agsamantha/node_modules/@langchain/community/dist/vectorstores/chroma.d.ts

252 lines
9.4 KiB
TypeScript
Raw Normal View History

2024-10-02 15:15:21 -05:00
import type { ChromaClient as ChromaClientT, Collection, ChromaClientParams, CollectionMetadata, Where } from "chromadb";
import type { EmbeddingsInterface } from "@langchain/core/embeddings";
import { VectorStore } from "@langchain/core/vectorstores";
import { Document } from "@langchain/core/documents";
type SharedChromaLibArgs = {
numDimensions?: number;
collectionName?: string;
filter?: object;
collectionMetadata?: CollectionMetadata;
clientParams?: Omit<ChromaClientParams, "path">;
};
/**
* Defines the arguments that can be passed to the `Chroma` class
* constructor. It can either contain a `url` for the Chroma database, the
* number of dimensions for the vectors (`numDimensions`), a
* `collectionName` for the collection to be used in the database, and a
* `filter` object; or it can contain an `index` which is an instance of
* `ChromaClientT`, along with the `numDimensions`, `collectionName`, and
* `filter`.
*/
export type ChromaLibArgs = ({
url?: string;
} & SharedChromaLibArgs) | ({
index?: ChromaClientT;
} & SharedChromaLibArgs);
/**
* Defines the parameters for the `delete` method in the `Chroma` class.
* It can either contain an array of `ids` of the documents to be deleted
* or a `filter` object to specify the documents to be deleted.
*/
export interface ChromaDeleteParams<T> {
ids?: string[];
filter?: T;
}
/**
* Chroma vector store integration.
*
* Setup:
* Install `@langchain/community` and `chromadb`.
*
* ```bash
* npm install @langchain/community chromadb
* ```
*
* ## [Constructor args](https://api.js.langchain.com/classes/langchain_community_vectorstores_chroma.Chroma.html#constructor)
*
* <details open>
* <summary><strong>Instantiate</strong></summary>
*
* ```typescript
* import { Chroma } from '@langchain/community/vectorstores/chroma';
* // Or other embeddings
* import { OpenAIEmbeddings } from '@langchain/openai';
*
* const embeddings = new OpenAIEmbeddings({
* model: "text-embedding-3-small",
* })
*
* const vectorStore = new Chroma(
* embeddings,
* {
* collectionName: "foo",
* url: "http://localhost:8000", // URL of the Chroma server
* }
* );
* ```
* </details>
*
* <br />
*
* <details>
* <summary><strong>Add documents</strong></summary>
*
* ```typescript
* import type { Document } from '@langchain/core/documents';
*
* const document1 = { pageContent: "foo", metadata: { baz: "bar" } };
* const document2 = { pageContent: "thud", metadata: { bar: "baz" } };
* const document3 = { pageContent: "i will be deleted :(", metadata: {} };
*
* const documents: Document[] = [document1, document2, document3];
* const ids = ["1", "2", "3"];
* await vectorStore.addDocuments(documents, { ids });
* ```
* </details>
*
* <br />
*
* <details>
* <summary><strong>Delete documents</strong></summary>
*
* ```typescript
* await vectorStore.delete({ ids: ["3"] });
* ```
* </details>
*
* <br />
*
* <details>
* <summary><strong>Similarity search</strong></summary>
*
* ```typescript
* const results = await vectorStore.similaritySearch("thud", 1);
* for (const doc of results) {
* console.log(`* ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
* }
* // Output: * thud [{"baz":"bar"}]
* ```
* </details>
*
* <br />
*
*
* <details>
* <summary><strong>Similarity search with filter</strong></summary>
*
* ```typescript
* const resultsWithFilter = await vectorStore.similaritySearch("thud", 1, { baz: "bar" });
*
* for (const doc of resultsWithFilter) {
* console.log(`* ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
* }
* // Output: * foo [{"baz":"bar"}]
* ```
* </details>
*
* <br />
*
*
* <details>
* <summary><strong>Similarity search with score</strong></summary>
*
* ```typescript
* const resultsWithScore = await vectorStore.similaritySearchWithScore("qux", 1);
* for (const [doc, score] of resultsWithScore) {
* console.log(`* [SIM=${score.toFixed(6)}] ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
* }
* // Output: * [SIM=0.000000] qux [{"bar":"baz","baz":"bar"}]
* ```
* </details>
*
* <br />
*
* <details>
* <summary><strong>As a retriever</strong></summary>
*
* ```typescript
* const retriever = vectorStore.asRetriever({
* searchType: "mmr", // Leave blank for standard similarity search
* k: 1,
* });
* const resultAsRetriever = await retriever.invoke("thud");
* console.log(resultAsRetriever);
*
* // Output: [Document({ metadata: { "baz":"bar" }, pageContent: "thud" })]
* ```
* </details>
*
* <br />
*/
export declare class Chroma extends VectorStore {
FilterType: Where;
index?: ChromaClientT;
collection?: Collection;
collectionName: string;
collectionMetadata?: CollectionMetadata;
numDimensions?: number;
clientParams?: Omit<ChromaClientParams, "path">;
url: string;
filter?: object;
_vectorstoreType(): string;
constructor(embeddings: EmbeddingsInterface, args: ChromaLibArgs);
/**
* Adds documents to the Chroma database. The documents are first
* converted to vectors using the `embeddings` instance, and then added to
* the database.
