suyu/src/video_core/texture_cache/util.cpp

1345 lines
56 KiB
C++

// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
// SPDX-FileCopyrightText: Ryujinx Team and Contributors
// SPDX-License-Identifier: GPL-2.0-or-later AND MIT
// This files contains code from Ryujinx
// A copy of the code can be obtained from https://github.com/Ryujinx/Ryujinx
// The sections using code from Ryujinx are marked with a link to the original version
#include <algorithm>
#include <array>
#include <numeric>
#include <optional>
#include <span>
#include <vector>
#include "common/alignment.h"
#include "common/assert.h"
#include "common/bit_util.h"
#include "common/common_types.h"
#include "common/div_ceil.h"
#include "common/scratch_buffer.h"
#include "common/settings.h"
#include "core/memory.h"
#include "video_core/compatible_formats.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/memory_manager.h"
#include "video_core/surface.h"
#include "video_core/texture_cache/decode_bc.h"
#include "video_core/texture_cache/format_lookup_table.h"
#include "video_core/texture_cache/formatter.h"
#include "video_core/texture_cache/samples_helper.h"
#include "video_core/texture_cache/util.h"
#include "video_core/textures/astc.h"
#include "video_core/textures/bcn.h"
#include "video_core/textures/decoders.h"
namespace VideoCommon {
namespace {
using Tegra::Texture::GOB_SIZE;
using Tegra::Texture::GOB_SIZE_SHIFT;
using Tegra::Texture::GOB_SIZE_X;
using Tegra::Texture::GOB_SIZE_X_SHIFT;
using Tegra::Texture::GOB_SIZE_Y;
using Tegra::Texture::GOB_SIZE_Y_SHIFT;
using Tegra::Texture::GOB_SIZE_Z;
using Tegra::Texture::GOB_SIZE_Z_SHIFT;
using Tegra::Texture::MsaaMode;
using Tegra::Texture::SwizzleTexture;
using Tegra::Texture::TextureFormat;
using Tegra::Texture::TextureType;
using Tegra::Texture::TICEntry;
using Tegra::Texture::UnswizzleTexture;
using VideoCore::Surface::BytesPerBlock;
using VideoCore::Surface::DefaultBlockHeight;
using VideoCore::Surface::DefaultBlockWidth;
using VideoCore::Surface::IsCopyCompatible;
using VideoCore::Surface::IsPixelFormatASTC;
using VideoCore::Surface::IsViewCompatible;
using VideoCore::Surface::PixelFormatFromDepthFormat;
using VideoCore::Surface::PixelFormatFromRenderTargetFormat;
using VideoCore::Surface::SurfaceType;
struct LevelInfo {
Extent3D size;
Extent3D block;
Extent2D tile_size;
u32 bpp_log2;
u32 tile_width_spacing;
};
[[nodiscard]] constexpr u32 AdjustTileSize(u32 shift, u32 unit_factor, u32 dimension) {
if (shift == 0) {
return 0;
}
u32 x = unit_factor << (shift - 1);
if (x >= dimension) {
while (--shift) {
x >>= 1;
if (x < dimension) {
break;
}
}
}
return shift;
}
[[nodiscard]] constexpr u32 AdjustMipSize(u32 size, u32 level) {
return std::max<u32>(size >> level, 1);
}
[[nodiscard]] constexpr Extent3D AdjustMipSize(Extent3D size, s32 level) {
return Extent3D{
.width = AdjustMipSize(size.width, level),
.height = AdjustMipSize(size.height, level),
.depth = AdjustMipSize(size.depth, level),
};
}
[[nodiscard]] Extent3D AdjustSamplesSize(Extent3D size, s32 num_samples) {
const auto [samples_x, samples_y] = SamplesLog2(num_samples);
return Extent3D{
.width = size.width >> samples_x,
.height = size.height >> samples_y,
.depth = size.depth,
};
}
template <u32 GOB_EXTENT>
[[nodiscard]] constexpr u32 AdjustMipBlockSize(u32 num_tiles, u32 block_size, u32 level) {
do {
while (block_size > 0 && num_tiles <= (1U << (block_size - 1)) * GOB_EXTENT) {
--block_size;
}
} while (level--);
return block_size;
}
[[nodiscard]] constexpr Extent3D AdjustMipBlockSize(Extent3D num_tiles, Extent3D block_size,
u32 level) {
return {
.width = AdjustMipBlockSize<GOB_SIZE_X>(num_tiles.width, block_size.width, level),
.height = AdjustMipBlockSize<GOB_SIZE_Y>(num_tiles.height, block_size.height, level),
.depth = level == 0
? block_size.depth
: AdjustMipBlockSize<GOB_SIZE_Z>(num_tiles.depth, block_size.depth, level),
};
}
[[nodiscard]] constexpr Extent3D AdjustTileSize(Extent3D size, Extent2D tile_size) {
return {
.width = Common::DivCeil(size.width, tile_size.width),
.height = Common::DivCeil(size.height, tile_size.height),
.depth = size.depth,
};
}
[[nodiscard]] constexpr u32 BytesPerBlockLog2(u32 bytes_per_block) {
return std::countl_zero(bytes_per_block) ^ 0x1F;
}
[[nodiscard]] constexpr u32 BytesPerBlockLog2(PixelFormat format) {
return BytesPerBlockLog2(BytesPerBlock(format));
}
[[nodiscard]] constexpr u32 NumBlocks(Extent3D size, Extent2D tile_size) {
const Extent3D num_blocks = AdjustTileSize(size, tile_size);
return num_blocks.width * num_blocks.height * num_blocks.depth;
}
[[nodiscard]] constexpr u32 AdjustSize(u32 size, u32 level, u32 block_size) {
return Common::DivCeil(AdjustMipSize(size, level), block_size);
}
[[nodiscard]] constexpr Extent2D DefaultBlockSize(PixelFormat format) {
return {DefaultBlockWidth(format), DefaultBlockHeight(format)};
}
[[nodiscard]] constexpr Extent3D NumLevelBlocks(const LevelInfo& info, u32 level) {
return Extent3D{
.width = AdjustSize(info.size.width, level, info.tile_size.width) << info.bpp_log2,
.height = AdjustSize(info.size.height, level, info.tile_size.height),
.depth = AdjustMipSize(info.size.depth, level),
};
}
[[nodiscard]] constexpr Extent3D TileShift(const LevelInfo& info, u32 level) {
if (level == 0) {
return Extent3D{
.width = info.block.width,
.height = info.block.height,
.depth = info.block.depth,
};
}
const Extent3D blocks = NumLevelBlocks(info, level);
return Extent3D{
.width = AdjustTileSize(info.block.width, GOB_SIZE_X, blocks.width),
.height = AdjustTileSize(info.block.height, GOB_SIZE_Y, blocks.height),
.depth = AdjustTileSize(info.block.depth, GOB_SIZE_Z, blocks.depth),
};
}
[[nodiscard]] constexpr Extent2D GobSize(u32 bpp_log2, u32 block_height, u32 tile_width_spacing) {
return Extent2D{
.width = GOB_SIZE_X_SHIFT - bpp_log2 + tile_width_spacing,
.height = GOB_SIZE_Y_SHIFT + block_height,
};
}
[[nodiscard]] constexpr bool IsSmallerThanGobSize(Extent3D num_tiles, Extent2D gob,
u32 block_depth) {
