// Copyright 2018 yuzu Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include "common/assert.h" #include "common/common_types.h" #include "common/logging/log.h" #include "video_core/engines/shader_bytecode.h" #include "video_core/shader/node.h" #include "video_core/shader/node_helper.h" #include "video_core/shader/registry.h" #include "video_core/shader/shader_ir.h" namespace VideoCommon::Shader { using Tegra::Shader::Attribute; using Tegra::Shader::Instruction; using Tegra::Shader::IpaMode; using Tegra::Shader::Pred; using Tegra::Shader::PredCondition; using Tegra::Shader::PredOperation; using Tegra::Shader::Register; ShaderIR::ShaderIR(const ProgramCode& program_code, u32 main_offset, CompilerSettings settings, Registry& registry) : program_code{program_code}, main_offset{main_offset}, settings{settings}, registry{registry} { Decode(); PostDecode(); } ShaderIR::~ShaderIR() = default; Node ShaderIR::GetRegister(Register reg) { if (reg != Register::ZeroIndex) { used_registers.insert(static_cast(reg)); } return MakeNode(reg); } Node ShaderIR::GetCustomVariable(u32 id) { return MakeNode(id); } Node ShaderIR::GetImmediate19(Instruction instr) { return Immediate(instr.alu.GetImm20_19()); } Node ShaderIR::GetImmediate32(Instruction instr) { return Immediate(instr.alu.GetImm20_32()); } Node ShaderIR::GetConstBuffer(u64 index_, u64 offset_) { const auto index = static_cast(index_); const auto offset = static_cast(offset_); used_cbufs.try_emplace(index).first->second.MarkAsUsed(offset); return MakeNode(index, Immediate(offset)); } Node ShaderIR::GetConstBufferIndirect(u64 index_, u64 offset_, Node node) { const auto index = static_cast(index_); const auto offset = static_cast(offset_); used_cbufs.try_emplace(index).first->second.MarkAsUsedIndirect(); Node final_offset = [&] { // Attempt to inline constant buffer without a variable offset. This is done to allow // tracking LDC calls. if (const auto gpr = std::get_if(&*node)) { if (gpr->GetIndex() == Register::ZeroIndex) { return Immediate(offset); } } return Operation(OperationCode::UAdd, NO_PRECISE, std::move(node), Immediate(offset)); }(); return MakeNode(index, std::move(final_offset)); } Node ShaderIR::GetPredicate(u64 pred_, bool negated) { const auto pred = static_cast(pred_); if (pred != Pred::UnusedIndex && pred != Pred::NeverExecute) { used_predicates.insert(pred); } return MakeNode(pred, negated); } Node ShaderIR::GetPredicate(bool immediate) { return GetPredicate(static_cast(immediate ? Pred::UnusedIndex : Pred::NeverExecute)); } Node ShaderIR::GetInputAttribute(Attribute::Index index, u64 element, Node buffer) { MarkAttributeUsage(index, element); used_input_attributes.emplace(index); return MakeNode(index, static_cast(element), std::move(buffer)); } Node ShaderIR::GetPhysicalInputAttribute(Tegra::Shader::Register physical_address, Node buffer) { uses_physical_attributes = true; return MakeNode(GetRegister(physical_address), buffer); } Node ShaderIR::GetOutputAttribute(Attribute::Index index, u64 element, Node buffer) { MarkAttributeUsage(index, element); used_output_attributes.insert(index); return MakeNode(index, static_cast(element), std::move(buffer)); } Node ShaderIR::GetInternalFlag(InternalFlag flag, bool negated) const { Node node = MakeNode(flag); if (negated) { return Operation(OperationCode::LogicalNegate, std::move(node)); } return node; } Node ShaderIR::GetLocalMemory(Node address) { return MakeNode(std::move(address)); } Node ShaderIR::GetSharedMemory(Node address) { return MakeNode(std::move(address)); } Node ShaderIR::GetTemporary(u32 id) { return GetRegister(Register::ZeroIndex + 1 + id); } Node ShaderIR::GetOperandAbsNegFloat(Node value, bool absolute, bool negate) { if (absolute) { value = Operation(OperationCode::FAbsolute, NO_PRECISE, std::move(value)); } if (negate) { value = Operation(OperationCode::FNegate, NO_PRECISE, std::move(value)); } return