mirror of
https://git.suyu.dev/suyu/suyu
synced 2025-01-09 16:03:21 +00:00
1115 lines
43 KiB
C++
1115 lines
43 KiB
C++
// SPDX-FileCopyrightText: 2015 Citra Emulator Project
|
|
// SPDX-FileCopyrightText: 2018 yuzu Emulator Project
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
|
|
#include <algorithm>
|
|
#include <cstring>
|
|
#include <mutex>
|
|
#include <span>
|
|
|
|
#include "common/assert.h"
|
|
#include "common/atomic_ops.h"
|
|
#include "common/common_types.h"
|
|
#include "common/heap_tracker.h"
|
|
#include "common/logging/log.h"
|
|
#include "common/page_table.h"
|
|
#include "common/scope_exit.h"
|
|
#include "common/settings.h"
|
|
#include "common/swap.h"
|
|
#include "core/core.h"
|
|
#include "core/device_memory.h"
|
|
#include "core/gpu_dirty_memory_manager.h"
|
|
#include "core/hardware_properties.h"
|
|
#include "core/hle/kernel/k_page_table.h"
|
|
#include "core/hle/kernel/k_process.h"
|
|
#include "core/memory.h"
|
|
#include "video_core/gpu.h"
|
|
#include "video_core/host1x/gpu_device_memory_manager.h"
|
|
#include "video_core/host1x/host1x.h"
|
|
#include "video_core/rasterizer_download_area.h"
|
|
|
|
namespace Core::Memory {
|
|
|
|
namespace {
|
|
|
|
bool AddressSpaceContains(const Common::PageTable& table, const Common::ProcessAddress addr,
|
|
const std::size_t size) {
|
|
const Common::ProcessAddress max_addr = 1ULL << table.GetAddressSpaceBits();
|
|
return addr + size >= addr && addr + size <= max_addr;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// Implementation class used to keep the specifics of the memory subsystem hidden
|
|
// from outside classes. This also allows modification to the internals of the memory
|
|
// subsystem without needing to rebuild all files that make use of the memory interface.
|
|
struct Memory::Impl {
|
|
explicit Impl(Core::System& system_) : system{system_} {}
|
|
|
|
void SetCurrentPageTable(Kernel::KProcess& process) {
|
|
current_page_table = &process.GetPageTable().GetImpl();
|
|
|
|
if (std::addressof(process) == system.ApplicationProcess() &&
|
|
Settings::IsFastmemEnabled()) {
|
|
current_page_table->fastmem_arena = system.DeviceMemory().buffer.VirtualBasePointer();
|
|
} else {
|
|
current_page_table->fastmem_arena = nullptr;
|
|
}
|
|
|
|
#ifdef __linux__
|
|
heap_tracker.emplace(system.DeviceMemory().buffer);
|
|
buffer = std::addressof(*heap_tracker);
|
|
#else
|
|
buffer = std::addressof(system.DeviceMemory().buffer);
|
|
#endif
|
|
}
|
|
|
|
void MapMemoryRegion(Common::PageTable& page_table, Common::ProcessAddress base, u64 size,
|
|
Common::PhysicalAddress target, Common::MemoryPermission perms,
|
|
bool separate_heap) {
|
|
ASSERT_MSG((size & YUZU_PAGEMASK) == 0, "non-page aligned size: {:016X}", size);
|
|
ASSERT_MSG((base & YUZU_PAGEMASK) == 0, "non-page aligned base: {:016X}", GetInteger(base));
|
|
ASSERT_MSG(target >= DramMemoryMap::Base, "Out of bounds target: {:016X}",
|
|
GetInteger(target));
|
|
MapPages(page_table, base / YUZU_PAGESIZE, size / YUZU_PAGESIZE, target,
|
|
Common::PageType::Memory);
|
|
|
|
if (current_page_table->fastmem_arena) {
|
|
buffer->Map(GetInteger(base), GetInteger(target) - DramMemoryMap::Base, size, perms,
|
|
separate_heap);
|
|
}
|
|
}
|
|
|
|
void UnmapRegion(Common::PageTable& page_table, Common::ProcessAddress base, u64 size,
|
|
bool separate_heap) {
|
|
ASSERT_MSG((size & YUZU_PAGEMASK) == 0, "non-page aligned size: {:016X}", size);
|
|
ASSERT_MSG((base & YUZU_PAGEMASK) == 0, "non-page aligned base: {:016X}", GetInteger(base));
|
|
MapPages(page_table, base / YUZU_PAGESIZE, size / YUZU_PAGESIZE, 0,
|
|
Common::PageType::Unmapped);
|
|
|
|
if (current_page_table->fastmem_arena) {
|
|
buffer->Unmap(GetInteger(base), size, separate_heap);
|
|
}
|
|
}
|
|
|
|
void ProtectRegion(Common::PageTable& page_table, VAddr vaddr, u64 size,
|
|
Common::MemoryPermission perms) {
|
|
ASSERT_MSG((size & YUZU_PAGEMASK) == 0, "non-page aligned size: {:016X}", size);
|
|
ASSERT_MSG((vaddr & YUZU_PAGEMASK) == 0, "non-page aligned base: {:016X}", vaddr);
|
|
|
|
if (!current_page_table->fastmem_arena) {
|
|
return;
|
|
}
|
|
|
|
u64 protect_bytes{};
|
|
u64 protect_begin{};
|
|
for (u64 addr = vaddr; addr < vaddr + size; addr += YUZU_PAGESIZE) {
|
|
const Common::PageType page_type{
|
|
current_page_table->pointers[addr >> YUZU_PAGEBITS].Type()};
|
|
switch (page_type) {
|
|
case Common::PageType::RasterizerCachedMemory:
|
|
if (protect_bytes > 0) {
|
|
buffer->Protect(protect_begin, protect_bytes, perms);
|
|
protect_bytes = 0;
|
|
}
|
|
break;
|
|
default:
|
|
if (protect_bytes == 0) {
|
|
protect_begin = addr;
|
|
}
|
|
protect_bytes += YUZU_PAGESIZE;
|
|
}
|
|
}
|
|
|
|
if (protect_bytes > 0) {
|
|
buffer->Protect(protect_begin, protect_bytes, perms);
|
|
}
|
|
}
|
|
|
|
[[nodiscard]] u8* GetPointerFromRasterizerCachedMemory(u64 vaddr) const {
|
|
const Common::PhysicalAddress paddr{
|
|
current_page_table->backing_addr[vaddr >> YUZU_PAGEBITS]};
|
|
|
|
if (!paddr) {
|
|