return num_tiles.width <= (1U << gob.width) || num_tiles.height <= (1U << gob.height) ||
num_tiles.depth < (1U << block_depth);
}
[[nodiscard]] constexpr u32 StrideAlignment(Extent3D num_tiles, Extent3D block, Extent2D gob,
u32 bpp_log2) {
if (IsSmallerThanGobSize(num_tiles, gob, block.depth)) {
return GOB_SIZE_X_SHIFT - bpp_log2;
} else {
return gob.width;
}
}
[[nodiscard]] constexpr u32 StrideAlignment(Extent3D num_tiles, Extent3D block, u32 bpp_log2,
u32 tile_width_spacing) {
const Extent2D gob = GobSize(bpp_log2, block.height, tile_width_spacing);
return StrideAlignment(num_tiles, block, gob, bpp_log2);
}
[[nodiscard]] constexpr Extent2D NumGobs(const LevelInfo& info, u32 level) {
const Extent3D blocks = NumLevelBlocks(info, level);
const Extent2D gobs{
.width = Common::DivCeilLog2(blocks.width, GOB_SIZE_X_SHIFT),
.height = Common::DivCeilLog2(blocks.height, GOB_SIZE_Y_SHIFT),
};
const Extent2D gob = GobSize(info.bpp_log2, info.block.height, info.tile_width_spacing);
const bool is_small = IsSmallerThanGobSize(blocks, gob, info.block.depth);
const u32 alignment = is_small ? 0 : info.tile_width_spacing;
return Extent2D{
.width = Common::AlignUpLog2(gobs.width, alignment),
.height = gobs.height,
};
}
[[nodiscard]] constexpr Extent3D LevelTiles(const LevelInfo& info, u32 level) {
const Extent3D blocks = NumLevelBlocks(info, level);
const Extent3D tile_shift = TileShift(info, level);
const Extent2D gobs = NumGobs(info, level);
return Extent3D{
.width = Common::DivCeilLog2(gobs.width, tile_shift.width),
.height = Common::DivCeilLog2(gobs.height, tile_shift.height),
.depth = Common::DivCeilLog2(blocks.depth, tile_shift.depth),
};
}
[[nodiscard]] constexpr u32 CalculateLevelSize(const LevelInfo& info, u32 level) {
const Extent3D tile_shift = TileShift(info, level);
const Extent3D tiles = LevelTiles(info, level);
const u32 num_tiles = tiles.width * tiles.height * tiles.depth;
const u32 shift = GOB_SIZE_SHIFT + tile_shift.width + tile_shift.height + tile_shift.depth;
return num_tiles << shift;
}
[[nodiscard]] constexpr LevelArray CalculateLevelSizes(const LevelInfo& info, u32 num_levels) {
ASSERT(num_levels <= MAX_MIP_LEVELS);
LevelArray sizes{};
for (u32 level = 0; level < num_levels; ++level) {
sizes[level] = CalculateLevelSize(info, level);
}
return sizes;
}
[[nodiscard]] u32 CalculateLevelBytes(const LevelArray& sizes, u32 num_levels) {
return std::reduce(sizes.begin(), sizes.begin() + num_levels, 0U);
}
[[nodiscard]] constexpr LevelInfo MakeLevelInfo(PixelFormat format, Extent3D size, Extent3D block,
u32 tile_width_spacing) {
const u32 bytes_per_block = BytesPerBlock(format);
return {
.size =
{
.width = size.width,
.height = size.height,
.depth = size.depth,
},
.block = block,
.tile_size = DefaultBlockSize(format),
.bpp_log2 = BytesPerBlockLog2(bytes_per_block),
.tile_width_spacing = tile_width_spacing,
};
}
[[nodiscard]] constexpr LevelInfo MakeLevelInfo(const ImageInfo& info) {
return MakeLevelInfo(info.format, info.size, info.block, info.tile_width_spacing);
}
[[nodiscard]] constexpr u32 CalculateLevelOffset(PixelFormat format, Extent3D size, Extent3D block,
u32 tile_width_spacing, u32 level) {
const LevelInfo info = MakeLevelInfo(format, size, block, tile_width_spacing);
u32 offset = 0;
for (u32 current_level = 0; current_level < level; ++current_level) {
offset += CalculateLevelSize(info, current_level);
}
return offset;
}
[[nodiscard]] constexpr u32 AlignLayerSize(u32 size_bytes, Extent3D size, Extent3D block,
u32 tile_size_y, u32 tile_width_spacing) {
// https://github.com/Ryujinx/Ryujinx/blob/1c9aba6de1520aea5480c032e0ff5664ac1bb36f/Ryujinx.Graphics.Texture/SizeCalculator.cs#L134
if (tile_width_spacing > 0) {
const u32 alignment_log2 = GOB_SIZE_SHIFT + tile_width_spacing + block.height + block.depth;
return Common::AlignUpLog2(size_bytes, alignment_log2);
}
const u32 aligned_height = Common::AlignUp(size.height, tile_size_y);
while (block.height != 0 && aligned_height <= (1U << (block.height - 1)) * GOB_SIZE_Y) {
--block.height;
}
while (block.depth != 0 && size.depth <= (1U << (block.depth - 1))) {
--block.depth;
}
const u32 block_shift = GOB_SIZE_SHIFT + block.height + block.depth;
const u32 num_blocks = size_bytes >> block_shift;
if (size_bytes != num_blocks << block_shift) {
return (num_blocks + 1) << block_shift;
}
return size_bytes;
}
[[nodiscard]] std::optional<SubresourceExtent> ResolveOverlapEqualAddress(const ImageInfo& new_info,
const ImageBase& overlap,
bool strict_size) {
const ImageInfo& info = overlap.info;
if (!IsBlockLinearSizeCompatible(new_info, info, 0, 0, strict_size)) {
return std::nullopt;
}
if (new_info.block != info.block) {
return std::nullopt;
}
const SubresourceExtent resources = new_info.resources;
return SubresourceExtent{
.levels = std::max(resources.levels, info.resources.levels),
.layers = std::max(resources.layers, info.resources.layers),
};
}
[[nodiscard]] std::optional<SubresourceExtent> ResolveOverlapRightAddress3D(
const ImageInfo& new_info, GPUVAddr gpu_addr, const ImageBase& overlap, bool strict_size) {
const auto slice_offsets = CalculateSliceOffsets(new_info);
const u32 diff = static_cast<u32>(overlap.gpu_addr - gpu_addr);
const auto it = std::ranges::find(slice_offsets, diff);
if (it == slice_offsets.end()) {
return std::nullopt;
}
const auto subresources = CalculateSliceSubresources(new_info);
const SubresourceBase base = subresources[std::distance(slice_offsets.begin(), it)];
const ImageInfo& info = overlap.info;
if (!IsBlockLinearSizeCompatible(new_info, info, base.level, 0, strict_size)) {
return std::nullopt;
}
const u32 mip_depth = std::max(1U, new_info.size.depth << base.level);
if (mip_depth < info.size.depth + base.layer) {
return std::nullopt;
}
if (MipBlockSize(new_info, base.level) != info.block) {
return std::nullopt;
}
return SubresourceExtent{
.levels = std::max(new_info.resources.levels, info.resources.levels + base.level),
.layers = 1,
};
}
[[nodiscard]] std::optional<SubresourceExtent> ResolveOverlapRightAddress2D(