value; } Node ShaderIR::GetSaturatedFloat(Node value, bool saturate) { if (!saturate) { return value; } Node positive_zero = Immediate(std::copysignf(0, 1)); Node positive_one = Immediate(1.0f); return Operation(OperationCode::FClamp, NO_PRECISE, std::move(value), std::move(positive_zero), std::move(positive_one)); } Node ShaderIR::ConvertIntegerSize(Node value, Register::Size size, bool is_signed) { switch (size) { case Register::Size::Byte: value = SignedOperation(OperationCode::ILogicalShiftLeft, is_signed, NO_PRECISE, std::move(value), Immediate(24)); value = SignedOperation(OperationCode::IArithmeticShiftRight, is_signed, NO_PRECISE, std::move(value), Immediate(24)); return value; case Register::Size::Short: value = SignedOperation(OperationCode::ILogicalShiftLeft, is_signed, NO_PRECISE, std::move(value), Immediate(16)); value = SignedOperation(OperationCode::IArithmeticShiftRight, is_signed, NO_PRECISE, std::move(value), Immediate(16)); return value; case Register::Size::Word: // Default - do nothing return value; default: UNREACHABLE_MSG("Unimplemented conversion size: {}", static_cast(size)); return value; } } Node ShaderIR::GetOperandAbsNegInteger(Node value, bool absolute, bool negate, bool is_signed) { if (!is_signed) { // Absolute or negate on an unsigned is pointless return value; } if (absolute) { value = Operation(OperationCode::IAbsolute, NO_PRECISE, std::move(value)); } if (negate) { value = Operation(OperationCode::INegate, NO_PRECISE, std::move(value)); } return value; } Node ShaderIR::UnpackHalfImmediate(Instruction instr, bool has_negation) { Node value = Immediate(instr.half_imm.PackImmediates()); if (!has_negation) { return value; } Node first_negate = GetPredicate(instr.half_imm.first_negate != 0); Node second_negate = GetPredicate(instr.half_imm.second_negate != 0); return Operation(OperationCode::HNegate, NO_PRECISE, std::move(value), std::move(first_negate), std::move(second_negate)); } Node ShaderIR::UnpackHalfFloat(Node value, Tegra::Shader::HalfType type) { return Operation(OperationCode::HUnpack, type, std::move(value)); } Node ShaderIR::HalfMerge(Node dest, Node src, Tegra::Shader::HalfMerge merge) { switch (merge) { case Tegra::Shader::HalfMerge::H0_H1: return src; case Tegra::Shader::HalfMerge::F32: return Operation(OperationCode::HMergeF32, std::move(src)); case Tegra::Shader::HalfMerge::Mrg_H0: return Operation(OperationCode::HMergeH0, std::move(dest), std::move(src)); case Tegra::Shader::HalfMerge::Mrg_H1: return Operation(OperationCode::HMergeH1, std::move(dest), std::move(src)); } UNREACHABLE(); return src; } Node ShaderIR::GetOperandAbsNegHalf(Node value, bool absolute, bool negate) { if (absolute) { value = Operation(OperationCode::HAbsolute, NO_PRECISE, std::move(value)); } if (negate) { value = Operation(OperationCode::HNegate, NO_PRECISE, std::move(value), GetPredicate(true), GetPredicate(true)); } return value; } Node ShaderIR::GetSaturatedHalfFloat(Node value, bool saturate) { if (!saturate) { return value; } Node positive_zero = Immediate(std::copysignf(0, 1)); Node positive_one = Immediate(1.0f); return Operation(OperationCode::HClamp, NO_PRECISE, std::move(value), std::move(positive_zero), std::move(positive_one)); } Node ShaderIR::GetPredicateComparisonFloat(PredCondition condition, Node op_a, Node op_b) { if (condition == PredCondition::T) { return GetPredicate(true); } else if (condition == PredCondition::F) { return GetPredicate(false); } static constexpr std::array comparison_table{ OperationCode(0), OperationCode::LogicalFOrdLessThan, // LT OperationCode::LogicalFOrdEqual, // EQ OperationCode::LogicalFOrdLessEqual, // LE OperationCode::LogicalFOrdGreaterThan, // GT OperationCode::LogicalFOrdNotEqual, // NE OperationCode::LogicalFOrdGreaterEqual, // GE OperationCode::LogicalFOrdered, // NUM OperationCode::LogicalFUnordered, // NAN OperationCode::LogicalFUnordLessThan, // LTU