agsamantha/node_modules/langchain/dist/chains/conversation.cjs

48 lines
1.7 KiB
JavaScript
Raw Normal View History

2024-10-02 15:15:21 -05:00
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.ConversationChain = exports.DEFAULT_TEMPLATE = void 0;
const prompts_1 = require("@langchain/core/prompts");
const llm_chain_js_1 = require("./llm_chain.cjs");
const buffer_memory_js_1 = require("../memory/buffer_memory.cjs");
exports.DEFAULT_TEMPLATE = `The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
Current conversation:
{history}
Human: {input}
AI:`;
/**
* A class for conducting conversations between a human and an AI. It
* extends the {@link LLMChain} class.
* @example
* ```typescript
* const model = new ChatOpenAI({});
* const chain = new ConversationChain({ llm: model });
*
* // Sending a greeting to the conversation chain
* const res1 = await chain.call({ input: "Hi! I'm Jim." });
* console.log({ res1 });
*
* // Following up with a question in the conversation
* const res2 = await chain.call({ input: "What's my name?" });
* console.log({ res2 });
* ```
*/
class ConversationChain extends llm_chain_js_1.LLMChain {
static lc_name() {
return "ConversationChain";
}
constructor({ prompt, outputKey, memory, ...rest }) {
super({
prompt: prompt ??
new prompts_1.PromptTemplate({
template: exports.DEFAULT_TEMPLATE,
inputVariables: ["history", "input"],
}),
outputKey: outputKey ?? "response",
memory: memory ?? new buffer_memory_js_1.BufferMemory(),
...rest,
});
}
}
exports.ConversationChain = ConversationChain;