suyu/src/core/core_timing.cpp
Morph 99ceb03a1c general: Convert source file copyright comments over to SPDX
This formats all copyright comments according to SPDX formatting guidelines.
Additionally, this resolves the remaining GPLv2 only licensed files by relicensing them to GPLv2.0-or-later.
2022-04-23 05:55:32 -04:00

253 lines
7.2 KiB
C++

// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <algorithm>
#include <mutex>
#include <string>
#include <tuple>
#include "common/microprofile.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
#include "core/hardware_properties.h"
namespace Core::Timing {
constexpr s64 MAX_SLICE_LENGTH = 4000;
std::shared_ptr<EventType> CreateEvent(std::string name, TimedCallback&& callback) {
return std::make_shared<EventType>(std::move(callback), std::move(name));
}
struct CoreTiming::Event {
u64 time;
u64 fifo_order;
std::uintptr_t user_data;
std::weak_ptr<EventType> type;
// Sort by time, unless the times are the same, in which case sort by
// the order added to the queue
friend bool operator>(const Event& left, const Event& right) {
return std::tie(left.time, left.fifo_order) > std::tie(right.time, right.fifo_order);
}
friend bool operator<(const Event& left, const Event& right) {
return std::tie(left.time, left.fifo_order) < std::tie(right.time, right.fifo_order);
}
};
CoreTiming::CoreTiming()
: clock{Common::CreateBestMatchingClock(Hardware::BASE_CLOCK_RATE, Hardware::CNTFREQ)} {}
CoreTiming::~CoreTiming() = default;
void CoreTiming::ThreadEntry(CoreTiming& instance) {
constexpr char name[] = "yuzu:HostTiming";
MicroProfileOnThreadCreate(name);
Common::SetCurrentThreadName(name);
Common::SetCurrentThreadPriority(Common::ThreadPriority::VeryHigh);
instance.on_thread_init();
instance.ThreadLoop();
MicroProfileOnThreadExit();
}
void CoreTiming::Initialize(std::function<void()>&& on_thread_init_) {
on_thread_init = std::move(on_thread_init_);
event_fifo_id = 0;
shutting_down = false;
ticks = 0;
const auto empty_timed_callback = [](std::uintptr_t, std::chrono::nanoseconds) {};
ev_lost = CreateEvent("_lost_event", empty_timed_callback);
if (is_multicore) {
timer_thread = std::make_unique<std::thread>(ThreadEntry, std::ref(*this));
}
}
void CoreTiming::Shutdown() {
paused = true;
shutting_down = true;
pause_event.Set();
event.Set();
if (timer_thread) {
timer_thread->join();
}
ClearPendingEvents();
timer_thread.reset();
has_started = false;
}
void CoreTiming::Pause(bool is_paused) {
paused = is_paused;
pause_event.Set();
}
void CoreTiming::SyncPause(bool is_paused) {
if (is_paused == paused && paused_set == paused) {
return;
}
Pause(is_paused);
if (timer_thread) {
if (!is_paused) {
pause_event.Set();
}
event.Set();
while (paused_set != is_paused)
;
}
}
bool CoreTiming::IsRunning() const {
return !paused_set;
}
bool CoreTiming::HasPendingEvents() const {
return !(wait_set && event_queue.empty());
}
void CoreTiming::ScheduleEvent(std::chrono::nanoseconds ns_into_future,
const std::shared_ptr<EventType>& event_type,
std::uintptr_t user_data) {
{
std::scoped_lock scope{basic_lock};
const u64 timeout = static_cast<u64>((GetGlobalTimeNs() + ns_into_future).count());
event_queue.emplace_back(Event{timeout, event_fifo_id++, user_data, event_type});
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
}
event.Set();
}
void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type,
std::uintptr_t user_data) {
std::scoped_lock scope{basic_lock};
const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
return e.type.lock().get() == event_type.get() && e.user_data == user_data;
});
// Removing random items breaks the invariant so we have to re-establish it.
if (itr != event_queue.end()) {
event_queue.erase(itr, event_queue.end());
std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>());
}
}
void CoreTiming::AddTicks(u64 ticks_to_add) {
ticks += ticks_to_add;
downcount -= static_cast<s64>(ticks);
}
void CoreTiming::Idle() {
if (!event_queue.empty()) {
const u64 next_event_time = event_queue.front().time;
const u64 next_ticks = nsToCycles(std::chrono::nanoseconds(next_event_time)) + 10U;
if (next_ticks > ticks) {
ticks = next_ticks;
}
return;
}
ticks += 1000U;
}
void CoreTiming::ResetTicks() {
downcount = MAX_SLICE_LENGTH;
}
u64 CoreTiming::GetCPUTicks() const {
if (is_multicore) {
return clock->GetCPUCycles();
}
return ticks;
}
u64 CoreTiming::GetClockTicks() const {
if (is_multicore) {
return clock->GetClockCycles();
}
return CpuCyclesToClockCycles(ticks);
}
void CoreTiming::ClearPendingEvents() {
event_queue.clear();
}
void CoreTiming::RemoveEvent(const std::shared_ptr<EventType>& event_type) {
std::scoped_lock lock{basic_lock};
const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
return e.type.lock().get() == event_type.get();
});
// Removing random items breaks the invariant so we have to re-establish it.
if (itr != event_queue.end()) {
event_queue.erase(itr, event_queue.end());
std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>());
}
}
std::optional<s64> CoreTiming::Advance() {
std::scoped_lock lock{advance_lock, basic_lock};
global_timer = GetGlobalTimeNs().count();
while (!event_queue.empty() && event_queue.front().time <= global_timer) {
Event evt = std::move(event_queue.front());
std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<>());
event_queue.pop_back();
basic_lock.unlock();
if (const auto event_type{evt.type.lock()}) {
event_type->callback(
evt.user_data, std::chrono::nanoseconds{static_cast<s64>(global_timer - evt.time)});
}
basic_lock.lock();
global_timer = GetGlobalTimeNs().count();
}
if (!event_queue.empty()) {
const s64 next_time = event_queue.front().time - global_timer;
return next_time;
} else {
return std::nullopt;
}
}
void CoreTiming::ThreadLoop() {
has_started = true;
while (!shutting_down) {
while (!paused) {
paused_set = false;
const auto next_time = Advance();
if (next_time) {
if (*next_time > 0) {
std::chrono::nanoseconds next_time_ns = std::chrono::nanoseconds(*next_time);
event.WaitFor(next_time_ns);
}
} else {
wait_set = true;
event.Wait();
}
wait_set = false;
}
paused_set = true;
clock->Pause(true);
pause_event.Wait();
clock->Pause(false);
}
}
std::chrono::nanoseconds CoreTiming::GetGlobalTimeNs() const {
if (is_multicore) {
return clock->GetTimeNS();
}
return CyclesToNs(ticks);
}
std::chrono::microseconds CoreTiming::GetGlobalTimeUs() const {
if (is_multicore) {
return clock->GetTimeUS();
}
return CyclesToUs(ticks);
}
} // namespace Core::Timing