const ImageInfo& new_info, GPUVAddr gpu_addr, const ImageBase& overlap, bool strict_size) {
const u64 layer_stride = new_info.layer_stride;
const u64 new_size = layer_stride * new_info.resources.layers;
const u64 diff = overlap.gpu_addr - gpu_addr;
if (diff > new_size) {
return std::nullopt;
}
const s32 base_layer = static_cast<s32>(diff / layer_stride);
const s32 mip_offset = static_cast<s32>(diff % layer_stride);
const std::array offsets = CalculateMipLevelOffsets(new_info);
const auto end = offsets.begin() + new_info.resources.levels;
const auto it = std::find(offsets.begin(), end, static_cast<u32>(mip_offset));
if (it == end) {
// Mipmap is not aligned to any valid size
return std::nullopt;
}
const SubresourceBase base{
.level = static_cast<s32>(std::distance(offsets.begin(), it)),
.layer = base_layer,
};
const ImageInfo& info = overlap.info;
if (!IsBlockLinearSizeCompatible(new_info, info, base.level, 0, strict_size)) {
return std::nullopt;
}
if (MipBlockSize(new_info, base.level) != info.block) {
return std::nullopt;
}
return SubresourceExtent{
.levels = std::max(new_info.resources.levels, info.resources.levels + base.level),
.layers = std::max(new_info.resources.layers, info.resources.layers + base.layer),
};
}
[[nodiscard]] std::optional<OverlapResult> ResolveOverlapRightAddress(const ImageInfo& new_info,
GPUVAddr gpu_addr,
VAddr cpu_addr,
const ImageBase& overlap,
bool strict_size) {
std::optional<SubresourceExtent> resources;
if (new_info.type != ImageType::e3D) {
resources = ResolveOverlapRightAddress2D(new_info, gpu_addr, overlap, strict_size);
} else {
resources = ResolveOverlapRightAddress3D(new_info, gpu_addr, overlap, strict_size);
}
if (!resources) {
return std::nullopt;
}
return OverlapResult{
.gpu_addr = gpu_addr,
.cpu_addr = cpu_addr,
.resources = *resources,
};
}
[[nodiscard]] std::optional<OverlapResult> ResolveOverlapLeftAddress(const ImageInfo& new_info,
GPUVAddr gpu_addr,
VAddr cpu_addr,
const ImageBase& overlap,
bool strict_size) {
const std::optional<SubresourceBase> base = overlap.TryFindBase(gpu_addr);
if (!base) {
return std::nullopt;
}
const ImageInfo& info = overlap.info;
if (!IsBlockLinearSizeCompatible(new_info, info, base->level, 0, strict_size)) {
return std::nullopt;
}
if (new_info.block != MipBlockSize(info, base->level)) {
return std::nullopt;
}
const SubresourceExtent resources = new_info.resources;
s32 layers = 1;
if (info.type != ImageType::e3D) {
layers = std::max(resources.layers, info.resources.layers + base->layer);
}
return OverlapResult{
.gpu_addr = overlap.gpu_addr,
.cpu_addr = overlap.cpu_addr,
.resources =
{
.levels = std::max(resources.levels + base->level, info.resources.levels),
.layers = layers,
},
};
}
[[nodiscard]] Extent2D PitchLinearAlignedSize(const ImageInfo& info) {
// https://github.com/Ryujinx/Ryujinx/blob/1c9aba6de1520aea5480c032e0ff5664ac1bb36f/Ryujinx.Graphics.Texture/SizeCalculator.cs#L212
static constexpr u32 STRIDE_ALIGNMENT = 32;
ASSERT(info.type == ImageType::Linear);
const Extent2D num_tiles{
.width = Common::DivCeil(info.size.width, DefaultBlockWidth(info.format)),
.height = Common::DivCeil(info.size.height, DefaultBlockHeight(info.format)),
};
const u32 width_alignment = STRIDE_ALIGNMENT / BytesPerBlock(info.format);
return Extent2D{
.width = Common::AlignUp(num_tiles.width, width_alignment),
.height = num_tiles.height,
};
}
[[nodiscard]] Extent3D BlockLinearAlignedSize(const ImageInfo& info, u32 level) {
// https://github.com/Ryujinx/Ryujinx/blob/1c9aba6de1520aea5480c032e0ff5664ac1bb36f/Ryujinx.Graphics.Texture/SizeCalculator.cs#L176
ASSERT(info.type != ImageType::Linear);
const Extent3D size = AdjustMipSize(info.size, level);
const Extent3D num_tiles{
.width = Common::DivCeil(size.width, DefaultBlockWidth(info.format)),
.height = Common::DivCeil(size.height, DefaultBlockHeight(info.format)),
.depth = size.depth,
};
const u32 bpp_log2 = BytesPerBlockLog2(info.format);
const u32 alignment = StrideAlignment(num_tiles, info.block, bpp_log2, info.tile_width_spacing);
const Extent3D mip_block = AdjustMipBlockSize(num_tiles, info.block, 0);
return Extent3D{
.width = Common::AlignUpLog2(num_tiles.width, alignment),
.height = Common::AlignUpLog2(num_tiles.height, GOB_SIZE_Y_SHIFT + mip_block.height),
.depth = Common::AlignUpLog2(num_tiles.depth, GOB_SIZE_Z_SHIFT + mip_block.depth),
};
}
[[nodiscard]] constexpr u32 NumBlocksPerLayer(const ImageInfo& info, Extent2D tile_size) noexcept {
u32 num_blocks = 0;
for (s32 level = 0; level < info.resources.levels; ++level) {
const Extent3D mip_size = AdjustMipSize(info.size, level);
num_blocks += NumBlocks(mip_size, tile_size);
}
return num_blocks;
}
[[nodiscard]] u32 NumSlices(const ImageInfo& info) noexcept {
ASSERT(info.type == ImageType::e3D);
u32 num_slices = 0;
for (s32 level = 0; level < info.resources.levels; ++level) {
num_slices += AdjustMipSize(info.size.depth, level);
}
return num_slices;
}
void SwizzlePitchLinearImage(Tegra::MemoryManager& gpu_memory, GPUVAddr gpu_addr,
const ImageInfo& info, const BufferImageCopy& copy,
std::span<const u8> memory) {
ASSERT(copy.image_offset.z == 0);
ASSERT(copy.image_extent.depth == 1);
ASSERT(copy.image_subresource.base_level == 0);
ASSERT(copy.image_subresource.base_layer == 0);
ASSERT(copy.image_subresource.num_layers == 1);
const u32 bytes_per_block = BytesPerBlock(info.format);
const u32 row_length = copy.image_extent.width * bytes_per_block;
const u32 guest_offset_x = copy.image_offset.x * bytes_per_block;
for (u32 line = 0; line < copy.image_extent.height; ++line) {
const u32 host_offset_y = line * info.pitch;
const u32 guest_offset_y = (copy.image_offset.y + line) * info.pitch;
const u32 guest_offset = guest_offset_x + guest_offset_y;
gpu_memory.WriteBlockUnsafe(gpu_addr + guest_offset, memory.data() + host_offset_y,
row_length);
}
}
void SwizzleBlockLinearImage(Tegra::MemoryManager& gpu_memory, GPUVAddr gpu_addr,
const ImageInfo& info, const BufferImageCopy& copy,
std::span<const u8> input, Common::ScratchBuffer<u8>& tmp_buffer) {
