// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include "common/assert.h"
#include "common/logging/log.h"
#include "common/settings.h"
#include "core/core.h"
#include "video_core/control/channel_state.h"
#include "video_core/dma_pusher.h"
#include "video_core/engines/fermi_2d.h"
#include "video_core/engines/kepler_compute.h"
#include "video_core/engines/kepler_memory.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/engines/maxwell_dma.h"
#include "video_core/engines/puller.h"
#include "video_core/gpu.h"
#include "video_core/memory_manager.h"
#include "video_core/rasterizer_interface.h"

namespace Tegra::Engines {

Puller::Puller(GPU& gpu_, MemoryManager& memory_manager_, DmaPusher& dma_pusher_,
               Control::ChannelState& channel_state_)
    : gpu{gpu_}, memory_manager{memory_manager_}, dma_pusher{dma_pusher_}, channel_state{
                                                                               channel_state_} {}

Puller::~Puller() = default;

void Puller::ProcessBindMethod(const MethodCall& method_call) {
    // Bind the current subchannel to the desired engine id.
    LOG_DEBUG(HW_GPU, "Binding subchannel {} to engine {}", method_call.subchannel,
              method_call.argument);
    const auto engine_id = static_cast<EngineID>(method_call.argument);
    bound_engines[method_call.subchannel] = static_cast<EngineID>(engine_id);
    switch (engine_id) {
    case EngineID::FERMI_TWOD_A:
        dma_pusher.BindSubchannel(channel_state.fermi_2d.get(), method_call.subchannel);
        break;
    case EngineID::MAXWELL_B:
        dma_pusher.BindSubchannel(channel_state.maxwell_3d.get(), method_call.subchannel);
        break;
    case EngineID::KEPLER_COMPUTE_B:
        dma_pusher.BindSubchannel(channel_state.kepler_compute.get(), method_call.subchannel);
        break;
    case EngineID::MAXWELL_DMA_COPY_A:
        dma_pusher.BindSubchannel(channel_state.maxwell_dma.get(), method_call.subchannel);
        break;
    case EngineID::KEPLER_INLINE_TO_MEMORY_B:
        dma_pusher.BindSubchannel(channel_state.kepler_memory.get(), method_call.subchannel);
        break;
    default:
        UNIMPLEMENTED_MSG("Unimplemented engine {:04X}", engine_id);
    }
}

void Puller::ProcessFenceActionMethod() {
    switch (regs.fence_action.op) {
    case Puller::FenceOperation::Acquire:
        // UNIMPLEMENTED_MSG("Channel Scheduling pending.");
        // WaitFence(regs.fence_action.syncpoint_id, regs.fence_value);
        break;
    case Puller::FenceOperation::Increment:
        rasterizer->SignalSyncPoint(regs.fence_action.syncpoint_id);
        break;
    default:
        UNIMPLEMENTED_MSG("Unimplemented operation {}", regs.fence_action.op.Value());
    }
}

void Puller::ProcessWaitForInterruptMethod() {
    // TODO(bunnei) ImplementMe
    LOG_WARNING(HW_GPU, "(STUBBED) called");
}

void Puller::ProcessSemaphoreTriggerMethod() {
    const auto semaphoreOperationMask = 0xF;
    const auto op =
        static_cast<GpuSemaphoreOperation>(regs.semaphore_trigger & semaphoreOperationMask);
    if (op == GpuSemaphoreOperation::WriteLong) {
        struct Block {
            u32 sequence;
            u32 zeros = 0;
            u64 timestamp;
        };