return {};
|
|
}
|
|
|
|
return system.DeviceMemory().GetPointer<u8>(paddr + vaddr);
|
|
}
|
|
|
|
[[nodiscard]] u8* GetPointerFromDebugMemory(u64 vaddr) const {
|
|
const Common::PhysicalAddress paddr{
|
|
current_page_table->backing_addr[vaddr >> YUZU_PAGEBITS]};
|
|
|
|
if (paddr == 0) {
|
|
return {};
|
|
}
|
|
|
|
return system.DeviceMemory().GetPointer<u8>(paddr + vaddr);
|
|
}
|
|
|
|
u8 Read8(const Common::ProcessAddress addr) {
|
|
return Read<u8>(addr);
|
|
}
|
|
|
|
u16 Read16(const Common::ProcessAddress addr) {
|
|
if ((addr & 1) == 0) {
|
|
return Read<u16_le>(addr);
|
|
} else {
|
|
const u32 a{Read<u8>(addr)};
|
|
const u32 b{Read<u8>(addr + sizeof(u8))};
|
|
return static_cast<u16>((b << 8) | a);
|
|
}
|
|
}
|
|
|
|
u32 Read32(const Common::ProcessAddress addr) {
|
|
if ((addr & 3) == 0) {
|
|
return Read<u32_le>(addr);
|
|
} else {
|
|
const u32 a{Read16(addr)};
|
|
const u32 b{Read16(addr + sizeof(u16))};
|
|
return (b << 16) | a;
|
|
}
|
|
}
|
|
|
|
u64 Read64(const Common::ProcessAddress addr) {
|
|
if ((addr & 7) == 0) {
|
|
return Read<u64_le>(addr);
|
|
} else {
|
|
const u32 a{Read32(addr)};
|
|
const u32 b{Read32(addr + sizeof(u32))};
|
|
return (static_cast<u64>(b) << 32) | a;
|
|
}
|
|
}
|
|
|
|
void Write8(const Common::ProcessAddress addr, const u8 data) {
|
|
Write<u8>(addr, data);
|
|
}
|
|
|
|
void Write16(const Common::ProcessAddress addr, const u16 data) {
|
|
if ((addr & 1) == 0) {
|
|
Write<u16_le>(addr, data);
|
|
} else {
|
|
Write<u8>(addr, static_cast<u8>(data));
|
|
Write<u8>(addr + sizeof(u8), static_cast<u8>(data >> 8));
|
|
}
|
|
}
|
|
|
|
void Write32(const Common::ProcessAddress addr, const u32 data) {
|
|
if ((addr & 3) == 0) {
|
|
Write<u32_le>(addr, data);
|
|
} else {
|
|
Write16(addr, static_cast<u16>(data));
|
|
Write16(addr + sizeof(u16), static_cast<u16>(data >> 16));
|
|
}
|
|
}
|
|
|
|
void Write64(const Common::ProcessAddress addr, const u64 data) {
|
|
if ((addr & 7) == 0) {
|
|
Write<u64_le>(addr, data);
|
|
} else {
|
|
Write32(addr, static_cast<u32>(data));
|
|
Write32(addr + sizeof(u32), static_cast<u32>(data >> 32));
|
|
}
|
|
}
|
|
|
|
bool WriteExclusive8(const Common::ProcessAddress addr, const u8 data, const u8 expected) {
|
|
return WriteExclusive<u8>(addr, data, expected);
|
|
}
|
|
|
|
bool WriteExclusive16(const Common::ProcessAddress addr, const u16 data, const u16 expected) {
|
|
return WriteExclusive<u16_le>(addr, data, expected);
|
|
}
|
|
|
|
bool WriteExclusive32(const Common::ProcessAddress addr, const u32 data, const u32 expected) {
|
|
return WriteExclusive<u32_le>(addr, data, expected);
|
|
}
|
|
|
|
bool WriteExclusive64(const Common::ProcessAddress addr, const u64 data, const u64 expected) {
|
|
return WriteExclusive<u64_le>(addr, data, expected);
|
|
}
|
|
|
|
std::string ReadCString(Common::ProcessAddress vaddr, std::size_t max_length) {
|
|
std::string string;
|
|
string.reserve(max_length);
|
|
for (std::size_t i = 0; i < max_length; ++i) {
|
|
const char c = Read<s8>(vaddr);
|
|
if (c == '\0') {
|
|
break;
|
|
}
|
|
string.push_back(c);
|
|
++vaddr;
|
|
}
|
|
string.shrink_to_fit();
|
|
return string;
|
|
}
|
|
|
|
bool WalkBlock(const Common::ProcessAddress addr, const std::size_t size, auto on_unmapped,
|
|
auto on_memory, auto on_rasterizer, auto increment) {
|
|
const auto& page_table = *current_page_table;
|
|
std::size_t remaining_size = size;
|
|
std::size_t page_index = addr >> YUZU_PAGEBITS;
|
|
std::size_t page_offset = addr & YUZU_PAGEMASK;
|
|
bool user_accessible = true;
|
|
|
|
if (!AddressSpaceContains(page_table, addr, size)) [[unlikely]] {
|
|
on_unmapped(size, addr);
|
|
return false;
|
|
}
|
|
|
|
while (remaining_size) {
|
|
const std::size_t copy_amount =
|
|
std::min(static_cast<std::size_t>(YUZU_PAGESIZE) - page_offset, remaining_size);
|
|
const auto current_vaddr =
|
|
static_cast<u64>((page_index << YUZU_PAGEBITS) + page_offset);
|
|
|
|
const auto [pointer, type] = page_table.pointers[page_index].PointerType();
|
|
switch (type) {
|
|
case Common::PageType::Unmapped: {
|
|
user_accessible = false;
|
|
on_unmapped(copy_amount, current_vaddr);
|
|
break;
|
|
}
|
|
case Common::PageType::Memory: {
|
|
u8* mem_ptr =
|
|
reinterpret_cast<u8*>(pointer + page_offset + (page_index << YUZU_PAGEBITS));
|
|
on_memory(copy_amount, mem_ptr);
|
|
break;
|
|
}
|
|
case Common::PageType::DebugMemory: {
|
|
u8* const mem_ptr{GetPointerFromDebugMemory(current_vaddr)};
|
|
on_memory(copy_amount, mem_ptr);
|
|
break;
|
|
}
|
|
case Common::PageType::RasterizerCachedMemory: {
|
|
u8* const host_ptr{GetPointerFromRasterizerCachedMemory(current_vaddr)};
|
|
on_rasterizer(current_vaddr, copy_amount, host_ptr);
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
|
|
page_index++;
|
|
page_offset = 0;
|
|
increment(copy_amount);
|
|
remaining_size -= copy_amount;
|
|
}
|
|
|
|
return user_accessible;
|
|
}
|
|
|
|
template <bool UNSAFE>
|
|
bool ReadBlockImpl(const Common::ProcessAddress src_addr, void* dest_buffer,
