color by 255. This is close to 1.0f but when that
difference matters, some graphical glitches appear.
This look up table is manually changed in the edges, clamping towards
0.0f and 1.0f.
While we are at it, move this logic to its own translation unit.
The intention behind a Vulkan wrapper is to drop Vulkan-Hpp.
The issues with Vulkan-Hpp are:
- Regular breaks of the API.
- Copy constructors that do the same as the aggregates (fixed recently)
- External dynamic dispatch that is hard to remove
- Alias KHR handles with non-KHR handles making it impossible to use
smart handles on Vulkan 1.0 instances with extensions that were included
on Vulkan 1.1.
- Dynamic dispatchers silently change size depending on preprocessor
definitions. Different files will have different dispatch definitions,
generating all kinds of hard to debug memory issues.
In other words, Vulkan-Hpp is not "production ready" for our needs and
this wrapper aims to replace it without losing RAII and exception
safety.
Abstract the current OpenGL implementation into the VideoCommon
namespace and reimplement it on top of that. Doing this avoids repeating
code and logic in the Vulkan implementation.
This currently only supports quad arrays and u8 indices.
In the future we can remove quad arrays with a table written from the
CPU, but this was used to bootstrap the other passes helpers and it
was left in the code.
The blob code is generated from the "shaders/" directory. Read the
instructions there to know how to generate the SPIR-V.