        Block block{};
        block.sequence = regs.semaphore_sequence;
        // TODO(Kmather73): Generate a real GPU timestamp and write it here instead of
        // CoreTiming
        block.timestamp = gpu.GetTicks();
        memory_manager.WriteBlock(regs.semaphore_address.SemaphoreAddress(), &block, sizeof(block));
    } else {
        const u32 word{memory_manager.Read<u32>(regs.semaphore_address.SemaphoreAddress())};
        if ((op == GpuSemaphoreOperation::AcquireEqual && word == regs.semaphore_sequence) ||
            (op == GpuSemaphoreOperation::AcquireGequal &&
             static_cast<s32>(word - regs.semaphore_sequence) > 0) ||
            (op == GpuSemaphoreOperation::AcquireMask && (word & regs.semaphore_sequence))) {
            // Nothing to do in this case
        } else {
            regs.acquire_source = true;
            regs.acquire_value = regs.semaphore_sequence;
            if (op == GpuSemaphoreOperation::AcquireEqual) {
                regs.acquire_active = true;
                regs.acquire_mode = false;
            } else if (op == GpuSemaphoreOperation::AcquireGequal) {
                regs.acquire_active = true;
                regs.acquire_mode = true;
            } else if (op == GpuSemaphoreOperation::AcquireMask) {
                // TODO(kemathe) The acquire mask operation waits for a value that, ANDed with
                // semaphore_sequence, gives a non-0 result
                LOG_ERROR(HW_GPU, "Invalid semaphore operation AcquireMask not implemented");
            } else {
                LOG_ERROR(HW_GPU, "Invalid semaphore operation");
            }
        }
    }
}

void Puller::ProcessSemaphoreRelease() {
    memory_manager.Write<u32>(regs.semaphore_address.SemaphoreAddress(), regs.semaphore_release);
}

void Puller::ProcessSemaphoreAcquire() {
    const u32 word = memory_manager.Read<u32>(regs.semaphore_address.SemaphoreAddress());
    const auto value = regs.semaphore_acquire;
    if (word != value) {
        regs.acquire_active = true;
        regs.acquire_value = value;
        // TODO(kemathe73) figure out how to do the acquire_timeout
        regs.acquire_mode = false;
        regs.acquire_source = false;
    }
}

/// Calls a GPU puller method.
void Puller::CallPullerMethod(const MethodCall& method_call) {
    regs.reg_array[method_call.method] = method_call.argument;
    const auto method = static_cast<BufferMethods>(method_call.method);

    switch (method) {
    case BufferMethods::BindObject: {
        ProcessBindMethod(method_call);
        break;
    }
    case BufferMethods::Nop:
    case BufferMethods::SemaphoreAddressHigh:
    case BufferMethods::SemaphoreAddressLow:
    case BufferMethods::SemaphoreSequence:
    case BufferMethods::UnkCacheFlush:
    case BufferMethods::WrcacheFlush:
    case BufferMethods::FenceValue:
        break;
    case BufferMethods::RefCnt:
        rasterizer->SignalReference();
        break;
    case BufferMethods::FenceAction:
        ProcessFenceActionMethod();
        break;
    case BufferMethods::WaitForInterrupt:
        ProcessWaitForInterruptMethod();
        break;
    case BufferMethods::SemaphoreTrigger: {
        ProcessSemaphoreTriggerMethod();
        break;
    }
    case BufferMethods::NotifyIntr: {
        // TODO(Kmather73): Research and implement this method.
        LOG_ERROR(HW_GPU, "Special puller engine method NotifyIntr not implemented");
        break;
    }
    case BufferMethods::Unk28: {
        // TODO(Kmather73): Research and implement this method.
        LOG_ERROR(HW_GPU, "Special puller engine method Unk28 not implemented");
        break;
    }
    case BufferMethods::SemaphoreAcquire: {
        ProcessSemaphoreAcquire();
        break;
    }
    case BufferMethods::SemaphoreRelease: {
        ProcessSemaphoreRelease();
        break;
    }
    case BufferMethods::Yield: {
        // TODO(Kmather73): Research and implement this method.
        LOG_ERROR(HW_GPU, "Special puller engine method Yield not implemented");
        break;
    }
    default:
        LOG_ERROR(HW_GPU, "Special puller engine method {:X} not implemented", method);
        break;
    }
}