const Extent3D size = info.size;
const LevelInfo level_info = MakeLevelInfo(info);
const Extent2D tile_size = DefaultBlockSize(info.format);
const u32 bytes_per_block = BytesPerBlock(info.format);
const s32 level = copy.image_subresource.base_level;
const Extent3D level_size = AdjustMipSize(size, level);
const u32 num_blocks_per_layer = NumBlocks(level_size, tile_size);
const u32 host_bytes_per_layer = num_blocks_per_layer * bytes_per_block;
UNIMPLEMENTED_IF(copy.image_offset.x != 0);
UNIMPLEMENTED_IF(copy.image_offset.y != 0);
UNIMPLEMENTED_IF(copy.image_offset.z != 0);
UNIMPLEMENTED_IF(copy.image_extent != level_size);
const Extent3D num_tiles = AdjustTileSize(level_size, tile_size);
const Extent3D block = AdjustMipBlockSize(num_tiles, level_info.block, level);
size_t host_offset = copy.buffer_offset;
const u32 num_levels = info.resources.levels;
const std::array sizes = CalculateLevelSizes(level_info, num_levels);
size_t guest_offset = CalculateLevelBytes(sizes, level);
const size_t layer_stride =
AlignLayerSize(CalculateLevelBytes(sizes, num_levels), size, level_info.block,
tile_size.height, info.tile_width_spacing);
const size_t subresource_size = sizes[level];
for (s32 layer = 0; layer < info.resources.layers; ++layer) {
const std::span<const u8> src = input.subspan(host_offset);
{
Core::Memory::GpuGuestMemoryScoped<u8, Core::Memory::GuestMemoryFlags::UnsafeReadWrite>
dst(gpu_memory, gpu_addr + guest_offset, subresource_size, &tmp_buffer);
SwizzleTexture(dst, src, bytes_per_block, num_tiles.width, num_tiles.height,
num_tiles.depth, block.height, block.depth);
}
host_offset += host_bytes_per_layer;
guest_offset += layer_stride;
}
ASSERT(host_offset - copy.buffer_offset == copy.buffer_size);
}
} // Anonymous namespace
u32 CalculateGuestSizeInBytes(const ImageInfo& info) noexcept {
if (info.type == ImageType::Buffer) {
return info.size.width * BytesPerBlock(info.format);
}
if (info.type == ImageType::Linear) {
return info.pitch * Common::DivCeil(info.size.height, DefaultBlockHeight(info.format));
}
if (info.resources.layers > 1) {
ASSERT(info.layer_stride != 0);
return info.layer_stride * info.resources.layers;
} else {
return CalculateLayerSize(info);
}
}
u32 CalculateUnswizzledSizeBytes(const ImageInfo& info) noexcept {
if (info.type == ImageType::Buffer) {
return info.size.width * BytesPerBlock(info.format);
}
if (info.type == ImageType::Linear) {
return info.pitch * Common::DivCeil(info.size.height, DefaultBlockHeight(info.format));
}
const Extent2D tile_size = DefaultBlockSize(info.format);
return NumBlocksPerLayer(info, tile_size) * info.resources.layers * BytesPerBlock(info.format);
}
u32 CalculateConvertedSizeBytes(const ImageInfo& info) noexcept {
if (info.type == ImageType::Buffer) {
return info.size.width * BytesPerBlock(info.format);
}
static constexpr Extent2D TILE_SIZE{1, 1};
if (IsPixelFormatASTC(info.format) && Settings::values.astc_recompression.GetValue() !=
Settings::AstcRecompression::Uncompressed) {
const u32 bpp_div =
Settings::values.astc_recompression.GetValue() == Settings::AstcRecompression::Bc1 ? 2
: 1;
// NumBlocksPerLayer doesn't account for this correctly, so we have to do it manually.
u32 output_size = 0;
for (s32 i = 0; i < info.resources.levels; i++) {
const auto mip_size = AdjustMipSize(info.size, i);
const u32 plane_dim =
Common::AlignUp(mip_size.width, 4U) * Common::AlignUp(mip_size.height, 4U);
output_size += (plane_dim * info.size.depth * info.resources.layers) / bpp_div;
}
return output_size;
}
return NumBlocksPerLayer(info, TILE_SIZE) * info.resources.layers *
ConvertedBytesPerBlock(info.format);
}
u32 CalculateLayerStride(const ImageInfo& info) noexcept {
ASSERT(info.type != ImageType::Linear);
const u32 layer_size = CalculateLayerSize(info);
const Extent3D size = info.size;
const Extent3D block = info.block;
const u32 tile_size_y = DefaultBlockHeight(info.format);
return AlignLayerSize(layer_size, size, block, tile_size_y, info.tile_width_spacing);
}
u32 CalculateLayerSize(const ImageInfo& info) noexcept {
ASSERT(info.type != ImageType::Linear);
return CalculateLevelOffset(info.format, info.size, info.block, info.tile_width_spacing,
info.resources.levels);
}
LevelArray CalculateMipLevelOffsets(const ImageInfo& info) noexcept {
if (info.type == ImageType::Linear) {
return {};
}
ASSERT(info.resources.levels <= static_cast<s32>(MAX_MIP_LEVELS));
const LevelInfo level_info = MakeLevelInfo(info);
LevelArray offsets{};
u32 offset = 0;
for (s32 level = 0; level < info.resources.levels; ++level) {
offsets[level] = offset;
offset += CalculateLevelSize(level_info, level);
}
return offsets;
}
LevelArray CalculateMipLevelSizes(const ImageInfo& info) noexcept {
const u32 num_levels = info.resources.levels;
const LevelInfo level_info = MakeLevelInfo(info);
LevelArray sizes{};
for (u32 level = 0; level < num_levels; ++level) {
sizes[level] = CalculateLevelSize(level_info, level);
}
return sizes;
}
boost::container::small_vector<u32, 16> CalculateSliceOffsets(const ImageInfo& info) {
ASSERT(info.type == ImageType::e3D);
boost::container::small_vector<u32, 16> offsets;
offsets.reserve(NumSlices(info));
const LevelInfo level_info = MakeLevelInfo(info);
u32 mip_offset = 0;
for (s32 level = 0; level < info.resources.levels; ++level) {
const Extent3D tile_shift = TileShift(level_info, level);
const Extent3D tiles = LevelTiles(level_info, level);
const u32 gob_size_shift = tile_shift.height + GOB_SIZE_SHIFT;
const u32 slice_size = (tiles.width * tiles.height) << gob_size_shift;
const u32 z_mask = (1U << tile_shift.depth) - 1;
const u32 depth = AdjustMipSize(info.size.depth, level);
for (u32 slice = 0; slice < depth; ++slice) {
const u32 z_low = slice & z_mask;
const u32 z_high = slice & ~z_mask;
offsets.push_back(mip_offset + (z_low << gob_size_shift) + (z_high * slice_size));
}
mip_offset += CalculateLevelSize(level_info, level);
}
return offsets;
}
boost::container::small_vector<SubresourceBase, 16> CalculateSliceSubresources(