|
|
const std::size_t size) {
|
|
return WalkBlock(
|
|
src_addr, size,
|
|
[src_addr, size, &dest_buffer](const std::size_t copy_amount,
|
|
const Common::ProcessAddress current_vaddr) {
|
|
LOG_ERROR(HW_Memory,
|
|
"Unmapped ReadBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})",
|
|
GetInteger(current_vaddr), GetInteger(src_addr), size);
|
|
std::memset(dest_buffer, 0, copy_amount);
|
|
},
|
|
[&](const std::size_t copy_amount, const u8* const src_ptr) {
|
|
std::memcpy(dest_buffer, src_ptr, copy_amount);
|
|
},
|
|
[&](const Common::ProcessAddress current_vaddr, const std::size_t copy_amount,
|
|
const u8* const host_ptr) {
|
|
if constexpr (!UNSAFE) {
|
|
HandleRasterizerDownload(GetInteger(current_vaddr), copy_amount);
|
|
}
|
|
std::memcpy(dest_buffer, host_ptr, copy_amount);
|
|
},
|
|
[&](const std::size_t copy_amount) {
|
|
dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount;
|
|
});
|
|
}
|
|
|
|
bool ReadBlock(const Common::ProcessAddress src_addr, void* dest_buffer,
|
|
const std::size_t size) {
|
|
return ReadBlockImpl<false>(src_addr, dest_buffer, size);
|
|
}
|
|
|
|
bool ReadBlockUnsafe(const Common::ProcessAddress src_addr, void* dest_buffer,
|
|
const std::size_t size) {
|
|
return ReadBlockImpl<true>(src_addr, dest_buffer, size);
|
|
}
|
|
|
|
const u8* GetSpan(const VAddr src_addr, const std::size_t size) const {
|
|
if (current_page_table->blocks[src_addr >> YUZU_PAGEBITS] ==
|
|
current_page_table->blocks[(src_addr + size) >> YUZU_PAGEBITS]) {
|
|
return GetPointerSilent(src_addr);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
u8* GetSpan(const VAddr src_addr, const std::size_t size) {
|
|
if (current_page_table->blocks[src_addr >> YUZU_PAGEBITS] ==
|
|
current_page_table->blocks[(src_addr + size) >> YUZU_PAGEBITS]) {
|
|
return GetPointerSilent(src_addr);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
template <bool UNSAFE>
|
|
bool WriteBlockImpl(const Common::ProcessAddress dest_addr, const void* src_buffer,
|
|
const std::size_t size) {
|
|
return WalkBlock(
|
|
dest_addr, size,
|
|
[dest_addr, size](const std::size_t copy_amount,
|
|
const Common::ProcessAddress current_vaddr) {
|
|
LOG_ERROR(HW_Memory,
|
|
"Unmapped WriteBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})",
|
|
GetInteger(current_vaddr), GetInteger(dest_addr), size);
|
|
},
|
|
[&](const std::size_t copy_amount, u8* const dest_ptr) {
|
|
std::memcpy(dest_ptr, src_buffer, copy_amount);
|
|
},
|
|
[&](const Common::ProcessAddress current_vaddr, const std::size_t copy_amount,
|
|
u8* const host_ptr) {
|
|
if constexpr (!UNSAFE) {
|
|
HandleRasterizerWrite(GetInteger(current_vaddr), copy_amount);
|
|
}
|
|
std::memcpy(host_ptr, src_buffer, copy_amount);
|
|
},
|
|
[&](const std::size_t copy_amount) {
|
|
src_buffer = static_cast<const u8*>(src_buffer) + copy_amount;
|
|
});
|
|
}
|
|
|
|
bool WriteBlock(const Common::ProcessAddress dest_addr, const void* src_buffer,
|
|
const std::size_t size) {
|
|
return WriteBlockImpl<false>(dest_addr, src_buffer, size);
|
|
}
|
|
|
|
bool WriteBlockUnsafe(const Common::ProcessAddress dest_addr, const void* src_buffer,
|
|
const std::size_t size) {
|
|
return WriteBlockImpl<true>(dest_addr, src_buffer, size);
|
|
}
|
|
|
|
bool ZeroBlock(const Common::ProcessAddress dest_addr, const std::size_t size) {
|
|
return WalkBlock(
|
|
dest_addr, size,
|
|
[dest_addr, size](const std::size_t copy_amount,
|
|
const Common::ProcessAddress current_vaddr) {
|
|
LOG_ERROR(HW_Memory,
|
|
"Unmapped ZeroBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})",
|
|
GetInteger(current_vaddr), GetInteger(dest_addr), size);
|
|
},
|
|
[](const std::size_t copy_amount, u8* const dest_ptr) {
|
|
std::memset(dest_ptr, 0, copy_amount);
|
|
},
|
|
[&](const Common::ProcessAddress current_vaddr, const std::size_t copy_amount,
|
|
u8* const host_ptr) {
|
|
HandleRasterizerWrite(GetInteger(current_vaddr), copy_amount);
|
|
std::memset(host_ptr, 0, copy_amount);
|
|
},
|
|
[](const std::size_t copy_amount) {});
|
|
}
|
|
|
|
bool CopyBlock(Common::ProcessAddress dest_addr, Common::ProcessAddress src_addr,
|
|
const std::size_t size) {
|
|
return WalkBlock(
|
|
dest_addr, size,
|
|
[&](const std::size_t copy_amount, const Common::ProcessAddress current_vaddr) {
|
|
LOG_ERROR(HW_Memory,
|
|
"Unmapped CopyBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})",
|
|
GetInteger(current_vaddr), GetInteger(src_addr), size);
|
|
ZeroBlock(dest_addr, copy_amount);
|
|
},
|
|
[&](const std::size_t copy_amount, const u8* const src_ptr) {
|
|
WriteBlockImpl<false>(dest_addr, src_ptr, copy_amount);
|
|
},
|
|
[&](const Common::ProcessAddress current_vaddr, const std::size_t copy_amount,
|
|
u8* const host_ptr) {
|
|
HandleRasterizerDownload(GetInteger(current_vaddr), copy_amount);
|
|
WriteBlockImpl<false>(dest_addr, host_ptr, copy_amount);
|
|
},
|
|
[&](const std::size_t copy_amount) {
|
|
dest_addr += copy_amount;
|
|
src_addr += copy_amount;
|
|
});
|
|
}
|
|
|
|
