mirror of
https://github.com/Sneed-Group/RobloxPotatoes
synced 2025-01-09 17:33:37 +00:00
143 lines
No EOL
5.5 KiB
Python
143 lines
No EOL
5.5 KiB
Python
import pyautogui
|
|
import win32api, win32con, win32gui
|
|
import cv2
|
|
import math
|
|
import time
|
|
import argparse
|
|
import os
|
|
import json
|
|
import numpy as np
|
|
from threading import Lock
|
|
|
|
# printing only warnings and error messages
|
|
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "1"
|
|
|
|
try:
|
|
import tensorflow as tf
|
|
from PIL import Image
|
|
except ImportError:
|
|
raise ImportError("ERROR: Failed to import libraries. Please refer to READEME.md file\n")
|
|
|
|
EXPORT_MODEL_VERSION = 1
|
|
|
|
|
|
class TFModel:
|
|
def __init__(self, dir_path) -> None:
|
|
# Assume model is in the parent directory for this file
|
|
self.model_dir = os.path.dirname(dir_path)
|
|
# make sure our exported SavedModel folder exists
|
|
with open(os.path.join(self.model_dir, "signature.json"), "r") as f:
|
|
self.signature = json.load(f)
|
|
self.model_file = os.path.join(self.model_dir, self.signature.get("filename"))
|
|
if not os.path.isfile(self.model_file):
|
|
raise FileNotFoundError(f"Model file does not exist")
|
|
self.inputs = self.signature.get("inputs")
|
|
self.outputs = self.signature.get("outputs")
|
|
self.lock = Lock()
|
|
|
|
# loading the saved model
|
|
self.model = tf.saved_model.load(tags=self.signature.get("tags"), export_dir=self.model_dir)
|
|
self.predict_fn = self.model.signatures["serving_default"]
|
|
|
|
# Look for the version in signature file.
|
|
# If it's not found or the doesn't match expected, print a message
|
|
version = self.signature.get("export_model_version")
|
|
if version is None or version != EXPORT_MODEL_VERSION:
|
|
print(
|
|
f"There has been a change to the model format. Please use a model with a signature 'export_model_version' that matches {EXPORT_MODEL_VERSION}."
|
|
)
|
|
|
|
def predict(self, image: Image.Image) -> dict:
|
|
with self.lock:
|
|
# create the feed dictionary that is the input to the model
|
|
feed_dict = {}
|
|
# first, add our image to the dictionary (comes from our signature.json file)
|
|
feed_dict[list(self.inputs.keys())[0]] = tf.convert_to_tensor(image)
|
|
# run the model!
|
|
outputs = self.predict_fn(**feed_dict)
|
|
# return the processed output
|
|
return self.process_output(outputs)
|
|
|
|
def process_output(self, outputs) -> dict:
|
|
# do a bit of postprocessing
|
|
out_keys = ["label", "confidence"]
|
|
results = {}
|
|
# since we actually ran on a batch of size 1, index out the items from the returned numpy arrays
|
|
for key, tf_val in outputs.items():
|
|
val = tf_val.numpy().tolist()[0]
|
|
if isinstance(val, bytes):
|
|
val = val.decode()
|
|
results[key] = val
|
|
confs = results["Confidences"]
|
|
labels = self.signature.get("classes").get("Label")
|
|
output = [dict(zip(out_keys, group)) for group in zip(labels, confs)]
|
|
sorted_output = {"predictions": sorted(output, key=lambda k: k["confidence"], reverse=True)}
|
|
return sorted_output
|
|
|
|
size_scale = 3
|
|
model = TFModel(dir_path=os.path.dirname(__file__))
|
|
while True:
|
|
# Get rect of Window
|
|
hwnd = win32gui.FindWindow(None, 'Roblox')
|
|
#hwnd = win32gui.FindWindow("UnrealWindow", None) # Fortnite
|
|
rect = win32gui.GetWindowRect(hwnd)
|
|
region = rect[0], rect[1], rect[2] - rect[0], rect[3] - rect[1]
|
|
|
|
# Get image of screen
|
|
ori_img = np.array(pyautogui.screenshot(region=region))
|
|
ori_img = cv2.resize(ori_img, (ori_img.shape[1] // size_scale, ori_img.shape[0] // size_scale))
|
|
image = np.expand_dims(ori_img, 0)
|
|
img_w, img_h = image.shape[2], image.shape[1]
|
|
|
|
# Detection
|
|
outputs = model.predict(image)
|
|
result = {key:value.numpy() for key,value in result.items()}
|
|
boxes = result['detection_boxes'][0]
|
|
scores = result['detection_scores'][0]
|
|
classes = result['detection_classes'][0]
|
|
|
|
# Check every detected object
|
|
detected_boxes = []
|
|
for i, box in enumerate(boxes):
|
|
# Choose only person(class:1)
|
|
if classes[i] == 1 and scores[i] >= 0.5:
|
|
ymin, xmin, ymax, xmax = tuple(box)
|
|
if ymin > 0.5 and ymax > 0.8: # CS:Go
|
|
#if int(xmin * img_w * 3) < 450: # Fortnite
|
|
continue
|
|
left, right, top, bottom = int(xmin * img_w), int(xmax * img_w), int(ymin * img_h), int(ymax * img_h)
|
|
detected_boxes.append((left, right, top, bottom))
|
|
#cv2.rectangle(ori_img, (left, top), (right, bottom), (255, 255, 0), 2)
|
|
|
|
print("Detected:", len(detected_boxes))
|
|
|
|
# Check Closest
|
|
if len(detected_boxes) >= 1:
|
|
min = 99999
|
|
at = 0
|
|
centers = []
|
|
for i, box in enumerate(detected_boxes):
|
|
x1, x2, y1, y2 = box
|
|
c_x = ((x2 - x1) / 2) + x1
|
|
c_y = ((y2 - y1) / 2) + y1
|
|
centers.append((c_x, c_y))
|
|
dist = math.sqrt(math.pow(img_w/2 - c_x, 2) + math.pow(img_h/2 - c_y, 2))
|
|
if dist < min:
|
|
min = dist
|
|
at = i
|
|
|
|
# Pixel difference between crosshair(center) and the closest object
|
|
x = centers[at][0] - img_w/2
|
|
y = centers[at][1] - img_h/2 - (detected_boxes[at][3] - detected_boxes[at][2]) * 0.45
|
|
|
|
# Move mouse and shoot
|
|
scale = 1.7 * size_scale
|
|
x = int(x * scale)
|
|
y = int(y * scale)
|
|
win32api.mouse_event(win32con.MOUSEEVENTF_MOVE, x, y, 0, 0)
|
|
time.sleep(0.05)
|
|
win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN, x, y, 0, 0)
|
|
time.sleep(0.1)
|
|
win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP, x, y, 0, 0)
|
|
|
|
time.sleep(0.1) |