const ImageInfo& info) {
ASSERT(info.type == ImageType::e3D);
boost::container::small_vector<SubresourceBase, 16> subresources;
subresources.reserve(NumSlices(info));
for (s32 level = 0; level < info.resources.levels; ++level) {
const s32 depth = AdjustMipSize(info.size.depth, level);
for (s32 slice = 0; slice < depth; ++slice) {
subresources.emplace_back(SubresourceBase{
.level = level,
.layer = slice,
});
}
}
return subresources;
}
u32 CalculateLevelStrideAlignment(const ImageInfo& info, u32 level) {
const Extent2D tile_size = DefaultBlockSize(info.format);
const Extent3D level_size = AdjustMipSize(info.size, level);
const Extent3D num_tiles = AdjustTileSize(level_size, tile_size);
const Extent3D block = AdjustMipBlockSize(num_tiles, info.block, level);
const u32 bpp_log2 = BytesPerBlockLog2(info.format);
return StrideAlignment(num_tiles, block, bpp_log2, info.tile_width_spacing);
}
PixelFormat PixelFormatFromTIC(const TICEntry& config) noexcept {
return PixelFormatFromTextureInfo(config.format, config.r_type, config.g_type, config.b_type,
config.a_type, config.srgb_conversion);
}
ImageViewType RenderTargetImageViewType(const ImageInfo& info) noexcept {
switch (info.type) {
case ImageType::e2D:
return info.resources.layers > 1 ? ImageViewType::e2DArray : ImageViewType::e2D;
case ImageType::e3D:
return ImageViewType::e2DArray;
case ImageType::Linear:
return ImageViewType::e2D;
default:
UNIMPLEMENTED_MSG("Unimplemented image type={}", static_cast<int>(info.type));
return ImageViewType{};
}
}
boost::container::small_vector<ImageCopy, 16> MakeShrinkImageCopies(const ImageInfo& dst,
const ImageInfo& src,
SubresourceBase base,
u32 up_scale, u32 down_shift) {
ASSERT(dst.resources.levels >= src.resources.levels);
const bool is_dst_3d = dst.type == ImageType::e3D;
if (is_dst_3d) {
ASSERT(src.type == ImageType::e3D);
ASSERT(src.resources.levels == 1);
}
const bool both_2d{src.type == ImageType::e2D && dst.type == ImageType::e2D};
boost::container::small_vector<ImageCopy, 16> copies;
copies.reserve(src.resources.levels);
for (s32 level = 0; level < src.resources.levels; ++level) {
ImageCopy& copy = copies.emplace_back();
copy.src_subresource = SubresourceLayers{
.base_level = level,
.base_layer = 0,
.num_layers = src.resources.layers,
};
copy.dst_subresource = SubresourceLayers{
.base_level = base.level + level,
.base_layer = is_dst_3d ? 0 : base.layer,
.num_layers = is_dst_3d ? 1 : src.resources.layers,
};
copy.src_offset = Offset3D{
.x = 0,
.y = 0,
.z = 0,
};
copy.dst_offset = Offset3D{
.x = 0,
.y = 0,
.z = is_dst_3d ? base.layer : 0,
};
const Extent3D mip_size = AdjustMipSize(dst.size, base.level + level);
copy.extent = AdjustSamplesSize(mip_size, dst.num_samples);
if (is_dst_3d) {
copy.extent.depth = src.size.depth;
}
copy.extent.width = std::max<u32>((copy.extent.width * up_scale) >> down_shift, 1);
if (both_2d) {
copy.extent.height = std::max<u32>((copy.extent.height * up_scale) >> down_shift, 1);
}
}
return copies;
}
boost::container::small_vector<ImageCopy, 16> MakeReinterpretImageCopies(const ImageInfo& src,
u32 up_scale,
u32 down_shift) {
boost::container::small_vector<ImageCopy, 16> copies;
copies.reserve(src.resources.levels);
const bool is_3d = src.type == ImageType::e3D;
for (s32 level = 0; level < src.resources.levels; ++level) {
ImageCopy& copy = copies.emplace_back();
copy.src_subresource = SubresourceLayers{
.base_level = level,
.base_layer = 0,
.num_layers = src.resources.layers,
};
copy.dst_subresource = SubresourceLayers{
.base_level = level,
.base_layer = 0,
.num_layers = src.resources.layers,
};
copy.src_offset = Offset3D{
.x = 0,
.y = 0,
.z = 0,
};
copy.dst_offset = Offset3D{
.x = 0,
.y = 0,
.z = 0,
};
const Extent3D mip_size = AdjustMipSize(src.size, level);
copy.extent = AdjustSamplesSize(mip_size, src.num_samples);
if (is_3d) {
copy.extent.depth = src.size.depth;
}
copy.extent.width = std::max<u32>((copy.extent.width * up_scale) >> down_shift, 1);
copy.extent.height = std::max<u32>((copy.extent.height * up_scale) >> down_shift, 1);
}
return copies;
}
bool IsValidEntry(const Tegra::MemoryManager& gpu_memory, const TICEntry& config) {
const GPUVAddr address = config.Address();
if (address == 0) {
return false;
}
if (address >= (1ULL << 40)) {
return false;
}
if (gpu_memory.GpuToCpuAddress(address).has_value()) {
return true;
}
const ImageInfo info{config};
const size_t guest_size_bytes = CalculateGuestSizeInBytes(info);
return gpu_memory.GpuToCpuAddress(address, guest_size_bytes).has_value();
}
boost::container::small_vector<BufferImageCopy, 16> UnswizzleImage(Tegra::MemoryManager& gpu_memory,
GPUVAddr gpu_addr,
const ImageInfo& info,
std::span<const u8> input,
std::span<u8> output) {
const size_t guest_size_bytes = input.size_bytes();
const u32 bpp_log2 = BytesPerBlockLog2(info.format);
const Extent3D size = info.size;
if (info.type == ImageType::Linear) {
ASSERT(output.size_bytes() >= guest_size_bytes);
gpu_memory.ReadBlockUnsafe(gpu_addr, output.data(), guest_size_bytes);
ASSERT((info.pitch >> bpp_log2) << bpp_log2 == info.pitch);
return {{
.buffer_offset = 0,
.buffer_size = guest_size_bytes,
.buffer_row_length = info.pitch >> bpp_log2,
.buffer_image_height = size.height,
.image_subresource =
{
.base_level = 0,
.base_layer = 0,
.num_layers = 1,
},
.image_offset = {0, 0, 0},
.image_extent = size,
}};
}
const LevelInfo level_info = MakeLevelInfo(info);
const s32 num_layers = info.resources.layers;
const s32 num_levels = info.resources.levels;
const Extent2D tile_size = DefaultBlockSize(info.format);
const std::array level_sizes = CalculateLevelSizes(level_info, num_levels);
const Extent2D gob = GobSize(bpp_log2, info.block.height, info.tile_width_spacing);
const u32 layer_size = CalculateLevelBytes(level_sizes, num_levels);
const u32 layer_stride = AlignLayerSize(layer_size, size, level_info.block, tile_size.height,
info.tile_width_spacing);
size_t guest_offset = 0;
u32 host_offset = 0;