template <typename Callback>
|
|
Result PerformCacheOperation(Common::ProcessAddress dest_addr, std::size_t size,
|
|
Callback&& cb) {
|
|
class InvalidMemoryException : public std::exception {};
|
|
|
|
try {
|
|
WalkBlock(
|
|
dest_addr, size,
|
|
[&](const std::size_t block_size, const Common::ProcessAddress current_vaddr) {
|
|
LOG_ERROR(HW_Memory, "Unmapped cache maintenance @ {:#018X}",
|
|
GetInteger(current_vaddr));
|
|
throw InvalidMemoryException();
|
|
},
|
|
[&](const std::size_t block_size, u8* const host_ptr) {},
|
|
[&](const Common::ProcessAddress current_vaddr, const std::size_t block_size,
|
|
u8* const host_ptr) { cb(current_vaddr, block_size); },
|
|
[](const std::size_t block_size) {});
|
|
} catch (InvalidMemoryException&) {
|
|
return Kernel::ResultInvalidCurrentMemory;
|
|
}
|
|
|
|
return ResultSuccess;
|
|
}
|
|
|
|
Result InvalidateDataCache(Common::ProcessAddress dest_addr, std::size_t size) {
|
|
auto on_rasterizer = [&](const Common::ProcessAddress current_vaddr,
|
|
const std::size_t block_size) {
|
|
// dc ivac: Invalidate to point of coherency
|
|
// GPU flush -> CPU invalidate
|
|
HandleRasterizerDownload(GetInteger(current_vaddr), block_size);
|
|
};
|
|
return PerformCacheOperation(dest_addr, size, on_rasterizer);
|
|
}
|
|
|
|
Result StoreDataCache(Common::ProcessAddress dest_addr, std::size_t size) {
|
|
auto on_rasterizer = [&](const Common::ProcessAddress current_vaddr,
|
|
const std::size_t block_size) {
|
|
// dc cvac: Store to point of coherency
|
|
// CPU flush -> GPU invalidate
|
|
HandleRasterizerWrite(GetInteger(current_vaddr), block_size);
|
|
};
|
|
return PerformCacheOperation(dest_addr, size, on_rasterizer);
|
|
}
|
|
|
|
Result FlushDataCache(Common::ProcessAddress dest_addr, std::size_t size) {
|
|
auto on_rasterizer = [&](const Common::ProcessAddress current_vaddr,
|
|
const std::size_t block_size) {
|
|
// dc civac: Store to point of coherency, and invalidate from cache
|
|
// CPU flush -> GPU invalidate
|
|
HandleRasterizerWrite(GetInteger(current_vaddr), block_size);
|
|
};
|
|
return PerformCacheOperation(dest_addr, size, on_rasterizer);
|
|
}
|
|
|
|
void MarkRegionDebug(u64 vaddr, u64 size, bool debug) {
|
|
if (vaddr == 0 || !AddressSpaceContains(*current_page_table, vaddr, size)) {
|
|
return;
|
|
}
|
|
|
|
if (current_page_table->fastmem_arena) {
|
|
const auto perm{debug ? Common::MemoryPermission{}
|
|
: Common::MemoryPermission::ReadWrite};
|
|
buffer->Protect(vaddr, size, perm);
|
|
}
|
|
|
|
// Iterate over a contiguous CPU address space, marking/unmarking the region.
|
|
// The region is at a granularity of CPU pages.
|
|
|
|
const u64 num_pages = ((vaddr + size - 1) >> YUZU_PAGEBITS) - (vaddr >> YUZU_PAGEBITS) + 1;
|
|
for (u64 i = 0; i < num_pages; ++i, vaddr += YUZU_PAGESIZE) {
|
|
const Common::PageType page_type{
|
|
current_page_table->pointers[vaddr >> YUZU_PAGEBITS].Type()};
|
|
if (debug) {
|
|
// Switch page type to debug if now debug
|
|
switch (page_type) {
|
|
case Common::PageType::Unmapped:
|
|
ASSERT_MSG(false, "Attempted to mark unmapped pages as debug");
|
|
break;
|
|
case Common::PageType::RasterizerCachedMemory:
|
|
case Common::PageType::DebugMemory:
|
|
// Page is already marked.
|
|
break;
|
|
case Common::PageType::Memory:
|
|
current_page_table->pointers[vaddr >> YUZU_PAGEBITS].Store(
|
|
0, Common::PageType::DebugMemory);
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
} else {
|
|
// Switch page type to non-debug if now non-debug
|
|
switch (page_type) {
|
|
case Common::PageType::Unmapped:
|
|
ASSERT_MSG(false, "Attempted to mark unmapped pages as non-debug");
|
|
break;
|
|
case Common::PageType::RasterizerCachedMemory:
|
|
case Common::PageType::Memory:
|
|
// Don't mess with already non-debug or rasterizer memory.
|
|
break;
|
|
case Common::PageType::DebugMemory: {
|
|
u8* const pointer{GetPointerFromDebugMemory(vaddr & ~YUZU_PAGEMASK)};
|
|
current_page_table->pointers[vaddr >> YUZU_PAGEBITS].Store(
|
|
reinterpret_cast<uintptr_t>(pointer) - (vaddr & ~YUZU_PAGEMASK),
|
|
Common::PageType::Memory);
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void RasterizerMarkRegionCached(u64 vaddr, u64 size, bool cached) {
|
|
if (vaddr == 0 || !AddressSpaceContains(*current_page_table, vaddr, size)) {
|
|
return;
|
|
}
|
|
|
|
if (current_page_table->fastmem_arena) {
|
|
Common::MemoryPermission perm{};
|
|
if (!Settings::values.use_reactive_flushing.GetValue() || !cached) {
|
|
perm |= Common::MemoryPermission::Read;
|
|
}
|
|
if (!cached) {
|
|
perm |= Common::MemoryPermission::Write;
|
|
}
|
|
buffer->Protect(vaddr, size, perm);
|
|
}
|
|
|
|
// Iterate over a contiguous CPU address space, which corresponds to the specified GPU
|
|
// address space, marking the region as un/cached. The region is marked un/cached at a
|
|
// granularity of CPU pages, hence why we iterate on a CPU page basis (note: GPU page size
|
|
// is different). This assumes the specified GPU address region is contiguous as well.
