agsamantha/node_modules/@langchain/community/dist/embeddings/alibaba_tongyi.d.ts

77 lines
2.9 KiB
TypeScript
Raw Normal View History

2024-10-02 15:15:21 -05:00
import { Embeddings, type EmbeddingsParams } from "@langchain/core/embeddings";
export interface AlibabaTongyiEmbeddingsParams extends EmbeddingsParams {
/** Model name to use */
modelName: "text-embedding-v2";
/**
* Timeout to use when making requests to AlibabaTongyi.
*/
timeout?: number;
/**
* The maximum number of documents to embed in a single request. This is
* limited by the AlibabaTongyi API to a maximum of 2048.
*/
batchSize?: number;
/**
* Whether to strip new lines from the input text.
*/
stripNewLines?: boolean;
parameters?: {
/**
* query document document
*
* query
* document,
* "document"
*/
text_type?: "query" | "document";
};
}
interface EmbeddingCreateParams {
model: AlibabaTongyiEmbeddingsParams["modelName"];
input: {
texts: string[];
};
parameters?: AlibabaTongyiEmbeddingsParams["parameters"];
}
export declare class AlibabaTongyiEmbeddings extends Embeddings implements AlibabaTongyiEmbeddingsParams {
modelName: AlibabaTongyiEmbeddingsParams["modelName"];
batchSize: number;
stripNewLines: boolean;
apiKey: string;
parameters: EmbeddingCreateParams["parameters"];
constructor(fields?: Partial<AlibabaTongyiEmbeddingsParams> & {
verbose?: boolean;
apiKey?: string;
});
/**
* Method to generate embeddings for an array of documents. Splits the
* documents into batches and makes requests to the AlibabaTongyi API to generate
* embeddings.
* @param texts Array of documents to generate embeddings for.
* @returns Promise that resolves to a 2D array of embeddings for each document.
*/
embedDocuments(texts: string[]): Promise<number[][]>;
/**
* Method to generate an embedding for a single document. Calls the
* embeddingWithRetry method with the document as the input.
* @param text Document to generate an embedding for.
* @returns Promise that resolves to an embedding for the document.
*/
embedQuery(text: string): Promise<number[]>;
/**
* Method to generate an embedding params.
* @param texts Array of documents to generate embeddings for.
* @returns an embedding params.
*/
private getParams;
/**
* Private method to make a request to the OpenAI API to generate
* embeddings. Handles the retry logic and returns the response from the
* API.
* @param request Request to send to the OpenAI API.
* @returns Promise that resolves to the response from the API.
*/
private embeddingWithRetry;
}
export {};