boost::container::small_vector<BufferImageCopy, 16> copies(num_levels);
for (s32 level = 0; level < num_levels; ++level) {
const Extent3D level_size = AdjustMipSize(size, level);
const u32 num_blocks_per_layer = NumBlocks(level_size, tile_size);
const u32 host_bytes_per_layer = num_blocks_per_layer << bpp_log2;
copies[level] = BufferImageCopy{
.buffer_offset = host_offset,
.buffer_size = static_cast<size_t>(host_bytes_per_layer) * num_layers,
.buffer_row_length = Common::AlignUp(level_size.width, tile_size.width),
.buffer_image_height = Common::AlignUp(level_size.height, tile_size.height),
.image_subresource =
{
.base_level = level,
.base_layer = 0,
.num_layers = info.resources.layers,
},
.image_offset = {0, 0, 0},
.image_extent = level_size,
};
const Extent3D num_tiles = AdjustTileSize(level_size, tile_size);
const Extent3D block = AdjustMipBlockSize(num_tiles, level_info.block, level);
const u32 stride_alignment = StrideAlignment(num_tiles, info.block, gob, bpp_log2);
size_t guest_layer_offset = 0;
for (s32 layer = 0; layer < info.resources.layers; ++layer) {
const std::span<u8> dst = output.subspan(host_offset);
const std::span<const u8> src = input.subspan(guest_offset + guest_layer_offset);
UnswizzleTexture(dst, src, 1U << bpp_log2, num_tiles.width, num_tiles.height,
num_tiles.depth, block.height, block.depth, stride_alignment);
guest_layer_offset += layer_stride;
host_offset += host_bytes_per_layer;
}
guest_offset += level_sizes[level];
}
return copies;
}
void ConvertImage(std::span<const u8> input, const ImageInfo& info, std::span<u8> output,
std::span<BufferImageCopy> copies) {
u32 output_offset = 0;
Common::ScratchBuffer<u8> decode_scratch;
const Extent2D tile_size = DefaultBlockSize(info.format);
for (BufferImageCopy& copy : copies) {
const u32 level = copy.image_subresource.base_level;
const Extent3D mip_size = AdjustMipSize(info.size, level);
ASSERT(copy.image_offset == Offset3D{});
ASSERT(copy.image_subresource.base_layer == 0);
ASSERT(copy.image_extent == mip_size);
ASSERT(copy.buffer_row_length == Common::AlignUp(mip_size.width, tile_size.width));
ASSERT(copy.buffer_image_height == Common::AlignUp(mip_size.height, tile_size.height));
const auto input_offset = input.subspan(copy.buffer_offset);
copy.buffer_offset = output_offset;
copy.buffer_row_length = mip_size.width;
copy.buffer_image_height = mip_size.height;
const auto recompression_setting = Settings::values.astc_recompression.GetValue();
const bool astc = IsPixelFormatASTC(info.format);
if (astc && recompression_setting == Settings::AstcRecompression::Uncompressed) {
Tegra::Texture::ASTC::Decompress(
input_offset, copy.image_extent.width, copy.image_extent.height,
copy.image_subresource.num_layers * copy.image_extent.depth, tile_size.width,
tile_size.height, output.subspan(output_offset));
output_offset += copy.image_extent.width * copy.image_extent.height *
copy.image_subresource.num_layers *
BytesPerBlock(PixelFormat::A8B8G8R8_UNORM);
} else if (astc) {
// BC1 uses 0.5 bytes per texel
// BC3 uses 1 byte per texel
const auto compress = recompression_setting == Settings::AstcRecompression::Bc1
? Tegra::Texture::BCN::CompressBC1
: Tegra::Texture::BCN::CompressBC3;
const auto bpp_div = recompression_setting == Settings::AstcRecompression::Bc1 ? 2 : 1;
const u32 plane_dim = copy.image_extent.width * copy.image_extent.height;
const u32 level_size = plane_dim * copy.image_extent.depth *
copy.image_subresource.num_layers *
BytesPerBlock(PixelFormat::A8B8G8R8_UNORM);
decode_scratch.resize_destructive(level_size);
Tegra::Texture::ASTC::Decompress(
input_offset, copy.image_extent.width, copy.image_extent.height,
copy.image_subresource.num_layers * copy.image_extent.depth, tile_size.width,
tile_size.height, decode_scratch);
compress(decode_scratch, copy.image_extent.width, copy.image_extent.height,
copy.image_subresource.num_layers * copy.image_extent.depth,
output.subspan(output_offset));
const u32 aligned_plane_dim = Common::AlignUp(copy.image_extent.width, 4) *
Common::AlignUp(copy.image_extent.height, 4);
copy.buffer_size =
(aligned_plane_dim * copy.image_extent.depth * copy.image_subresource.num_layers) /
bpp_div;
output_offset += static_cast<u32>(copy.buffer_size);
} else {
const Extent3D image_extent{
.width = copy.image_extent.width,
.height = copy.image_extent.height * copy.image_subresource.num_layers,
.depth = copy.image_extent.depth,
};
DecompressBCn(input_offset, output.subspan(output_offset), image_extent, info.format);
output_offset += copy.image_extent.width * copy.image_extent.height *
copy.image_subresource.num_layers *
ConvertedBytesPerBlock(info.format);
}
}
}
boost::container::small_vector<BufferImageCopy, 16> FullDownloadCopies(const ImageInfo& info) {
const Extent3D size = info.size;
const u32 bytes_per_block = BytesPerBlock(info.format);
if (info.type == ImageType::Linear) {
ASSERT(info.pitch % bytes_per_block == 0);
return {{
.buffer_offset = 0,
.buffer_size = static_cast<size_t>(info.pitch) * size.height,
.buffer_row_length = info.pitch / bytes_per_block,
.buffer_image_height = size.height,
.image_subresource =
{
.base_level = 0,
.base_layer = 0,
.num_layers = 1,
},
.image_offset = {0, 0, 0},
.image_extent = size,
}};
}
UNIMPLEMENTED_IF(info.tile_width_spacing > 0);
const s32 num_layers = info.resources.layers;
const s32 num_levels = info.resources.levels;
const Extent2D tile_size = DefaultBlockSize(info.format);
u32 host_offset = 0;
boost::container::small_vector<BufferImageCopy, 16> copies(num_levels);
for (s32 level = 0; level < num_levels; ++level) {
const Extent3D level_size = AdjustMipSize(size, level);
const u32 num_blocks_per_layer = NumBlocks(level_size, tile_size);
const u32 host_bytes_per_level = num_blocks_per_layer * bytes_per_block * num_layers;
copies[level] = BufferImageCopy{
.buffer_offset = host_offset,
.buffer_size = host_bytes_per_level,
.buffer_row_length = level_size.width,
.buffer_image_height = level_size.height,
.image_subresource =
{
.base_level = level,
.base_layer = 0,