* @param documents An array of `Document` instances to be added to the database.
* @param options Optional. An object containing an array of `ids` for the documents.
* @returns A promise that resolves when the documents have been added to the database.
*/
addDocuments(documents: Document[], options?: {
ids?: string[];
}): Promise<string[]>;
/**
* Ensures that a collection exists in the Chroma database. If the
* collection does not exist, it is created.
* @returns A promise that resolves with the `Collection` instance.
*/
ensureCollection(): Promise<Collection>;
/**
* Adds vectors to the Chroma database. The vectors are associated with
* the provided documents.
* @param vectors An array of vectors to be added to the database.
* @param documents An array of `Document` instances associated with the vectors.
* @param options Optional. An object containing an array of `ids` for the vectors.
* @returns A promise that resolves with an array of document IDs when the vectors have been added to the database.
*/
addVectors(vectors: number[][], documents: Document[], options?: {
ids?: string[];
}): Promise<string[]>;
/**
* Deletes documents from the Chroma database. The documents to be deleted
* can be specified by providing an array of `ids` or a `filter` object.
* @param params An object containing either an array of `ids` of the documents to be deleted or a `filter` object to specify the documents to be deleted.
* @returns A promise that resolves when the specified documents have been deleted from the database.
*/
delete(params: ChromaDeleteParams<this["FilterType"]>): Promise<void>;
/**
* Searches for vectors in the Chroma database that are similar to the
* provided query vector. The search can be filtered using the provided
* `filter` object or the `filter` property of the `Chroma` instance.
* @param query The query vector.
* @param k The number of similar vectors to return.
* @param filter Optional. A `filter` object to filter the search results.
* @returns A promise that resolves with an array of tuples, each containing a `Document` instance and a similarity score.
*/
similaritySearchVectorWithScore(query: number[], k: number, filter?: this["FilterType"]): Promise<[Document<Record<string, any>>, number][]>;
/**
* Creates a new `Chroma` instance from an array of text strings. The text
* strings are converted to `Document` instances and added to the Chroma
* database.
* @param texts An array of text strings.
* @param metadatas An array of metadata objects or a single metadata object. If an array is provided, it must have the same length as the `texts` array.
* @param embeddings An `Embeddings` instance used to generate embeddings for the documents.
* @param dbConfig A `ChromaLibArgs` object containing the configuration for the Chroma database.
* @returns A promise that resolves with a new `Chroma` instance.
*/
static fromTexts(texts: string[], metadatas: object[] | object, embeddings: EmbeddingsInterface, dbConfig: ChromaLibArgs): Promise<Chroma>;
/**
* Creates a new `Chroma` instance from an array of `Document` instances.
* The documents are added to the Chroma database.
* @param docs An array of `Document` instances.
* @param embeddings An `Embeddings` instance used to generate embeddings for the documents.
* @param dbConfig A `ChromaLibArgs` object containing the configuration for the Chroma database.
* @returns A promise that resolves with a new `Chroma` instance.
*/
static fromDocuments(docs: Document[], embeddings: EmbeddingsInterface, dbConfig: ChromaLibArgs): Promise<Chroma>;
/**
* Creates a new `Chroma` instance from an existing collection in the
* Chroma database.
* @param embeddings An `Embeddings` instance used to generate embeddings for the documents.
* @param dbConfig A `ChromaLibArgs` object containing the configuration for the Chroma database.
* @returns A promise that resolves with a new `Chroma` instance.
*/
static fromExistingCollection(embeddings: EmbeddingsInterface, dbConfig: ChromaLibArgs): Promise<Chroma>;
/** @ignore */
static imports(): Promise<{
ChromaClient: typeof ChromaClientT;
}>;
}
export {};