OperationCode::LogicalFUnordEqual, // EQU OperationCode::LogicalFUnordLessEqual, // LEU OperationCode::LogicalFUnordGreaterThan, // GTU OperationCode::LogicalFUnordNotEqual, // NEU OperationCode::LogicalFUnordGreaterEqual, // GEU }; const std::size_t index = static_cast(condition); ASSERT_MSG(index < std::size(comparison_table), "Invalid condition={}", index); return Operation(comparison_table[index], op_a, op_b); } Node ShaderIR::GetPredicateComparisonInteger(PredCondition condition, bool is_signed, Node op_a, Node op_b) { static constexpr std::array comparison_table{ std::pair{PredCondition::LT, OperationCode::LogicalILessThan}, std::pair{PredCondition::EQ, OperationCode::LogicalIEqual}, std::pair{PredCondition::LE, OperationCode::LogicalILessEqual}, std::pair{PredCondition::GT, OperationCode::LogicalIGreaterThan}, std::pair{PredCondition::NE, OperationCode::LogicalINotEqual}, std::pair{PredCondition::GE, OperationCode::LogicalIGreaterEqual}, }; const auto comparison = std::find_if(comparison_table.cbegin(), comparison_table.cend(), [condition](const auto entry) { return condition == entry.first; }); UNIMPLEMENTED_IF_MSG(comparison == comparison_table.cend(), "Unknown predicate comparison operation"); return SignedOperation(comparison->second, is_signed, NO_PRECISE, std::move(op_a), std::move(op_b)); } Node ShaderIR::GetPredicateComparisonHalf(Tegra::Shader::PredCondition condition, Node op_a, Node op_b) { static constexpr std::array comparison_table{ std::pair{PredCondition::LT, OperationCode::Logical2HLessThan}, std::pair{PredCondition::EQ, OperationCode::Logical2HEqual}, std::pair{PredCondition::LE, OperationCode::Logical2HLessEqual}, std::pair{PredCondition::GT, OperationCode::Logical2HGreaterThan}, std::pair{PredCondition::NE, OperationCode::Logical2HNotEqual}, std::pair{PredCondition::GE, OperationCode::Logical2HGreaterEqual}, std::pair{PredCondition::LTU, OperationCode::Logical2HLessThanWithNan}, std::pair{PredCondition::LEU, OperationCode::Logical2HLessEqualWithNan}, std::pair{PredCondition::GTU, OperationCode::Logical2HGreaterThanWithNan}, std::pair{PredCondition::NEU, OperationCode::Logical2HNotEqualWithNan}, std::pair{PredCondition::GEU, OperationCode::Logical2HGreaterEqualWithNan}, }; const auto comparison = std::find_if(comparison_table.cbegin(), comparison_table.cend(), [condition](const auto entry) { return condition == entry.first; }); UNIMPLEMENTED_IF_MSG(comparison == comparison_table.cend(), "Unknown predicate comparison operation"); return Operation(comparison->second, NO_PRECISE, std::move(op_a), std::move(op_b)); } OperationCode ShaderIR::GetPredicateCombiner(PredOperation operation) { static constexpr std::array operation_table{ OperationCode::LogicalAnd, OperationCode::LogicalOr, OperationCode::LogicalXor, }; const auto index = static_cast(operation); if (index >= operation_table.size()) { UNIMPLEMENTED_MSG("Unknown predicate operation."); return {}; } return operation_table[index]; } Node ShaderIR::GetConditionCode(Tegra::Shader::ConditionCode cc) const { switch (cc) { case Tegra::Shader::ConditionCode::NEU: return GetInternalFlag(InternalFlag::Zero, true); case Tegra::Shader::ConditionCode::FCSM_TR: UNIMPLEMENTED_MSG("EXIT.FCSM_TR is not implemented"); return MakeNode(Pred::NeverExecute, false); default: UNIMPLEMENTED_MSG("Unimplemented condition code: {}", static_cast(cc)); return MakeNode(Pred::NeverExecute, false); } } void ShaderIR::SetRegister(NodeBlock& bb, Register dest, Node src) { bb.push_back(Operation(OperationCode::Assign, GetRegister(dest), std::move(src))); } void ShaderIR::SetPredicate(NodeBlock& bb, u64 dest, Node src) { bb.push_back(Operation(OperationCode::LogicalAssign, GetPredicate(dest), std::move(src))); } void ShaderIR::SetInternalFlag(NodeBlock& bb, InternalFlag flag, Node value) { bb.push_back(Operation(OperationCode::LogicalAssign, GetInternalFlag(flag), std::move(value))); } void