247 lines
9 KiB
TypeScript
247 lines
9 KiB
TypeScript
import type { SupabaseClient } from "@supabase/supabase-js";
|
|
import type { PostgrestFilterBuilder } from "@supabase/postgrest-js";
|
|
import { MaxMarginalRelevanceSearchOptions, VectorStore } from "@langchain/core/vectorstores";
|
|
import type { EmbeddingsInterface } from "@langchain/core/embeddings";
|
|
import { Document } from "@langchain/core/documents";
|
|
export type SupabaseMetadata = Record<string, any>;
|
|
export type SupabaseFilter = PostgrestFilterBuilder<any, any, any>;
|
|
export type SupabaseFilterRPCCall = (rpcCall: SupabaseFilter) => SupabaseFilter;
|
|
/**
|
|
* Interface for the response returned when searching embeddings.
|
|
*/
|
|
interface SearchEmbeddingsResponse {
|
|
id: number;
|
|
content: string;
|
|
metadata: object;
|
|
embedding: number[];
|
|
similarity: number;
|
|
}
|
|
/**
|
|
* Interface for the arguments required to initialize a Supabase library.
|
|
*/
|
|
export interface SupabaseLibArgs {
|
|
client: SupabaseClient;
|
|
tableName?: string;
|
|
queryName?: string;
|
|
filter?: SupabaseMetadata | SupabaseFilterRPCCall;
|
|
upsertBatchSize?: number;
|
|
}
|
|
/**
|
|
* Supabase vector store integration.
|
|
*
|
|
* Setup:
|
|
* Install `@langchain/community` and `@supabase/supabase-js`.
|
|
*
|
|
* ```bash
|
|
* npm install @langchain/community @supabase/supabase-js
|
|
* ```
|
|
*
|
|
* See https://js.langchain.com/docs/integrations/vectorstores/supabase for
|
|
* instructions on how to set up your Supabase instance.
|
|
*
|
|
* ## [Constructor args](https://api.js.langchain.com/classes/_langchain_community.vectorstores_supabase.SupabaseVectorStore.html#constructor)
|
|
*
|
|
* <details open>
|
|
* <summary><strong>Instantiate</strong></summary>
|
|
*
|
|
* ```typescript
|
|
* import { SupabaseVectorStore } from "@langchain/community/vectorstores/supabase";
|
|
* import { OpenAIEmbeddings } from "@langchain/openai";
|
|
*
|
|
* import { createClient } from "@supabase/supabase-js";
|
|
*
|
|
* const embeddings = new OpenAIEmbeddings({
|
|
* model: "text-embedding-3-small",
|
|
* });
|
|
*
|
|
* const supabaseClient = createClient(
|
|
* process.env.SUPABASE_URL,
|
|
* process.env.SUPABASE_PRIVATE_KEY
|
|
* );
|
|
*
|
|
* const vectorStore = new SupabaseVectorStore(embeddings, {
|
|
* client: supabaseClient,
|
|
* tableName: "documents",
|
|
* queryName: "match_documents",
|
|
* });
|
|
* ```
|
|
* </details>
|
|
*
|
|
* <br />
|
|
*
|
|
* <details>
|
|
* <summary><strong>Add documents</strong></summary>
|
|
*
|
|
* ```typescript
|
|
* import type { Document } from '@langchain/core/documents';
|
|
*
|
|
* const document1 = { pageContent: "foo", metadata: { baz: "bar" } };
|
|
* const document2 = { pageContent: "thud", metadata: { bar: "baz" } };
|
|
* const document3 = { pageContent: "i will be deleted :(", metadata: {} };
|
|
*
|
|
* const documents: Document[] = [document1, document2, document3];
|
|
* const ids = ["1", "2", "3"];
|
|
* await vectorStore.addDocuments(documents, { ids });
|
|
* ```
|
|
* </details>
|
|
*
|
|
* <br />
|
|
*
|
|
* <details>
|
|
* <summary><strong>Delete documents</strong></summary>
|
|
*
|
|
* ```typescript
|
|
* await vectorStore.delete({ ids: ["3"] });
|
|
* ```
|
|
* </details>
|
|
*
|
|
* <br />
|
|
*
|
|
* <details>
|
|
* <summary><strong>Similarity search</strong></summary>
|
|
*
|
|
* ```typescript
|
|
* const results = await vectorStore.similaritySearch("thud", 1);
|
|
* for (const doc of results) {
|
|
* console.log(`* ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
|
|
* }
|
|
* // Output: * thud [{"baz":"bar"}]
|
|
* ```
|
|
* </details>
|
|
*
|
|
* <br />
|
|
*
|
|
*
|
|
* <details>
|
|
* <summary><strong>Similarity search with filter</strong></summary>
|
|
*
|
|
* ```typescript
|
|
* const resultsWithFilter = await vectorStore.similaritySearch("thud", 1, { baz: "bar" });
|
|
*
|
|
* for (const doc of resultsWithFilter) {
|
|
* console.log(`* ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
|
|
* }
|
|
* // Output: * foo [{"baz":"bar"}]
|
|
* ```
|
|
* </details>
|
|
*
|
|
* <br />
|
|
*
|
|
*
|
|
* <details>
|
|
* <summary><strong>Similarity search with score</strong></summary>
|
|
*
|
|
* ```typescript
|
|
* const resultsWithScore = await vectorStore.similaritySearchWithScore("qux", 1);
|
|
* for (const [doc, score] of resultsWithScore) {
|
|
* console.log(`* [SIM=${score.toFixed(6)}] ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
|
|
* }
|
|
* // Output: * [SIM=0.000000] qux [{"bar":"baz","baz":"bar"}]
|
|
* ```
|
|
* </details>
|
|
*
|
|
* <br />
|
|
*
|
|
* <details>
|
|
* <summary><strong>As a retriever</strong></summary>
|
|
*
|
|
* ```typescript
|
|
* const retriever = vectorStore.asRetriever({
|
|
* searchType: "mmr", // Leave blank for standard similarity search
|
|
* k: 1,
|
|
* });
|
|
* const resultAsRetriever = await retriever.invoke("thud");
|
|
* console.log(resultAsRetriever);
|
|
*
|
|
* // Output: [Document({ metadata: { "baz":"bar" }, pageContent: "thud" })]
|
|
* ```
|
|
* </details>
|
|
*
|
|
* <br />
|
|
*/
|
|
export declare class SupabaseVectorStore extends VectorStore {
|
|
FilterType: SupabaseMetadata | SupabaseFilterRPCCall;
|
|
client: SupabaseClient;
|
|
tableName: string;
|
|
queryName: string;
|
|
filter?: SupabaseMetadata | SupabaseFilterRPCCall;
|
|
upsertBatchSize: number;
|
|
_vectorstoreType(): string;
|
|
constructor(embeddings: EmbeddingsInterface, args: SupabaseLibArgs);
|
|
/**
|
|
* Adds documents to the vector store.