|
|
|
|
const u64 num_pages = ((vaddr + size - 1) >> YUZU_PAGEBITS) - (vaddr >> YUZU_PAGEBITS) + 1;
|
|
for (u64 i = 0; i < num_pages; ++i, vaddr += YUZU_PAGESIZE) {
|
|
const Common::PageType page_type{
|
|
current_page_table->pointers[vaddr >> YUZU_PAGEBITS].Type()};
|
|
if (cached) {
|
|
// Switch page type to cached if now cached
|
|
switch (page_type) {
|
|
case Common::PageType::Unmapped:
|
|
// It is not necessary for a process to have this region mapped into its address
|
|
// space, for example, a system module need not have a VRAM mapping.
|
|
break;
|
|
case Common::PageType::DebugMemory:
|
|
case Common::PageType::Memory:
|
|
current_page_table->pointers[vaddr >> YUZU_PAGEBITS].Store(
|
|
0, Common::PageType::RasterizerCachedMemory);
|
|
break;
|
|
case Common::PageType::RasterizerCachedMemory:
|
|
// There can be more than one GPU region mapped per CPU region, so it's common
|
|
// that this area is already marked as cached.
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
} else {
|
|
// Switch page type to uncached if now uncached
|
|
switch (page_type) {
|
|
case Common::PageType::Unmapped: // NOLINT(bugprone-branch-clone)
|
|
// It is not necessary for a process to have this region mapped into its address
|
|
// space, for example, a system module need not have a VRAM mapping.
|
|
break;
|
|
case Common::PageType::DebugMemory:
|
|
case Common::PageType::Memory:
|
|
// There can be more than one GPU region mapped per CPU region, so it's common
|
|
// that this area is already unmarked as cached.
|
|
break;
|
|
case Common::PageType::RasterizerCachedMemory: {
|
|
u8* const pointer{GetPointerFromRasterizerCachedMemory(vaddr & ~YUZU_PAGEMASK)};
|
|
if (pointer == nullptr) {
|
|
// It's possible that this function has been called while updating the
|
|
// pagetable after unmapping a VMA. In that case the underlying VMA will no
|
|
// longer exist, and we should just leave the pagetable entry blank.
|
|
current_page_table->pointers[vaddr >> YUZU_PAGEBITS].Store(
|
|
0, Common::PageType::Unmapped);
|
|
} else {
|
|
current_page_table->pointers[vaddr >> YUZU_PAGEBITS].Store(
|
|
reinterpret_cast<uintptr_t>(pointer) - (vaddr & ~YUZU_PAGEMASK),
|
|
Common::PageType::Memory);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Maps a region of pages as a specific type.
|
|
*
|
|
* @param page_table The page table to use to perform the mapping.
|
|
* @param base The base address to begin mapping at.
|
|
* @param size The total size of the range in bytes.
|
|
* @param target The target address to begin mapping from.
|
|
* @param type The page type to map the memory as.
|
|
*/
|
|
void MapPages(Common::PageTable& page_table, Common::ProcessAddress base_address, u64 size,
|
|
Common::PhysicalAddress target, Common::PageType type) {
|
|
auto base = GetInteger(base_address);
|
|
|
|
LOG_DEBUG(HW_Memory, "Mapping {:016X} onto {:016X}-{:016X}", GetInteger(target),
|
|
base * YUZU_PAGESIZE, (base + size) * YUZU_PAGESIZE);
|
|
|
|
const auto end = base + size;
|
|
ASSERT_MSG(end <= page_table.pointers.size(), "out of range mapping at {:016X}",
|
|
base + page_table.pointers.size());
|
|
|
|
if (!target) {
|
|
ASSERT_MSG(type != Common::PageType::Memory,
|
|
"Mapping memory page without a pointer @ {:016x}", base * YUZU_PAGESIZE);
|
|
|
|
while (base != end) {
|
|
page_table.pointers[base].Store(0, type);
|
|
page_table.backing_addr[base] = 0;
|
|
page_table.blocks[base] = 0;
|
|
base += 1;
|
|
}
|
|
} else {
|
|
auto orig_base = base;
|
|
while (base != end) {
|
|
auto host_ptr =
|
|
reinterpret_cast<uintptr_t>(system.DeviceMemory().GetPointer<u8>(target)) -
|
|
(base << YUZU_PAGEBITS);
|
|
auto backing = GetInteger(target) - (base << YUZU_PAGEBITS);
|
|
page_table.pointers[base].Store(host_ptr, type);
|
|
page_table.backing_addr[base] = backing;
|
|
page_table.blocks[base] = orig_base << YUZU_PAGEBITS;
|
|
|
|
ASSERT_MSG(page_table.pointers[base].Pointer(),
|
|
"memory mapping base yield a nullptr within the table");
|
|
|
|
base += 1;
|
|
target += YUZU_PAGESIZE;
|
|
}
|
|
}
|
|
}
|
|
|
|
[[nodiscard]] u8* GetPointerImpl(u64 vaddr, auto on_unmapped, auto on_rasterizer) const {
|
|
// AARCH64 masks the upper 16 bit of all memory accesses
|
|
vaddr = vaddr & 0xffffffffffffULL;
|
|
|
|
if (!AddressSpaceContains(*current_page_table, vaddr, 1)) [[unlikely]] {
|
|
on_unmapped();
|
|
return nullptr;
|
|
}
|
|
|
|
// Avoid adding any extra logic to this fast-path block
|
|
const uintptr_t raw_pointer = current_page_table->pointers[vaddr >> YUZU_PAGEBITS].Raw();
|
|
if (const uintptr_t pointer = Common::PageTable::PageInfo::ExtractPointer(raw_pointer)) {
|
|
return reinterpret_cast<u8*>(pointer + vaddr);
|
|
}
|
|
switch (Common::PageTable::PageInfo::ExtractType(raw_pointer)) {
|
|
case Common::PageType::Unmapped:
|
|
on_unmapped();
|
|
return nullptr;
|
|
case Common::PageType::Memory:
|
|
ASSERT_MSG(false, "Mapped memory page without a pointer @ 0x{:016X}", vaddr);
|
|
return nullptr;
|
|
case Common::PageType::DebugMemory:
|
|
return GetPointerFromDebugMemory(vaddr);
|
|
case Common::PageType::RasterizerCachedMemory: {
|
|
u8* const host_ptr{GetPointerFromRasterizerCachedMemory(vaddr)};
|
|
on_rasterizer();
|
|
return host_ptr;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
[[nodiscard]] u8* GetPointer(const Common::ProcessAddress vaddr) const {
|
|
return GetPointerImpl(
|
|
GetInteger(vaddr),
|
|
[vaddr]() {
|
|
LOG_ERROR(HW_Memory, "Unmapped GetPointer @ 0x{:016X}", GetInteger(vaddr));
|
|
},
|
|
[]() {});
|
|
}
|
|
|
|
[[nodiscard]] u8* GetPointerSilent(const Common::ProcessAddress vaddr) const {
|
|
return GetPointerImpl(
|
|
GetInteger(vaddr), []() {}, []() {});
|
|
}
|
|
|
|
/**
|
|
* Reads a particular data type out of memory at the given virtual address.
