47 lines
1.7 KiB
JavaScript
47 lines
1.7 KiB
JavaScript
"use strict";
|
|
Object.defineProperty(exports, "__esModule", { value: true });
|
|
exports.ConversationChain = exports.DEFAULT_TEMPLATE = void 0;
|
|
const prompts_1 = require("@langchain/core/prompts");
|
|
const llm_chain_js_1 = require("./llm_chain.cjs");
|
|
const buffer_memory_js_1 = require("../memory/buffer_memory.cjs");
|
|
exports.DEFAULT_TEMPLATE = `The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
|
|
|
|
Current conversation:
|
|
{history}
|
|
Human: {input}
|
|
AI:`;
|
|
/**
|
|
* A class for conducting conversations between a human and an AI. It
|
|
* extends the {@link LLMChain} class.
|
|
* @example
|
|
* ```typescript
|
|
* const model = new ChatOpenAI({});
|
|
* const chain = new ConversationChain({ llm: model });
|
|
*
|
|
* // Sending a greeting to the conversation chain
|
|
* const res1 = await chain.call({ input: "Hi! I'm Jim." });
|
|
* console.log({ res1 });
|
|
*
|
|
* // Following up with a question in the conversation
|
|
* const res2 = await chain.call({ input: "What's my name?" });
|
|
* console.log({ res2 });
|
|
* ```
|
|
*/
|
|
class ConversationChain extends llm_chain_js_1.LLMChain {
|
|
static lc_name() {
|
|
return "ConversationChain";
|
|
}
|
|
constructor({ prompt, outputKey, memory, ...rest }) {
|
|
super({
|
|
prompt: prompt ??
|
|
new prompts_1.PromptTemplate({
|
|
template: exports.DEFAULT_TEMPLATE,
|
|
inputVariables: ["history", "input"],
|
|
}),
|
|
outputKey: outputKey ?? "response",
|
|
memory: memory ?? new buffer_memory_js_1.BufferMemory(),
|
|
...rest,
|
|
});
|
|
}
|
|
}
|
|
exports.ConversationChain = ConversationChain;
|