974 lines
29 KiB
C
974 lines
29 KiB
C
|
/*
|
||
|
* Copyright (c) 2004-2016 Apple Inc. All rights reserved.
|
||
|
*
|
||
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
|
||
|
*
|
||
|
* This file contains Original Code and/or Modifications of Original Code
|
||
|
* as defined in and that are subject to the Apple Public Source License
|
||
|
* Version 2.0 (the 'License'). You may not use this file except in
|
||
|
* compliance with the License. The rights granted to you under the License
|
||
|
* may not be used to create, or enable the creation or redistribution of,
|
||
|
* unlawful or unlicensed copies of an Apple operating system, or to
|
||
|
* circumvent, violate, or enable the circumvention or violation of, any
|
||
|
* terms of an Apple operating system software license agreement.
|
||
|
*
|
||
|
* Please obtain a copy of the License at
|
||
|
* http://www.opensource.apple.com/apsl/ and read it before using this file.
|
||
|
*
|
||
|
* The Original Code and all software distributed under the License are
|
||
|
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
|
||
|
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
|
||
|
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
|
||
|
* Please see the License for the specific language governing rights and
|
||
|
* limitations under the License.
|
||
|
*
|
||
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
|
||
|
*/
|
||
|
/*
|
||
|
* Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
|
||
|
* The Regents of the University of California. All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* 1. Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* 3. All advertising materials mentioning features or use of this software
|
||
|
* must display the following acknowledgement:
|
||
|
* This product includes software developed by the University of
|
||
|
* California, Berkeley and its contributors.
|
||
|
* 4. Neither the name of the University nor the names of its contributors
|
||
|
* may be used to endorse or promote products derived from this software
|
||
|
* without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
||
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
||
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
|
* SUCH DAMAGE.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#define _IP_VHL
|
||
|
|
||
|
|
||
|
#include <sys/param.h>
|
||
|
#include <sys/systm.h>
|
||
|
#include <sys/kernel.h>
|
||
|
#include <sys/sysctl.h>
|
||
|
#include <sys/mbuf.h>
|
||
|
#include <sys/domain.h>
|
||
|
#include <sys/protosw.h>
|
||
|
#include <sys/socket.h>
|
||
|
#include <sys/socketvar.h>
|
||
|
|
||
|
#include <kern/zalloc.h>
|
||
|
|
||
|
#include <net/route.h>
|
||
|
|
||
|
#include <netinet/in.h>
|
||
|
#include <netinet/in_systm.h>
|
||
|
#include <netinet/ip.h>
|
||
|
#include <netinet/in_pcb.h>
|
||
|
#include <netinet/ip_var.h>
|
||
|
#include <netinet6/in6_pcb.h>
|
||
|
#include <netinet/ip6.h>
|
||
|
#include <netinet6/ip6_var.h>
|
||
|
#include <netinet/tcp.h>
|
||
|
#include <netinet/tcp_fsm.h>
|
||
|
#include <netinet/tcp_seq.h>
|
||
|
#include <netinet/tcp_timer.h>
|
||
|
#include <netinet/tcp_var.h>
|
||
|
#include <netinet/tcpip.h>
|
||
|
#include <netinet/tcp_cache.h>
|
||
|
#if TCPDEBUG
|
||
|
#include <netinet/tcp_debug.h>
|
||
|
#endif
|
||
|
#include <sys/kdebug.h>
|
||
|
|
||
|
#if IPSEC
|
||
|
#include <netinet6/ipsec.h>
|
||
|
#endif /*IPSEC*/
|
||
|
|
||
|
#include <libkern/OSAtomic.h>
|
||
|
|
||
|
SYSCTL_SKMEM_TCP_INT(OID_AUTO, sack, CTLFLAG_RW | CTLFLAG_LOCKED,
|
||
|
int, tcp_do_sack, 1, "Enable/Disable TCP SACK support");
|
||
|
SYSCTL_SKMEM_TCP_INT(OID_AUTO, sack_maxholes, CTLFLAG_RW | CTLFLAG_LOCKED,
|
||
|
static int, tcp_sack_maxholes, 128,
|
||
|
"Maximum number of TCP SACK holes allowed per connection");
|
||
|
|
||
|
SYSCTL_SKMEM_TCP_INT(OID_AUTO, sack_globalmaxholes,
|
||
|
CTLFLAG_RW | CTLFLAG_LOCKED, static int, tcp_sack_globalmaxholes, 65536,
|
||
|
"Global maximum number of TCP SACK holes");
|
||
|
|
||
|
static SInt32 tcp_sack_globalholes = 0;
|
||
|
SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack_globalholes, CTLFLAG_RD | CTLFLAG_LOCKED,
|
||
|
&tcp_sack_globalholes, 0,
|
||
|
"Global number of TCP SACK holes currently allocated");
|
||
|
|
||
|
static KALLOC_TYPE_DEFINE(sack_hole_zone, struct sackhole, NET_KT_DEFAULT);
|
||
|
|
||
|
#define TCP_VALIDATE_SACK_SEQ_NUMBERS(_tp_, _sb_, _ack_) \
|
||
|
(SEQ_GT((_sb_)->end, (_sb_)->start) && \
|
||
|
SEQ_GT((_sb_)->start, (_tp_)->snd_una) && \
|
||
|
SEQ_GT((_sb_)->start, (_ack_)) && \
|
||
|
SEQ_LT((_sb_)->start, (_tp_)->snd_max) && \
|
||
|
SEQ_GT((_sb_)->end, (_tp_)->snd_una) && \
|
||
|
SEQ_LEQ((_sb_)->end, (_tp_)->snd_max))
|
||
|
|
||
|
/*
|
||
|
* This function is called upon receipt of new valid data (while not in header
|
||
|
* prediction mode), and it updates the ordered list of sacks.