|
|
*
|
|
* @param vaddr The virtual address to read the data type from.
|
|
*
|
|
* @tparam T The data type to read out of memory. This type *must* be
|
|
* trivially copyable, otherwise the behavior of this function
|
|
* is undefined.
|
|
*
|
|
* @returns The instance of T read from the specified virtual address.
|
|
*/
|
|
template <typename T>
|
|
T Read(Common::ProcessAddress vaddr) {
|
|
T result = 0;
|
|
const u8* const ptr = GetPointerImpl(
|
|
GetInteger(vaddr),
|
|
[vaddr]() {
|
|
LOG_ERROR(HW_Memory, "Unmapped Read{} @ 0x{:016X}", sizeof(T) * 8,
|
|
GetInteger(vaddr));
|
|
},
|
|
[&]() { HandleRasterizerDownload(GetInteger(vaddr), sizeof(T)); });
|
|
if (ptr) {
|
|
std::memcpy(&result, ptr, sizeof(T));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Writes a particular data type to memory at the given virtual address.
|
|
*
|
|
* @param vaddr The virtual address to write the data type to.
|
|
*
|
|
* @tparam T The data type to write to memory. This type *must* be
|
|
* trivially copyable, otherwise the behavior of this function
|
|
* is undefined.
|
|
*/
|
|
template <typename T>
|
|
void Write(Common::ProcessAddress vaddr, const T data) {
|
|
u8* const ptr = GetPointerImpl(
|
|
GetInteger(vaddr),
|
|
[vaddr, data]() {
|
|
LOG_ERROR(HW_Memory, "Unmapped Write{} @ 0x{:016X} = 0x{:016X}", sizeof(T) * 8,
|
|
GetInteger(vaddr), static_cast<u64>(data));
|
|
},
|
|
[&]() { HandleRasterizerWrite(GetInteger(vaddr), sizeof(T)); });
|
|
if (ptr) {
|
|
std::memcpy(ptr, &data, sizeof(T));
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
bool WriteExclusive(Common::ProcessAddress vaddr, const T data, const T expected) {
|
|
u8* const ptr = GetPointerImpl(
|
|
GetInteger(vaddr),
|
|
[vaddr, data]() {
|
|
LOG_ERROR(HW_Memory, "Unmapped WriteExclusive{} @ 0x{:016X} = 0x{:016X}",
|
|
sizeof(T) * 8, GetInteger(vaddr), static_cast<u64>(data));
|
|
},
|
|
[&]() { HandleRasterizerWrite(GetInteger(vaddr), sizeof(T)); });
|
|
if (ptr) {
|
|
const auto volatile_pointer = reinterpret_cast<volatile T*>(ptr);
|
|
return Common::AtomicCompareAndSwap(volatile_pointer, data, expected);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool WriteExclusive128(Common::ProcessAddress vaddr, const u128 data, const u128 expected) {
|
|
u8* const ptr = GetPointerImpl(
|
|
GetInteger(vaddr),
|
|
[vaddr, data]() {
|
|
LOG_ERROR(HW_Memory, "Unmapped WriteExclusive128 @ 0x{:016X} = 0x{:016X}{:016X}",
|
|
GetInteger(vaddr), static_cast<u64>(data[1]), static_cast<u64>(data[0]));
|
|
},
|
|
[&]() { HandleRasterizerWrite(GetInteger(vaddr), sizeof(u128)); });
|
|
if (ptr) {
|
|
const auto volatile_pointer = reinterpret_cast<volatile u64*>(ptr);
|
|
return Common::AtomicCompareAndSwap(volatile_pointer, data, expected);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void HandleRasterizerDownload(VAddr v_address, size_t size) {
|
|
const auto* p = GetPointerImpl(
|
|
v_address, []() {}, []() {});
|
|
if (!gpu_device_memory) [[unlikely]] {
|
|
gpu_device_memory = &system.Host1x().MemoryManager();
|
|
}
|
|
const size_t core = system.GetCurrentHostThreadID();
|
|
auto& current_area = rasterizer_read_areas[core];
|
|
gpu_device_memory->ApplyOpOnPointer(p, scratch_buffers[core], [&](DAddr address) {
|
|
const DAddr end_address = address + size;
|
|
if (current_area.start_address <= address && end_address <= current_area.end_address)
|
|
[[likely]] {
|
|
return;
|
|
}
|
|
current_area = system.GPU().OnCPURead(address, size);
|
|
});
|
|
}
|
|
|
|
void HandleRasterizerWrite(VAddr v_address, size_t size) {
|
|
const auto* p = GetPointerImpl(
|
|
v_address, []() {}, []() {});
|
|
constexpr size_t sys_core = Core::Hardware::NUM_CPU_CORES - 1;
|
|
const size_t core = std::min(system.GetCurrentHostThreadID(),
|
|
sys_core); // any other calls threads go to syscore.