.num_layers = info.resources.layers,
},
.image_offset = {0, 0, 0},
.image_extent = level_size,
};
host_offset += host_bytes_per_level;
}
return copies;
}
Extent3D MipSize(Extent3D size, u32 level) {
return AdjustMipSize(size, level);
}
Extent3D MipBlockSize(const ImageInfo& info, u32 level) {
const LevelInfo level_info = MakeLevelInfo(info);
const Extent2D tile_size = DefaultBlockSize(info.format);
const Extent3D level_size = AdjustMipSize(info.size, level);
const Extent3D num_tiles = AdjustTileSize(level_size, tile_size);
return AdjustMipBlockSize(num_tiles, level_info.block, level);
}
boost::container::small_vector<SwizzleParameters, 16> FullUploadSwizzles(const ImageInfo& info) {
const Extent2D tile_size = DefaultBlockSize(info.format);
if (info.type == ImageType::Linear) {
return {SwizzleParameters{
.num_tiles = AdjustTileSize(info.size, tile_size),
.block = {},
.buffer_offset = 0,
.level = 0,
}};
}
const LevelInfo level_info = MakeLevelInfo(info);
const Extent3D size = info.size;
const s32 num_levels = info.resources.levels;
u32 guest_offset = 0;
boost::container::small_vector<SwizzleParameters, 16> params(num_levels);
for (s32 level = 0; level < num_levels; ++level) {
const Extent3D level_size = AdjustMipSize(size, level);
const Extent3D num_tiles = AdjustTileSize(level_size, tile_size);
const Extent3D block = AdjustMipBlockSize(num_tiles, level_info.block, level);
params[level] = SwizzleParameters{
.num_tiles = num_tiles,
.block = block,
.buffer_offset = guest_offset,
.level = level,
};
guest_offset += CalculateLevelSize(level_info, level);
}
return params;
}
void SwizzleImage(Tegra::MemoryManager& gpu_memory, GPUVAddr gpu_addr, const ImageInfo& info,
std::span<const BufferImageCopy> copies, std::span<const u8> memory,
Common::ScratchBuffer<u8>& tmp_buffer) {
const bool is_pitch_linear = info.type == ImageType::Linear;
for (const BufferImageCopy& copy : copies) {
if (is_pitch_linear) {
SwizzlePitchLinearImage(gpu_memory, gpu_addr, info, copy, memory);
} else {
SwizzleBlockLinearImage(gpu_memory, gpu_addr, info, copy, memory, tmp_buffer);
}
}
}
bool IsBlockLinearSizeCompatible(const ImageInfo& lhs, const ImageInfo& rhs, u32 lhs_level,
u32 rhs_level, bool strict_size) noexcept {
ASSERT(lhs.type != ImageType::Linear);
ASSERT(rhs.type != ImageType::Linear);
if (strict_size) {
const Extent3D lhs_size = AdjustMipSize(lhs.size, lhs_level);
const Extent3D rhs_size = AdjustMipSize(rhs.size, rhs_level);
return lhs_size.width == rhs_size.width && lhs_size.height == rhs_size.height;
} else {
const Extent3D lhs_size = BlockLinearAlignedSize(lhs, lhs_level);
const Extent3D rhs_size = BlockLinearAlignedSize(rhs, rhs_level);
return lhs_size.width == rhs_size.width && lhs_size.height == rhs_size.height;
}
}
bool IsBlockLinearSizeCompatibleBPPRelaxed(const ImageInfo& lhs, const ImageInfo& rhs,
u32 lhs_level, u32 rhs_level) noexcept {
ASSERT(lhs.type != ImageType::Linear);
ASSERT(rhs.type != ImageType::Linear);
const auto lhs_bpp = BytesPerBlock(lhs.format);
const auto rhs_bpp = BytesPerBlock(rhs.format);
const Extent3D lhs_size = AdjustMipSize(lhs.size, lhs_level);
const Extent3D rhs_size = AdjustMipSize(rhs.size, rhs_level);
return Common::AlignUpLog2(lhs_size.width * lhs_bpp, GOB_SIZE_X_SHIFT) ==
Common::AlignUpLog2(rhs_size.width * rhs_bpp, GOB_SIZE_X_SHIFT) &&
Common::AlignUpLog2(lhs_size.height, GOB_SIZE_Y_SHIFT) ==
Common::AlignUpLog2(rhs_size.height, GOB_SIZE_Y_SHIFT);
}
bool IsPitchLinearSameSize(const ImageInfo& lhs, const ImageInfo& rhs, bool strict_size) noexcept {
ASSERT(lhs.type == ImageType::Linear);
ASSERT(rhs.type == ImageType::Linear);
if (strict_size) {
return lhs.size.width == rhs.size.width && lhs.size.height == rhs.size.height;
} else {
const Extent2D lhs_size = PitchLinearAlignedSize(lhs);
const Extent2D rhs_size = PitchLinearAlignedSize(rhs);
return lhs_size == rhs_size;
}
}
std::optional<OverlapResult> ResolveOverlap(const ImageInfo& new_info, GPUVAddr gpu_addr,
VAddr cpu_addr, const ImageBase& overlap,
bool strict_size, bool broken_views, bool native_bgr) {
ASSERT(new_info.type != ImageType::Linear);
ASSERT(overlap.info.type != ImageType::Linear);
if (!IsLayerStrideCompatible(new_info, overlap.info)) {
return std::nullopt;
}
if (!IsViewCompatible(overlap.info.format, new_info.format, broken_views, native_bgr)) {
return std::nullopt;
}
if (gpu_addr == overlap.gpu_addr) {
const std::optional solution = ResolveOverlapEqualAddress(new_info, overlap, strict_size);
if (!solution) {
return std::nullopt;
}
return OverlapResult{
.gpu_addr = gpu_addr,
.cpu_addr = cpu_addr,
.resources = *solution,
};
}
if (overlap.gpu_addr > gpu_addr) {
return ResolveOverlapRightAddress(new_info, gpu_addr, cpu_addr, overlap, strict_size);
}
// if overlap.gpu_addr < gpu_addr
return ResolveOverlapLeftAddress(new_info, gpu_addr, cpu_addr, overlap, strict_size);
}
bool IsLayerStrideCompatible(const ImageInfo& lhs, const ImageInfo& rhs) {
// If either of the layer strides is zero, we can assume they are compatible
// These images generally come from rendertargets
if (lhs.layer_stride == 0) {
return true;
}
if (rhs.layer_stride == 0) {
return true;
}
// It's definitely compatible if the layer stride matches
if (lhs.layer_stride == rhs.layer_stride) {
return true;
}
// Although we also have to compare for cases where it can be unaligned
// This can happen if the image doesn't have layers, so the stride is not aligned
if (lhs.maybe_unaligned_layer_stride == rhs.maybe_unaligned_layer_stride) {
return true;
}
return false;
}
std::optional<SubresourceBase> FindSubresource(const ImageInfo& candidate, const ImageBase& image,
GPUVAddr candidate_addr, RelaxedOptions options,
bool broken_views, bool native_bgr) {
const std::optional<SubresourceBase> base = image.TryFindBase(candidate_addr);
if (!base) {
return std::nullopt;
}
const ImageInfo& existing = image.info;
if (True(options & RelaxedOptions::Format)) {
// Format checking is relaxed, but we still have to check for matching bytes per block.