|
|
* @param documents The documents to add.
|
|
* @param options Optional parameters for adding the documents.
|
|
* @returns A promise that resolves when the documents have been added.
|
|
*/
|
|
addDocuments(documents: Document[], options?: {
|
|
ids?: string[] | number[];
|
|
}): Promise<string[]>;
|
|
/**
|
|
* Adds vectors to the vector store.
|
|
* @param vectors The vectors to add.
|
|
* @param documents The documents associated with the vectors.
|
|
* @param options Optional parameters for adding the vectors.
|
|
* @returns A promise that resolves with the IDs of the added vectors when the vectors have been added.
|
|
*/
|
|
addVectors(vectors: number[][], documents: Document[], options?: {
|
|
ids?: string[] | number[];
|
|
}): Promise<string[]>;
|
|
/**
|
|
* Deletes vectors from the vector store.
|
|
* @param params The parameters for deleting vectors.
|
|
* @returns A promise that resolves when the vectors have been deleted.
|
|
*/
|
|
delete(params: {
|
|
ids: string[] | number[];
|
|
}): Promise<void>;
|
|
protected _searchSupabase(query: number[], k: number, filter?: this["FilterType"]): Promise<SearchEmbeddingsResponse[]>;
|
|
/**
|
|
* Performs a similarity search on the vector store.
|
|
* @param query The query vector.
|
|
* @param k The number of results to return.
|
|
* @param filter Optional filter to apply to the search.
|
|
* @returns A promise that resolves with the search results when the search is complete.
|
|
*/
|
|
similaritySearchVectorWithScore(query: number[], k: number, filter?: this["FilterType"]): Promise<[Document, number][]>;
|
|
/**
|
|
* Return documents selected using the maximal marginal relevance.
|
|
* Maximal marginal relevance optimizes for similarity to the query AND diversity
|
|
* among selected documents.
|
|
*
|
|
* @param {string} query - Text to look up documents similar to.
|
|
* @param {number} options.k - Number of documents to return.
|
|
* @param {number} options.fetchK=20- Number of documents to fetch before passing to the MMR algorithm.
|
|
* @param {number} options.lambda=0.5 - Number between 0 and 1 that determines the degree of diversity among the results,
|
|
* where 0 corresponds to maximum diversity and 1 to minimum diversity.
|
|
* @param {SupabaseLibArgs} options.filter - Optional filter to apply to the search.
|
|
*
|
|
* @returns {Promise<Document[]>} - List of documents selected by maximal marginal relevance.
|
|
*/
|
|
maxMarginalRelevanceSearch(query: string, options: MaxMarginalRelevanceSearchOptions<this["FilterType"]>): Promise<Document[]>;
|
|
/**
|
|
* Creates a new SupabaseVectorStore instance from an array of texts.
|
|
* @param texts The texts to create documents from.
|
|
* @param metadatas The metadata for the documents.
|
|
* @param embeddings The embeddings to use.
|
|
* @param dbConfig The configuration for the Supabase database.
|
|
* @returns A promise that resolves with a new SupabaseVectorStore instance when the instance has been created.
|
|
*/
|
|
static fromTexts(texts: string[], metadatas: object[] | object, embeddings: EmbeddingsInterface, dbConfig: SupabaseLibArgs): Promise<SupabaseVectorStore>;
|
|
/**
|
|
* Creates a new SupabaseVectorStore instance from an array of documents.
|
|
* @param docs The documents to create the instance from.
|
|
* @param embeddings The embeddings to use.
|
|
* @param dbConfig The configuration for the Supabase database.
|
|
* @returns A promise that resolves with a new SupabaseVectorStore instance when the instance has been created.
|
|
*/
|
|
static fromDocuments(docs: Document[], embeddings: EmbeddingsInterface, dbConfig: SupabaseLibArgs): Promise<SupabaseVectorStore>;
|
|
/**
|
|
* Creates a new SupabaseVectorStore instance from an existing index.
|
|
* @param embeddings The embeddings to use.
|
|
* @param dbConfig The configuration for the Supabase database.
|
|
* @returns A promise that resolves with a new SupabaseVectorStore instance when the instance has been created.
|
|
*/
|
|
static fromExistingIndex(embeddings: EmbeddingsInterface, dbConfig: SupabaseLibArgs): Promise<SupabaseVectorStore>;
|
|
}
|
|
export {};
|