suyu/src/common/atomic_gcc.h

113 lines
3.4 KiB
C++

// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#ifndef _ATOMIC_GCC_H_
#define _ATOMIC_GCC_H_
#include "common.h"
// Atomic operations are performed in a single step by the CPU. It is
// impossible for other threads to see the operation "half-done."
//
// Some atomic operations can be combined with different types of memory
// barriers called "Acquire semantics" and "Release semantics", defined below.
//
// Acquire semantics: Future memory accesses cannot be relocated to before the
// operation.
//
// Release semantics: Past memory accesses cannot be relocated to after the
// operation.
//
// These barriers affect not only the compiler, but also the CPU.
namespace Common
{
inline void AtomicAdd(volatile u32& target, u32 value) {
__sync_add_and_fetch(&target, value);
}
inline void AtomicAnd(volatile u32& target, u32 value) {
__sync_and_and_fetch(&target, value);
}
inline void AtomicDecrement(volatile u32& target) {
__sync_add_and_fetch(&target, -1);
}
inline void AtomicIncrement(volatile u32& target) {
__sync_add_and_fetch(&target, 1);
}
inline u32 AtomicLoad(volatile u32& src) {
return src; // 32-bit reads are always atomic.
}
inline u32 AtomicLoadAcquire(volatile u32& src) {
//keep the compiler from caching any memory references
u32 result = src; // 32-bit reads are always atomic.
//__sync_synchronize(); // TODO: May not be necessary.
// Compiler instruction only. x86 loads always have acquire semantics.
__asm__ __volatile__ ( "":::"memory" );
return result;
}
inline void AtomicOr(volatile u32& target, u32 value) {
__sync_or_and_fetch(&target, value);
}
inline void AtomicStore(volatile u32& dest, u32 value) {
dest = value; // 32-bit writes are always atomic.
}
inline void AtomicStoreRelease(volatile u32& dest, u32 value) {
__sync_lock_test_and_set(&dest, value); // TODO: Wrong! This function is has acquire semantics.
}
}
// Old code kept here for reference in case we need the parts with __asm__ __volatile__.
#if 0
LONG SyncInterlockedIncrement(LONG *Dest)
{
#if defined(__GNUC__) && defined (__GNUC_MINOR__) && ((4 < __GNUC__) || (4 == __GNUC__ && 1 <= __GNUC_MINOR__))
return __sync_add_and_fetch(Dest, 1);
#else
register int result;
__asm__ __volatile__("lock; xadd %0,%1"
: "=r" (result), "=m" (*Dest)
: "0" (1), "m" (*Dest)
: "memory");
return result;
#endif
}
LONG SyncInterlockedExchangeAdd(LONG *Dest, LONG Val)
{
#if defined(__GNUC__) && defined (__GNUC_MINOR__) && ((4 < __GNUC__) || (4 == __GNUC__ && 1 <= __GNUC_MINOR__))
return __sync_add_and_fetch(Dest, Val);
#else
register int result;
__asm__ __volatile__("lock; xadd %0,%1"
: "=r" (result), "=m" (*Dest)
: "0" (Val), "m" (*Dest)
: "memory");
return result;
#endif
}
LONG SyncInterlockedExchange(LONG *Dest, LONG Val)
{
#if defined(__GNUC__) && defined (__GNUC_MINOR__) && ((4 < __GNUC__) || (4 == __GNUC__ && 1 <= __GNUC_MINOR__))
return __sync_lock_test_and_set(Dest, Val);
#else
register int result;
__asm__ __volatile__("lock; xchg %0,%1"
: "=r" (result), "=m" (*Dest)
: "0" (Val), "m" (*Dest)
: "memory");
return result;
#endif
}
#endif
#endif