251 lines
9.4 KiB
TypeScript
251 lines
9.4 KiB
TypeScript
import type { ChromaClient as ChromaClientT, Collection, ChromaClientParams, CollectionMetadata, Where } from "chromadb";
|
|
import type { EmbeddingsInterface } from "@langchain/core/embeddings";
|
|
import { VectorStore } from "@langchain/core/vectorstores";
|
|
import { Document } from "@langchain/core/documents";
|
|
type SharedChromaLibArgs = {
|
|
numDimensions?: number;
|
|
collectionName?: string;
|
|
filter?: object;
|
|
collectionMetadata?: CollectionMetadata;
|
|
clientParams?: Omit<ChromaClientParams, "path">;
|
|
};
|
|
/**
|
|
* Defines the arguments that can be passed to the `Chroma` class
|
|
* constructor. It can either contain a `url` for the Chroma database, the
|
|
* number of dimensions for the vectors (`numDimensions`), a
|
|
* `collectionName` for the collection to be used in the database, and a
|
|
* `filter` object; or it can contain an `index` which is an instance of
|
|
* `ChromaClientT`, along with the `numDimensions`, `collectionName`, and
|
|
* `filter`.
|
|
*/
|
|
export type ChromaLibArgs = ({
|
|
url?: string;
|
|
} & SharedChromaLibArgs) | ({
|
|
index?: ChromaClientT;
|
|
} & SharedChromaLibArgs);
|
|
/**
|
|
* Defines the parameters for the `delete` method in the `Chroma` class.
|
|
* It can either contain an array of `ids` of the documents to be deleted
|
|
* or a `filter` object to specify the documents to be deleted.
|
|
*/
|
|
export interface ChromaDeleteParams<T> {
|
|
ids?: string[];
|
|
filter?: T;
|
|
}
|
|
/**
|
|
* Chroma vector store integration.
|
|
*
|
|
* Setup:
|
|
* Install `@langchain/community` and `chromadb`.
|
|
*
|
|
* ```bash
|
|
* npm install @langchain/community chromadb
|
|
* ```
|
|
*
|
|
* ## [Constructor args](https://api.js.langchain.com/classes/langchain_community_vectorstores_chroma.Chroma.html#constructor)
|
|
*
|
|
* <details open>
|
|
* <summary><strong>Instantiate</strong></summary>
|
|
*
|
|
* ```typescript
|
|
* import { Chroma } from '@langchain/community/vectorstores/chroma';
|
|
* // Or other embeddings
|
|
* import { OpenAIEmbeddings } from '@langchain/openai';
|
|
*
|
|
* const embeddings = new OpenAIEmbeddings({
|
|
* model: "text-embedding-3-small",
|
|
* })
|
|
*
|
|
* const vectorStore = new Chroma(
|
|
* embeddings,
|
|
* {
|
|
* collectionName: "foo",
|
|
* url: "http://localhost:8000", // URL of the Chroma server
|
|
* }
|
|
* );
|
|
* ```
|
|
* </details>
|
|
*
|
|
* <br />
|
|
*
|
|
* <details>
|
|
* <summary><strong>Add documents</strong></summary>
|
|
*
|
|
* ```typescript
|
|
* import type { Document } from '@langchain/core/documents';
|
|
*
|
|
* const document1 = { pageContent: "foo", metadata: { baz: "bar" } };
|
|
* const document2 = { pageContent: "thud", metadata: { bar: "baz" } };
|
|
* const document3 = { pageContent: "i will be deleted :(", metadata: {} };
|
|
*
|
|
* const documents: Document[] = [document1, document2, document3];
|
|
* const ids = ["1", "2", "3"];
|
|
* await vectorStore.addDocuments(documents, { ids });
|
|
* ```
|
|
* </details>
|
|
*
|
|
* <br />
|
|
*
|
|
* <details>
|
|
* <summary><strong>Delete documents</strong></summary>
|
|
*
|
|
* ```typescript
|
|
* await vectorStore.delete({ ids: ["3"] });
|
|
* ```
|
|
* </details>
|
|
*
|
|
* <br />
|
|
*
|
|
* <details>
|
|
* <summary><strong>Similarity search</strong></summary>
|
|
*
|
|
* ```typescript
|
|
* const results = await vectorStore.similaritySearch("thud", 1);
|
|
* for (const doc of results) {
|
|
* console.log(`* ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
|
|
* }
|
|
* // Output: * thud [{"baz":"bar"}]
|
|
* ```
|
|
* </details>
|
|
*
|
|
* <br />
|
|
*
|
|
*
|
|
* <details>
|
|
* <summary><strong>Similarity search with filter</strong></summary>
|
|
*
|
|
* ```typescript
|
|
* const resultsWithFilter = await vectorStore.similaritySearch("thud", 1, { baz: "bar" });
|
|
*
|
|
* for (const doc of resultsWithFilter) {
|
|
* console.log(`* ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
|
|
* }
|
|
* // Output: * foo [{"baz":"bar"}]
|
|
* ```
|
|
* </details>
|
|
*
|
|
* <br />
|
|
*
|
|
*
|
|
* <details>
|
|
* <summary><strong>Similarity search with score</strong></summary>
|
|
*
|
|
* ```typescript
|
|
* const resultsWithScore = await vectorStore.similaritySearchWithScore("qux", 1);
|
|
* for (const [doc, score] of resultsWithScore) {
|
|
* console.log(`* [SIM=${score.toFixed(6)}] ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
|
|
* }
|
|
* // Output: * [SIM=0.000000] qux [{"bar":"baz","baz":"bar"}]
|
|
* ```
|
|
* </details>
|
|
*
|
|
* <br />
|
|
*
|
|
* <details>
|
|
* <summary><strong>As a retriever</strong></summary>
|
|
*
|
|
* ```typescript
|
|
* const retriever = vectorStore.asRetriever({
|
|
* searchType: "mmr", // Leave blank for standard similarity search
|
|
* k: 1,
|
|
* });
|
|
* const resultAsRetriever = await retriever.invoke("thud");
|
|
* console.log(resultAsRetriever);
|
|
*
|
|
* // Output: [Document({ metadata: { "baz":"bar" }, pageContent: "thud" })]
|
|
* ```
|
|
* </details>
|
|
*
|
|
* <br />
|
|
*/
|
|
export declare class Chroma extends VectorStore {
|
|
FilterType: Where;
|
|
index?: ChromaClientT;
|
|
collection?: Collection;
|
|
collectionName: string;
|
|
collectionMetadata?: CollectionMetadata;
|
|
numDimensions?: number;
|
|
clientParams?: Omit<ChromaClientParams, "path">;
|
|
url: string;
|
|
filter?: object;
|
|
_vectorstoreType(): string;
|
|
constructor(embeddings: EmbeddingsInterface, args: ChromaLibArgs);
|
|
/**
|
|
* Adds documents to the Chroma database. The documents are first
|
|
* converted to vectors using the `embeddings` instance, and then added to
|
|
* the database.