/// Calls a GPU engine method.
void Puller::CallEngineMethod(const MethodCall& method_call) {
    const EngineID engine = bound_engines[method_call.subchannel];

    switch (engine) {
    case EngineID::FERMI_TWOD_A:
        channel_state.fermi_2d->CallMethod(method_call.method, method_call.argument,
                                           method_call.IsLastCall());
        break;
    case EngineID::MAXWELL_B:
        channel_state.maxwell_3d->CallMethod(method_call.method, method_call.argument,
                                             method_call.IsLastCall());
        break;
    case EngineID::KEPLER_COMPUTE_B:
        channel_state.kepler_compute->CallMethod(method_call.method, method_call.argument,
                                                 method_call.IsLastCall());
        break;
    case EngineID::MAXWELL_DMA_COPY_A:
        channel_state.maxwell_dma->CallMethod(method_call.method, method_call.argument,
                                              method_call.IsLastCall());
        break;
    case EngineID::KEPLER_INLINE_TO_MEMORY_B:
        channel_state.kepler_memory->CallMethod(method_call.method, method_call.argument,
                                                method_call.IsLastCall());
        break;
    default:
        UNIMPLEMENTED_MSG("Unimplemented engine");
    }
}

/// Calls a GPU engine multivalue method.
void Puller::CallEngineMultiMethod(u32 method, u32 subchannel, const u32* base_start, u32 amount,
                                   u32 methods_pending) {
    const EngineID engine = bound_engines[subchannel];

    switch (engine) {
    case EngineID::FERMI_TWOD_A:
        channel_state.fermi_2d->CallMultiMethod(method, base_start, amount, methods_pending);
        break;
    case EngineID::MAXWELL_B:
        channel_state.maxwell_3d->CallMultiMethod(method, base_start, amount, methods_pending);
        break;
    case EngineID::KEPLER_COMPUTE_B:
        channel_state.kepler_compute->CallMultiMethod(method, base_start, amount, methods_pending);
        break;
    case EngineID::MAXWELL_DMA_COPY_A:
        channel_state.maxwell_dma->CallMultiMethod(method, base_start, amount, methods_pending);
        break;
    case EngineID::KEPLER_INLINE_TO_MEMORY_B:
        channel_state.kepler_memory->CallMultiMethod(method, base_start, amount, methods_pending);
        break;
    default:
        UNIMPLEMENTED_MSG("Unimplemented engine");
    }
}

/// Calls a GPU method.
void Puller::CallMethod(const MethodCall& method_call) {
    LOG_TRACE(HW_GPU, "Processing method {:08X} on subchannel {}", method_call.method,
              method_call.subchannel);

    ASSERT(method_call.subchannel < bound_engines.size());

    if (ExecuteMethodOnEngine(method_call.method)) {
        CallEngineMethod(method_call);
    } else {
        CallPullerMethod(method_call);
    }
}

/// Calls a GPU multivalue method.
void Puller::CallMultiMethod(u32 method, u32 subchannel, const u32* base_start, u32 amount,
                             u32 methods_pending) {
    LOG_TRACE(HW_GPU, "Processing method {:08X} on subchannel {}", method, subchannel);

    ASSERT(subchannel < bound_engines.size());

    if (ExecuteMethodOnEngine(method)) {
        CallEngineMultiMethod(method, subchannel, base_start, amount, methods_pending);
    } else {
        for (std::size_t i = 0; i < amount; i++) {
            CallPullerMethod(MethodCall{
                method,
                base_start[i],
                subchannel,
                methods_pending - static_cast<u32>(i),
            });
        }
    }
}

void Puller::BindRasterizer(VideoCore::RasterizerInterface* rasterizer_) {
    rasterizer = rasterizer_;
}

/// Determines where the method should be executed.
[[nodiscard]] bool Puller::ExecuteMethodOnEngine(u32 method) {
    const auto buffer_method = static_cast<BufferMethods>(method);
    return buffer_method >= BufferMethods::NonPullerMethods;
}

} // namespace Tegra::Engines