164 lines
5.6 KiB
JavaScript
164 lines
5.6 KiB
JavaScript
|
"use strict";
|
||
|
var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) {
|
||
|
if (k2 === undefined) k2 = k;
|
||
|
var desc = Object.getOwnPropertyDescriptor(m, k);
|
||
|
if (!desc || ("get" in desc ? !m.__esModule : desc.writable || desc.configurable)) {
|
||
|
desc = { enumerable: true, get: function() { return m[k]; } };
|
||
|
}
|
||
|
Object.defineProperty(o, k2, desc);
|
||
|
}) : (function(o, m, k, k2) {
|
||
|
if (k2 === undefined) k2 = k;
|
||
|
o[k2] = m[k];
|
||
|
}));
|
||
|
var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) {
|
||
|
Object.defineProperty(o, "default", { enumerable: true, value: v });
|
||
|
}) : function(o, v) {
|
||
|
o["default"] = v;
|
||
|
});
|
||
|
var __importStar = (this && this.__importStar) || function (mod) {
|
||
|
if (mod && mod.__esModule) return mod;
|
||
|
var result = {};
|
||
|
if (mod != null) for (var k in mod) if (k !== "default" && Object.prototype.hasOwnProperty.call(mod, k)) __createBinding(result, mod, k);
|
||
|
__setModuleDefault(result, mod);
|
||
|
return result;
|
||
|
};
|
||
|
Object.defineProperty(exports, "__esModule", { value: true });
|
||
|
exports.ChatWebLLM = void 0;
|
||
|
const chat_models_1 = require("@langchain/core/language_models/chat_models");
|
||
|
const messages_1 = require("@langchain/core/messages");
|
||
|
const outputs_1 = require("@langchain/core/outputs");
|
||
|
const webllm = __importStar(require("@mlc-ai/web-llm"));
|
||
|
/**
|
||
|
* To use this model you need to have the `@mlc-ai/web-llm` module installed.
|
||
|
* This can be installed using `npm install -S @mlc-ai/web-llm`.
|
||
|
*
|
||
|
* You can see a list of available model records here:
|
||
|
* https://github.com/mlc-ai/web-llm/blob/main/src/config.ts
|
||
|
* @example
|
||
|
* ```typescript
|
||
|
* // Initialize the ChatWebLLM model with the model record.
|
||
|
* const model = new ChatWebLLM({
|
||
|
* model: "Phi-3-mini-4k-instruct-q4f16_1-MLC",
|
||
|
* chatOptions: {
|
||
|
* temperature: 0.5,
|
||
|
* },
|
||
|
* });
|
||
|
*
|
||
|
* // Call the model with a message and await the response.
|
||
|
* const response = await model.invoke([
|
||
|
* new HumanMessage({ content: "My name is John." }),
|
||
|
* ]);
|
||
|
* ```
|
||
|
*/
|
||
|
class ChatWebLLM extends chat_models_1.SimpleChatModel {
|
||
|
static lc_name() {
|
||
|
return "ChatWebLLM";
|
||
|
}
|
||
|
constructor(inputs) {
|
||
|
super(inputs);
|
||
|
Object.defineProperty(this, "engine", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
Object.defineProperty(this, "appConfig", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
Object.defineProperty(this, "chatOptions", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
Object.defineProperty(this, "temperature", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
Object.defineProperty(this, "model", {
|
||
|
enumerable: true,
|
||
|
configurable: true,
|
||
|
writable: true,
|
||
|
value: void 0
|
||
|
});
|
||
|
this.appConfig = inputs.appConfig;
|
||
|
this.chatOptions = inputs.chatOptions;
|
||
|
this.model = inputs.model;
|
||
|
this.temperature = inputs.temperature;
|
||
|
this.engine = new webllm.MLCEngine({
|
||
|
appConfig: this.appConfig,
|
||
|
});
|
||
|
}
|
||
|
_llmType() {
|
||
|
return "web-llm";
|
||
|
}
|
||
|
async initialize(progressCallback) {
|
||
|
if (progressCallback !== undefined) {
|
||
|
this.engine.setInitProgressCallback(progressCallback);
|
||
|
}
|
||
|
await this.reload(this.model, this.chatOptions);
|
||
|
}
|
||
|
async reload(modelId, newChatOpts) {
|
||
|
await this.engine.reload(modelId, newChatOpts);
|
||
|
}
|
||
|
async *_streamResponseChunks(messages, options, runManager) {
|
||
|
const messagesInput = messages.map((message) => {
|
||
|
if (typeof message.content !== "string") {
|
||
|
throw new Error("ChatWebLLM does not support non-string message content in sessions.");
|
||
|
}
|
||
|
const langChainType = message._getType();
|
||
|
let role;
|
||
|
if (langChainType === "ai") {
|
||
|
role = "assistant";
|
||
|
}
|
||
|
else if (langChainType === "human") {
|
||
|
role = "user";
|
||
|
}
|
||
|
else if (langChainType === "system") {
|
||
|
role = "system";
|
||
|
}
|
||
|
else {
|
||
|
throw new Error("Function, tool, and generic messages are not supported.");
|
||
|
}
|
||
|
return {
|
||
|
role,
|
||
|
content: message.content,
|
||
|
};
|
||
|
});
|
||
|
const stream = await this.engine.chat.completions.create({
|
||
|
stream: true,
|
||
|
messages: messagesInput,
|
||
|
stop: options.stop,
|
||
|
logprobs: true,
|
||
|
});
|
||
|
for await (const chunk of stream) {
|
||
|
// Last chunk has undefined content
|
||
|
const text = chunk.choices[0].delta.content ?? "";
|
||
|
yield new outputs_1.ChatGenerationChunk({
|
||
|
text,
|
||
|
message: new messages_1.AIMessageChunk({
|
||
|
content: text,
|
||
|
additional_kwargs: {
|
||
|
logprobs: chunk.choices[0].logprobs,
|
||
|
finish_reason: chunk.choices[0].finish_reason,
|
||
|
},
|
||
|
}),
|
||
|
});
|
||
|
await runManager?.handleLLMNewToken(text);
|
||
|
}
|
||
|
}
|
||
|
async _call(messages, options, runManager) {
|
||
|
const chunks = [];
|
||
|
for await (const chunk of this._streamResponseChunks(messages, options, runManager)) {
|
||
|
chunks.push(chunk.text);
|
||
|
}
|
||
|
return chunks.join("");
|
||
|
}
|
||
|
}
|
||
|
exports.ChatWebLLM = ChatWebLLM;
|