|
|
if (!gpu_device_memory) [[unlikely]] {
|
|
gpu_device_memory = &system.Host1x().MemoryManager();
|
|
}
|
|
// Guard on sys_core;
|
|
if (core == sys_core) [[unlikely]] {
|
|
sys_core_guard.lock();
|
|
}
|
|
SCOPE_EXIT({
|
|
if (core == sys_core) [[unlikely]] {
|
|
sys_core_guard.unlock();
|
|
}
|
|
});
|
|
gpu_device_memory->ApplyOpOnPointer(p, scratch_buffers[core], [&](DAddr address) {
|
|
auto& current_area = rasterizer_write_areas[core];
|
|
PAddr subaddress = address >> YUZU_PAGEBITS;
|
|
bool do_collection = current_area.last_address == subaddress;
|
|
if (!do_collection) [[unlikely]] {
|
|
do_collection = system.GPU().OnCPUWrite(address, size);
|
|
if (!do_collection) {
|
|
return;
|
|
}
|
|
current_area.last_address = subaddress;
|
|
}
|
|
gpu_dirty_managers[core].Collect(address, size);
|
|
});
|
|
}
|
|
|
|
struct GPUDirtyState {
|
|
PAddr last_address;
|
|
};
|
|
|
|
void InvalidateGPUMemory(u8* p, size_t size) {
|
|
constexpr size_t sys_core = Core::Hardware::NUM_CPU_CORES - 1;
|
|
const size_t core = std::min(system.GetCurrentHostThreadID(),
|
|
sys_core); // any other calls threads go to syscore.
|
|
if (!gpu_device_memory) [[unlikely]] {
|
|
gpu_device_memory = &system.Host1x().MemoryManager();
|
|
}
|
|
// Guard on sys_core;
|
|
if (core == sys_core) [[unlikely]] {
|
|
sys_core_guard.lock();
|
|
}
|
|
SCOPE_EXIT({
|
|
if (core == sys_core) [[unlikely]] {
|
|
sys_core_guard.unlock();
|
|
}
|
|
});
|
|
auto& gpu = system.GPU();
|
|
gpu_device_memory->ApplyOpOnPointer(
|
|
p, scratch_buffers[core], [&](DAddr address) { gpu.InvalidateRegion(address, size); });
|
|
}
|
|
|
|
Core::System& system;
|
|
Tegra::MaxwellDeviceMemoryManager* gpu_device_memory{};
|
|
Common::PageTable* current_page_table = nullptr;
|
|
std::array<VideoCore::RasterizerDownloadArea, Core::Hardware::NUM_CPU_CORES>
|
|
rasterizer_read_areas{};
|
|
std::array<GPUDirtyState, Core::Hardware::NUM_CPU_CORES> rasterizer_write_areas{};
|
|
std::array<Common::ScratchBuffer<u32>, Core::Hardware::NUM_CPU_CORES> scratch_buffers{};
|
|
std::span<Core::GPUDirtyMemoryManager> gpu_dirty_managers;
|
|
std::mutex sys_core_guard;
|
|
|
|
std::optional<Common::HeapTracker> heap_tracker;
|
|
#ifdef __linux__
|
|
Common::HeapTracker* buffer{};
|
|
#else
|
|
Common::HostMemory* buffer{};
|
|
#endif
|
|
};
|
|
|
|
Memory::Memory(Core::System& system_) : system{system_} {
|
|
Reset();
|
|
}
|
|
|
|
Memory::~Memory() = default;
|
|
|
|
void Memory::Reset() {
|
|
impl = std::make_unique<Impl>(system);
|
|
}
|
|
|
|
void Memory::SetCurrentPageTable(Kernel::KProcess& process) {
|
|
impl->SetCurrentPageTable(process);
|
|
}
|
|
|
|
void Memory::MapMemoryRegion(Common::PageTable& page_table, Common::ProcessAddress base, u64 size,
|
|
Common::PhysicalAddress target, Common::MemoryPermission perms,
|
|
bool separate_heap) {
|
|
impl->MapMemoryRegion(page_table, base, size, target, perms, separate_heap);
|
|
}
|
|
|
|
void Memory::UnmapRegion(Common::PageTable& page_table, Common::ProcessAddress base, u64 size,
|
|
bool separate_heap) {
|
|
impl->UnmapRegion(page_table, base, size, separate_heap);
|
|
}
|
|
|
|
void Memory::ProtectRegion(Common::PageTable& page_table, Common::ProcessAddress vaddr, u64 size,
|
|
Common::MemoryPermission perms) {
|
|
impl->ProtectRegion(page_table, GetInteger(vaddr), size, perms);
|
|
}
|
|
|
|
bool Memory::IsValidVirtualAddress(const Common::ProcessAddress vaddr) const {
|
|
const auto& page_table = *impl->current_page_table;
|
|
const size_t page = vaddr >> YUZU_PAGEBITS;
|
|
if (page >= page_table.pointers.size()) {
|
|
return false;
|
|
}
|
|
const auto [pointer, type] = page_table.pointers[page].PointerType();
|
|
return pointer != 0 || type == Common::PageType::RasterizerCachedMemory ||
|
|
type == Common::PageType::DebugMemory;
|
|
}
|
|
|
|
bool Memory::IsValidVirtualAddressRange(Common::ProcessAddress base, u64 size) const {
|
|
Common::ProcessAddress end = base + size;
|
|
Common::ProcessAddress page = Common::AlignDown(GetInteger(base), YUZU_PAGESIZE);
|
|
|
|
for (; page < end; page += YUZU_PAGESIZE) {
|
|
if (!IsValidVirtualAddress(page)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
u8* Memory::GetPointer(Common::ProcessAddress vaddr) {
|
|
return impl->GetPointer(vaddr);
|
|
}
|
|
|
|
u8* Memory::GetPointerSilent(Common::ProcessAddress vaddr) {
|
|
return impl->GetPointerSilent(vaddr);
|
|
}
|
|
|
|
const u8* Memory::GetPointer(Common::ProcessAddress vaddr) const {
|
|
return impl->GetPointer(vaddr);
|
|
}
|
|
|
|
u8 Memory::Read8(const Common::ProcessAddress addr) {
|
|
return impl->Read8(addr);
|
|
}
|
|
|
|
u16 Memory::Read16(const Common::ProcessAddress addr) {
|
|
return impl->Read16(addr);
|
|
}
|
|
|
|
u32 Memory::Read32(const Common::ProcessAddress addr) {