|
|
* @param documents An array of `Document` instances to be added to the database.
|
|
* @param options Optional. An object containing an array of `ids` for the documents.
|
|
* @returns A promise that resolves when the documents have been added to the database.
|
|
*/
|
|
addDocuments(documents: Document[], options?: {
|
|
ids?: string[];
|
|
}): Promise<string[]>;
|
|
/**
|
|
* Ensures that a collection exists in the Chroma database. If the
|
|
* collection does not exist, it is created.
|
|
* @returns A promise that resolves with the `Collection` instance.
|
|
*/
|
|
ensureCollection(): Promise<Collection>;
|
|
/**
|
|
* Adds vectors to the Chroma database. The vectors are associated with
|
|
* the provided documents.
|
|
* @param vectors An array of vectors to be added to the database.
|
|
* @param documents An array of `Document` instances associated with the vectors.
|
|
* @param options Optional. An object containing an array of `ids` for the vectors.
|
|
* @returns A promise that resolves with an array of document IDs when the vectors have been added to the database.
|
|
*/
|
|
addVectors(vectors: number[][], documents: Document[], options?: {
|
|
ids?: string[];
|
|
}): Promise<string[]>;
|
|
/**
|
|
* Deletes documents from the Chroma database. The documents to be deleted
|
|
* can be specified by providing an array of `ids` or a `filter` object.
|
|
* @param params An object containing either an array of `ids` of the documents to be deleted or a `filter` object to specify the documents to be deleted.
|
|
* @returns A promise that resolves when the specified documents have been deleted from the database.
|
|
*/
|
|
delete(params: ChromaDeleteParams<this["FilterType"]>): Promise<void>;
|
|
/**
|
|
* Searches for vectors in the Chroma database that are similar to the
|
|
* provided query vector. The search can be filtered using the provided
|
|
* `filter` object or the `filter` property of the `Chroma` instance.
|
|
* @param query The query vector.
|
|
* @param k The number of similar vectors to return.
|
|
* @param filter Optional. A `filter` object to filter the search results.
|
|
* @returns A promise that resolves with an array of tuples, each containing a `Document` instance and a similarity score.
|
|
*/
|
|
similaritySearchVectorWithScore(query: number[], k: number, filter?: this["FilterType"]): Promise<[Document<Record<string, any>>, number][]>;
|
|
/**
|
|
* Creates a new `Chroma` instance from an array of text strings. The text
|
|
* strings are converted to `Document` instances and added to the Chroma
|
|
* database.
|
|
* @param texts An array of text strings.
|
|
* @param metadatas An array of metadata objects or a single metadata object. If an array is provided, it must have the same length as the `texts` array.
|
|
* @param embeddings An `Embeddings` instance used to generate embeddings for the documents.
|
|
* @param dbConfig A `ChromaLibArgs` object containing the configuration for the Chroma database.
|
|
* @returns A promise that resolves with a new `Chroma` instance.
|
|
*/
|
|
static fromTexts(texts: string[], metadatas: object[] | object, embeddings: EmbeddingsInterface, dbConfig: ChromaLibArgs): Promise<Chroma>;
|
|
/**
|
|
* Creates a new `Chroma` instance from an array of `Document` instances.
|
|
* The documents are added to the Chroma database.
|
|
* @param docs An array of `Document` instances.
|
|
* @param embeddings An `Embeddings` instance used to generate embeddings for the documents.
|
|
* @param dbConfig A `ChromaLibArgs` object containing the configuration for the Chroma database.
|
|
* @returns A promise that resolves with a new `Chroma` instance.
|
|
*/
|
|
static fromDocuments(docs: Document[], embeddings: EmbeddingsInterface, dbConfig: ChromaLibArgs): Promise<Chroma>;
|
|
/**
|
|
* Creates a new `Chroma` instance from an existing collection in the
|
|
* Chroma database.
|
|
* @param embeddings An `Embeddings` instance used to generate embeddings for the documents.
|
|
* @param dbConfig A `ChromaLibArgs` object containing the configuration for the Chroma database.
|
|
* @returns A promise that resolves with a new `Chroma` instance.
|
|
*/
|
|
static fromExistingCollection(embeddings: EmbeddingsInterface, dbConfig: ChromaLibArgs): Promise<Chroma>;
|
|
/** @ignore */
|
|
static imports(): Promise<{
|
|
ChromaClient: typeof ChromaClientT;
|
|
}>;
|
|
}
|
|
export {};
|