ShaderIR::SetLocalMemory(NodeBlock& bb, Node address, Node value) { bb.push_back( Operation(OperationCode::Assign, GetLocalMemory(std::move(address)), std::move(value))); } void ShaderIR::SetSharedMemory(NodeBlock& bb, Node address, Node value) { bb.push_back( Operation(OperationCode::Assign, GetSharedMemory(std::move(address)), std::move(value))); } void ShaderIR::SetTemporary(NodeBlock& bb, u32 id, Node value) { SetRegister(bb, Register::ZeroIndex + 1 + id, std::move(value)); } void ShaderIR::SetInternalFlagsFromFloat(NodeBlock& bb, Node value, bool sets_cc) { if (!sets_cc) { return; } Node zerop = Operation(OperationCode::LogicalFOrdEqual, std::move(value), Immediate(0.0f)); SetInternalFlag(bb, InternalFlag::Zero, std::move(zerop)); LOG_WARNING(HW_GPU, "Condition codes implementation is incomplete"); } void ShaderIR::SetInternalFlagsFromInteger(NodeBlock& bb, Node value, bool sets_cc) { if (!sets_cc) { return; } switch (value->index()) { case 0: // Operation Node Iterop(bb, value); break; case 2: // Genral Purpose Node if (const auto gpr = std::get_if(value.get())) { LOG_DEBUG(HW_GPU, "GprNode: index={}", gpr->GetIndex()); Node zerop = Operation(OperationCode::LogicalIEqual, std::move(value), Immediate(gpr->GetIndex())); SetInternalFlag(bb, InternalFlag::Zero, std::move(zerop)); } break; default: Node zerop = Operation(OperationCode::LogicalIEqual, std::move(value), Immediate(0)); SetInternalFlag(bb, InternalFlag::Zero, std::move(zerop)); LOG_WARNING(HW_GPU, "Node Type: {}", value->index()); break; } } void ShaderIR::SearchOperands(NodeBlock& nb, Node var) { const auto* op = std::get_if(var.get()); if (op == nullptr) { return; } if (op->GetOperandsCount() == 0) { return; } for (auto& operand : op->GetOperands()) { switch (operand->index()) { case 0: // Operation Node return Iterop(nb, operand); case 2: // General Purpose Node if (const auto* gpr = std::get_if(operand.get())) { LOG_DEBUG(HW_GPU, "Child GprNode: index={}", gpr->GetIndex()); Node zerop = Operation(OperationCode::LogicalIEqual, std::move(operand), Immediate(gpr->GetIndex())); SetInternalFlag(nb, InternalFlag::Zero, std::move(zerop)); } break; default: LOG_WARNING(HW_GPU, "Child Node Type: {}", operand->index()); break; } } } Node ShaderIR::BitfieldExtract(Node value, u32 offset, u32 bits) { return Operation(OperationCode::UBitfieldExtract, NO_PRECISE, std::move(value), Immediate(offset), Immediate(bits)); } Node ShaderIR::BitfieldInsert(Node base, Node insert, u32 offset, u32 bits) { return Operation(OperationCode::UBitfieldInsert, NO_PRECISE, base, insert, Immediate(offset), Immediate(bits)); } void ShaderIR::MarkAttributeUsage(Attribute::Index index, u64 element) { switch (index) { case Attribute::Index::LayerViewportPointSize: switch (element) { case 0: UNIMPLEMENTED(); break; case 1: uses_layer = true; break; case 2: uses_viewport_index = true; break; case 3: uses_point_size = true; break; } break; case Attribute::Index::TessCoordInstanceIDVertexID: switch (element) { case 2: uses_instance_id = true; break; case 3: uses_vertex_id = true; break; } break; case Attribute::Index::ClipDistances0123: case Attribute::Index::ClipDistances4567: { const u64 clip_index = (index == Attribute::Index::ClipDistances4567 ? 4 : 0) + element; used_clip_distances.at(clip_index) = true; break; } case Attribute::Index::FrontColor: case Attribute::Index::FrontSecondaryColor: case Attribute::Index::BackColor: case Attribute::Index::BackSecondaryColor: uses_legacy_varyings = true; break; default: if (index >= Attribute::Index::TexCoord_0 && index <= Attribute::Index::TexCoord_7) { uses_legacy_varyings = true; } break; } } std::size_t ShaderIR::DeclareAmend(Node new_amend) { const std::size_t id = amend_code.size(); amend_code.push_back(new_amend); return id; } u32 ShaderIR::NewCustomVariable() { return num_custom_variables++; } } // namespace VideoCommon::Shader