// This avoids creating a view for blits on UE4 titles where formats with different bytes
// per block are aliased.
if (BytesPerBlock(existing.format) != BytesPerBlock(candidate.format)) {
return std::nullopt;
}
} else {
// Format comaptibility is not relaxed, ensure we are creating a view on a compatible format
if (!IsViewCompatible(existing.format, candidate.format, broken_views, native_bgr)) {
return std::nullopt;
}
}
if (!IsLayerStrideCompatible(existing, candidate)) {
return std::nullopt;
}
if (existing.type != candidate.type) {
return std::nullopt;
}
if (False(options & RelaxedOptions::Samples) && existing.num_samples != candidate.num_samples) {
return std::nullopt;
}
if (existing.resources.levels < candidate.resources.levels + base->level) {
return std::nullopt;
}
if (existing.type == ImageType::e3D) {
const u32 mip_depth = std::max(1U, existing.size.depth << base->level);
if (mip_depth < candidate.size.depth + base->layer) {
return std::nullopt;
}
} else if (existing.resources.layers < candidate.resources.layers + base->layer) {
return std::nullopt;
}
const bool strict_size = False(options & RelaxedOptions::Size);
if (!IsBlockLinearSizeCompatible(existing, candidate, base->level, 0, strict_size)) {
return std::nullopt;
}
// TODO: compare block sizes
return base;
}
bool IsSubresource(const ImageInfo& candidate, const ImageBase& image, GPUVAddr candidate_addr,
RelaxedOptions options, bool broken_views, bool native_bgr) {
return FindSubresource(candidate, image, candidate_addr, options, broken_views, native_bgr)
.has_value();
}
bool IsSubCopy(const ImageInfo& candidate, const ImageBase& image, GPUVAddr candidate_addr) {
const std::optional<SubresourceBase> base = image.TryFindBase(candidate_addr);
if (!base) {
return false;
}
const ImageInfo& existing = image.info;
if (existing.resources.levels < candidate.resources.levels + base->level) {
return false;
}
if (existing.type == ImageType::e3D) {
const u32 mip_depth = std::max(1U, existing.size.depth << base->level);
if (mip_depth < candidate.size.depth + base->layer) {
return false;
}
} else {
if (existing.resources.layers < candidate.resources.layers + base->layer) {
return false;
}
}
if (!IsBlockLinearSizeCompatibleBPPRelaxed(existing, candidate, base->level, 0)) {
return false;
}
return true;
}
void DeduceBlitImages(ImageInfo& dst_info, ImageInfo& src_info, const ImageBase* dst,
const ImageBase* src) {
const auto original_dst_format = dst_info.format;
if (src && GetFormatType(src->info.format) != SurfaceType::ColorTexture) {
src_info.format = src->info.format;
}
if (dst && GetFormatType(dst->info.format) != SurfaceType::ColorTexture) {
dst_info.format = dst->info.format;
}
if (src && GetFormatType(src->info.format) != SurfaceType::ColorTexture) {
dst_info.format = src->info.format;
}
if (dst && GetFormatType(dst->info.format) != SurfaceType::ColorTexture) {
if (src) {
if (GetFormatType(src->info.format) == SurfaceType::ColorTexture) {
dst_info.format = original_dst_format;
}
} else {
src_info.format = dst->info.format;
}
}
}
u32 MapSizeBytes(const ImageBase& image) {
if (True(image.flags & ImageFlagBits::AcceleratedUpload)) {
return image.guest_size_bytes;
} else if (True(image.flags & ImageFlagBits::Converted)) {
return image.converted_size_bytes;
} else {
return image.unswizzled_size_bytes;
}
}
static_assert(CalculateLevelSize(LevelInfo{{1920, 1080, 1}, {0, 2, 0}, {1, 1}, 2, 0}, 0) ==
0x7f8000);
static_assert(CalculateLevelSize(LevelInfo{{32, 32, 1}, {0, 0, 4}, {1, 1}, 4, 0}, 0) == 0x40000);
static_assert(CalculateLevelSize(LevelInfo{{128, 8, 1}, {0, 4, 0}, {1, 1}, 4, 0}, 0) == 0x40000);
static_assert(CalculateLevelOffset(PixelFormat::R8_SINT, {1920, 1080, 1}, {0, 2, 0}, 0, 7) ==
0x2afc00);
static_assert(CalculateLevelOffset(PixelFormat::ASTC_2D_12X12_UNORM, {8192, 4096, 1}, {0, 2, 0}, 0,
12) == 0x50d200);
static_assert(CalculateLevelOffset(PixelFormat::A8B8G8R8_UNORM, {1024, 1024, 1}, {0, 4, 0}, 0, 0) ==
0);
static_assert(CalculateLevelOffset(PixelFormat::A8B8G8R8_UNORM, {1024, 1024, 1}, {0, 4, 0}, 0, 1) ==
0x400000);
static_assert(CalculateLevelOffset(PixelFormat::A8B8G8R8_UNORM, {1024, 1024, 1}, {0, 4, 0}, 0, 2) ==
0x500000);
static_assert(CalculateLevelOffset(PixelFormat::A8B8G8R8_UNORM, {1024, 1024, 1}, {0, 4, 0}, 0, 3) ==
0x540000);
static_assert(CalculateLevelOffset(PixelFormat::A8B8G8R8_UNORM, {1024, 1024, 1}, {0, 4, 0}, 0, 4) ==
0x550000);
static_assert(CalculateLevelOffset(PixelFormat::A8B8G8R8_UNORM, {1024, 1024, 1}, {0, 4, 0}, 0, 5) ==
0x554000);
static_assert(CalculateLevelOffset(PixelFormat::A8B8G8R8_UNORM, {1024, 1024, 1}, {0, 4, 0}, 0, 6) ==
0x555000);
static_assert(CalculateLevelOffset(PixelFormat::A8B8G8R8_UNORM, {1024, 1024, 1}, {0, 4, 0}, 0, 7) ==
0x555400);
static_assert(CalculateLevelOffset(PixelFormat::A8B8G8R8_UNORM, {1024, 1024, 1}, {0, 4, 0}, 0, 8) ==
0x555600);
static_assert(CalculateLevelOffset(PixelFormat::A8B8G8R8_UNORM, {1024, 1024, 1}, {0, 4, 0}, 0, 9) ==
0x555800);
constexpr u32 ValidateLayerSize(PixelFormat format, u32 width, u32 height, u32 block_height,
u32 tile_width_spacing, u32 level) {
const Extent3D size{width, height, 1};
const Extent3D block{0, block_height, 0};
const u32 offset = CalculateLevelOffset(format, size, block, tile_width_spacing, level);
return AlignLayerSize(offset, size, block, DefaultBlockHeight(format), tile_width_spacing);
}
static_assert(ValidateLayerSize(PixelFormat::ASTC_2D_12X12_UNORM, 8192, 4096, 2, 0, 12) ==
0x50d800);
static_assert(ValidateLayerSize(PixelFormat::A8B8G8R8_UNORM, 1024, 1024, 2, 0, 10) == 0x556000);
static_assert(ValidateLayerSize(PixelFormat::BC3_UNORM, 128, 128, 2, 0, 8) == 0x6000);
static_assert(ValidateLayerSize(PixelFormat::A8B8G8R8_UNORM, 518, 572, 4, 3, 1) == 0x190000,
"Tile width spacing is not working");
static_assert(ValidateLayerSize(PixelFormat::BC5_UNORM, 1024, 1024, 3, 4, 11) == 0x160000,
"Compressed tile width spacing is not working");
} // namespace VideoCommon