|
|
return impl->Read32(addr);
|
|
}
|
|
|
|
u64 Memory::Read64(const Common::ProcessAddress addr) {
|
|
return impl->Read64(addr);
|
|
}
|
|
|
|
void Memory::Write8(Common::ProcessAddress addr, u8 data) {
|
|
impl->Write8(addr, data);
|
|
}
|
|
|
|
void Memory::Write16(Common::ProcessAddress addr, u16 data) {
|
|
impl->Write16(addr, data);
|
|
}
|
|
|
|
void Memory::Write32(Common::ProcessAddress addr, u32 data) {
|
|
impl->Write32(addr, data);
|
|
}
|
|
|
|
void Memory::Write64(Common::ProcessAddress addr, u64 data) {
|
|
impl->Write64(addr, data);
|
|
}
|
|
|
|
bool Memory::WriteExclusive8(Common::ProcessAddress addr, u8 data, u8 expected) {
|
|
return impl->WriteExclusive8(addr, data, expected);
|
|
}
|
|
|
|
bool Memory::WriteExclusive16(Common::ProcessAddress addr, u16 data, u16 expected) {
|
|
return impl->WriteExclusive16(addr, data, expected);
|
|
}
|
|
|
|
bool Memory::WriteExclusive32(Common::ProcessAddress addr, u32 data, u32 expected) {
|
|
return impl->WriteExclusive32(addr, data, expected);
|
|
}
|
|
|
|
bool Memory::WriteExclusive64(Common::ProcessAddress addr, u64 data, u64 expected) {
|
|
return impl->WriteExclusive64(addr, data, expected);
|
|
}
|
|
|
|
bool Memory::WriteExclusive128(Common::ProcessAddress addr, u128 data, u128 expected) {
|
|
return impl->WriteExclusive128(addr, data, expected);
|
|
}
|
|
|
|
std::string Memory::ReadCString(Common::ProcessAddress vaddr, std::size_t max_length) {
|
|
return impl->ReadCString(vaddr, max_length);
|
|
}
|
|
|
|
bool Memory::ReadBlock(const Common::ProcessAddress src_addr, void* dest_buffer,
|
|
const std::size_t size) {
|
|
return impl->ReadBlock(src_addr, dest_buffer, size);
|
|
}
|
|
|
|
bool Memory::ReadBlockUnsafe(const Common::ProcessAddress src_addr, void* dest_buffer,
|
|
const std::size_t size) {
|
|
return impl->ReadBlockUnsafe(src_addr, dest_buffer, size);
|
|
}
|
|
|
|
const u8* Memory::GetSpan(const VAddr src_addr, const std::size_t size) const {
|
|
return impl->GetSpan(src_addr, size);
|
|
}
|
|
|
|
u8* Memory::GetSpan(const VAddr src_addr, const std::size_t size) {
|
|
return impl->GetSpan(src_addr, size);
|
|
}
|
|
|
|
bool Memory::WriteBlock(const Common::ProcessAddress dest_addr, const void* src_buffer,
|
|
const std::size_t size) {
|
|
return impl->WriteBlock(dest_addr, src_buffer, size);
|
|
}
|
|
|
|
bool Memory::WriteBlockUnsafe(const Common::ProcessAddress dest_addr, const void* src_buffer,
|
|
const std::size_t size) {
|
|
return impl->WriteBlockUnsafe(dest_addr, src_buffer, size);
|
|
}
|
|
|
|
bool Memory::CopyBlock(Common::ProcessAddress dest_addr, Common::ProcessAddress src_addr,
|
|
const std::size_t size) {
|
|
return impl->CopyBlock(dest_addr, src_addr, size);
|
|
}
|
|
|
|
bool Memory::ZeroBlock(Common::ProcessAddress dest_addr, const std::size_t size) {
|
|
return impl->ZeroBlock(dest_addr, size);
|
|
}
|
|
|
|
void Memory::SetGPUDirtyManagers(std::span<Core::GPUDirtyMemoryManager> managers) {
|
|
impl->gpu_dirty_managers = managers;
|
|
}
|
|
|
|
Result Memory::InvalidateDataCache(Common::ProcessAddress dest_addr, const std::size_t size) {
|
|
return impl->InvalidateDataCache(dest_addr, size);
|
|
}
|
|
|
|
Result Memory::StoreDataCache(Common::ProcessAddress dest_addr, const std::size_t size) {
|
|
return impl->StoreDataCache(dest_addr, size);
|
|
}
|
|
|
|
Result Memory::FlushDataCache(Common::ProcessAddress dest_addr, const std::size_t size) {
|
|
return impl->FlushDataCache(dest_addr, size);
|
|
}
|
|
|
|
void Memory::RasterizerMarkRegionCached(Common::ProcessAddress vaddr, u64 size, bool cached) {
|
|
impl->RasterizerMarkRegionCached(GetInteger(vaddr), size, cached);
|
|
}
|
|
|
|
void Memory::MarkRegionDebug(Common::ProcessAddress vaddr, u64 size, bool debug) {
|
|
impl->MarkRegionDebug(GetInteger(vaddr), size, debug);
|
|
}
|
|
|
|
bool Memory::InvalidateNCE(Common::ProcessAddress vaddr, size_t size) {
|
|
[[maybe_unused]] bool mapped = true;
|
|
[[maybe_unused]] bool rasterizer = false;
|
|
|
|
u8* const ptr = impl->GetPointerImpl(
|
|
GetInteger(vaddr),
|
|
[&] {
|
|
LOG_ERROR(HW_Memory, "Unmapped InvalidateNCE for {} bytes @ {:#x}", size,
|
|
GetInteger(vaddr));
|
|
mapped = false;
|
|
},
|
|
[&] { rasterizer = true; });
|
|
if (rasterizer) {
|
|
impl->InvalidateGPUMemory(ptr, size);
|
|
}
|
|
|
|
#ifdef __linux__
|
|
if (!rasterizer && mapped) {
|
|
impl->buffer->DeferredMapSeparateHeap(GetInteger(vaddr));
|
|
}
|
|
#endif
|
|
|
|
return mapped && ptr != nullptr;
|
|
}
|
|
|
|
bool Memory::InvalidateSeparateHeap(void* fault_address) {
|
|
#ifdef __linux__
|
|
return impl->buffer->DeferredMapSeparateHeap(static_cast<u8*>(fault_address));
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
} // namespace Core::Memory
|