suyu/src/tests/core/core_timing.cpp
2023-01-05 04:58:31 +01:00

145 lines
4.9 KiB
C++

// SPDX-FileCopyrightText: 2016 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <catch2/catch_test_macros.hpp>
#include <array>
#include <bitset>
#include <chrono>
#include <cstdlib>
#include <memory>
#include <optional>
#include <string>
#include "core/core.h"
#include "core/core_timing.h"
namespace {
// Numbers are chosen randomly to make sure the correct one is given.
constexpr std::array<u64, 5> CB_IDS{{42, 144, 93, 1026, UINT64_C(0xFFFF7FFFF7FFFF)}};
constexpr std::array<u64, 5> calls_order{{2, 0, 1, 4, 3}};
std::array<s64, 5> delays{};
std::bitset<CB_IDS.size()> callbacks_ran_flags;
u64 expected_callback = 0;
template <unsigned int IDX>
std::optional<std::chrono::nanoseconds> HostCallbackTemplate(std::uintptr_t user_data, s64 time,
std::chrono::nanoseconds ns_late) {
static_assert(IDX < CB_IDS.size(), "IDX out of range");
callbacks_ran_flags.set(IDX);
REQUIRE(CB_IDS[IDX] == user_data);
REQUIRE(CB_IDS[IDX] == CB_IDS[calls_order[expected_callback]]);
delays[IDX] = ns_late.count();
++expected_callback;
return std::nullopt;
}
struct ScopeInit final {
ScopeInit() {
core_timing.SetMulticore(true);
core_timing.Initialize([]() {});
}
Core::Timing::CoreTiming core_timing;
};
u64 TestTimerSpeed(Core::Timing::CoreTiming& core_timing) {
const u64 start = core_timing.GetGlobalTimeNs().count();
volatile u64 placebo = 0;
for (std::size_t i = 0; i < 1000; i++) {
placebo = placebo + core_timing.GetGlobalTimeNs().count();
}
const u64 end = core_timing.GetGlobalTimeNs().count();
return end - start;
}
} // Anonymous namespace
TEST_CASE("CoreTiming[BasicOrder]", "[core]") {
ScopeInit guard;
auto& core_timing = guard.core_timing;
std::vector<std::shared_ptr<Core::Timing::EventType>> events{
Core::Timing::CreateEvent("callbackA", HostCallbackTemplate<0>),
Core::Timing::CreateEvent("callbackB", HostCallbackTemplate<1>),
Core::Timing::CreateEvent("callbackC", HostCallbackTemplate<2>),
Core::Timing::CreateEvent("callbackD", HostCallbackTemplate<3>),
Core::Timing::CreateEvent("callbackE", HostCallbackTemplate<4>),
};
expected_callback = 0;
core_timing.SyncPause(true);
const u64 one_micro = 1000U;
for (std::size_t i = 0; i < events.size(); i++) {
const u64 order = calls_order[i];
const auto future_ns = std::chrono::nanoseconds{static_cast<s64>(i * one_micro + 100)};
core_timing.ScheduleEvent(future_ns, events[order], CB_IDS[order]);
}
/// test pause
REQUIRE(callbacks_ran_flags.none());
core_timing.Pause(false); // No need to sync
while (core_timing.HasPendingEvents())
;
REQUIRE(callbacks_ran_flags.all());
for (std::size_t i = 0; i < delays.size(); i++) {
const double delay = static_cast<double>(delays[i]);
const double micro = delay / 1000.0f;
const double mili = micro / 1000.0f;
printf("HostTimer Pausing Delay[%zu]: %.3f %.6f\n", i, micro, mili);
}
}
TEST_CASE("CoreTiming[BasicOrderNoPausing]", "[core]") {
ScopeInit guard;
auto& core_timing = guard.core_timing;
std::vector<std::shared_ptr<Core::Timing::EventType>> events{
Core::Timing::CreateEvent("callbackA", HostCallbackTemplate<0>),
Core::Timing::CreateEvent("callbackB", HostCallbackTemplate<1>),
Core::Timing::CreateEvent("callbackC", HostCallbackTemplate<2>),
Core::Timing::CreateEvent("callbackD", HostCallbackTemplate<3>),
Core::Timing::CreateEvent("callbackE", HostCallbackTemplate<4>),
};
core_timing.SyncPause(true);
core_timing.SyncPause(false);
expected_callback = 0;
const u64 start = core_timing.GetGlobalTimeNs().count();
const u64 one_micro = 1000U;
for (std::size_t i = 0; i < events.size(); i++) {
const u64 order = calls_order[i];
const auto future_ns = std::chrono::nanoseconds{static_cast<s64>(i * one_micro + 100)};
core_timing.ScheduleEvent(future_ns, events[order], CB_IDS[order]);
}
const u64 end = core_timing.GetGlobalTimeNs().count();
const double scheduling_time = static_cast<double>(end - start);
const double timer_time = static_cast<double>(TestTimerSpeed(core_timing));
while (core_timing.HasPendingEvents())
;
REQUIRE(callbacks_ran_flags.all());
for (std::size_t i = 0; i < delays.size(); i++) {
const double delay = static_cast<double>(delays[i]);
const double micro = delay / 1000.0f;
const double mili = micro / 1000.0f;
printf("HostTimer No Pausing Delay[%zu]: %.3f %.6f\n", i, micro, mili);
}
const double micro = scheduling_time / 1000.0f;
const double mili = micro / 1000.0f;
printf("HostTimer No Pausing Scheduling Time: %.3f %.6f\n", micro, mili);
printf("HostTimer No Pausing Timer Time: %.3f %.6f\n", timer_time / 1000.f,
timer_time / 1000000.f);
}