|
||
|
*/
|
||
|
void
|
||
|
tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
|
||
|
{
|
||
|
/*
|
||
|
* First reported block MUST be the most recent one. Subsequent
|
||
|
* blocks SHOULD be in the order in which they arrived at the
|
||
|
* receiver. These two conditions make the implementation fully
|
||
|
* compliant with RFC 2018.
|
||
|
*/
|
||
|
struct sackblk head_blk, saved_blks[MAX_SACK_BLKS];
|
||
|
int num_head, num_saved, i;
|
||
|
|
||
|
/* SACK block for the received segment. */
|
||
|
head_blk.start = rcv_start;
|
||
|
head_blk.end = rcv_end;
|
||
|
|
||
|
/*
|
||
|
* Merge updated SACK blocks into head_blk, and
|
||
|
* save unchanged SACK blocks into saved_blks[].
|
||
|
* num_saved will have the number of the saved SACK blocks.
|
||
|
*/
|
||
|
num_saved = 0;
|
||
|
for (i = 0; i < tp->rcv_numsacks; i++) {
|
||
|
tcp_seq start = tp->sackblks[i].start;
|
||
|
tcp_seq end = tp->sackblks[i].end;
|
||
|
if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
|
||
|
/*
|
||
|
* Discard this SACK block.
|
||
|
*/
|
||
|
} else if (SEQ_LEQ(head_blk.start, end) &&
|
||
|
SEQ_GEQ(head_blk.end, start)) {
|
||
|
/*
|
||
|
* Merge this SACK block into head_blk.
|
||
|
* This SACK block itself will be discarded.
|
||
|
*/
|
||
|
if (SEQ_GT(head_blk.start, start)) {
|
||
|
head_blk.start = start;
|
||
|
}
|
||
|
if (SEQ_LT(head_blk.end, end)) {
|
||
|
head_blk.end = end;
|
||
|
}
|
||
|
} else {
|
||
|
/*
|
||
|
* Save this SACK block.
|
||
|
*/
|
||
|
saved_blks[num_saved].start = start;
|
||
|
saved_blks[num_saved].end = end;
|
||
|
num_saved++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Update SACK list in tp->sackblks[].
|
||
|
*/
|
||
|
num_head = 0;
|
||
|
if (SEQ_GT(head_blk.start, tp->rcv_nxt)) {
|
||
|
/*
|
||
|
* The received data segment is an out-of-order segment.
|
||
|
* Put head_blk at the top of SACK list.
|
||
|
*/
|
||
|
tp->sackblks[0] = head_blk;
|
||
|
num_head = 1;
|
||
|
/*
|
||
|
* If the number of saved SACK blocks exceeds its limit,
|
||
|
* discard the last SACK block.
|
||
|
*/
|
||
|
if (num_saved >= MAX_SACK_BLKS) {
|
||
|
num_saved--;
|
||
|
}
|
||
|
}
|
||
|
if (num_saved > 0) {
|
||
|
/*
|
||
|
* Copy the saved SACK blocks back.
|
||
|
*/
|
||
|
bcopy(saved_blks, &tp->sackblks[num_head], sizeof(struct sackblk) * num_saved);
|
||
|
}
|
||
|
|
||
|
/* Save the number of SACK blocks. */
|
||
|
tp->rcv_numsacks = num_head + num_saved;
|
||
|
|
||
|
/* If we are requesting SACK recovery, reset the stretch-ack state
|
||
|
* so that connection will generate more acks after recovery and
|
||
|
* sender's cwnd will open.
|
||
|
*/
|
||
|
if ((tp->t_flags & TF_STRETCHACK) != 0 && tp->rcv_numsacks > 0) {
|
||
|
tcp_reset_stretch_ack(tp);
|
||
|
}
|
||
|
if (tp->rcv_numsacks > 0) {
|
||
|
tp->t_forced_acks = TCP_FORCED_ACKS_COUNT;
|
||
|
}
|
||
|
|
||
|
#if TRAFFIC_MGT
|
||
|
if (tp->acc_iaj > 0 && tp->rcv_numsacks > 0) {
|
||
|
reset_acc_iaj(tp);
|
||
|
}
|
||
|
#endif /* TRAFFIC_MGT */
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Delete all receiver-side SACK information.
|
||
|
*/
|
||
|
void
|
||
|
tcp_clean_sackreport( struct tcpcb *tp)
|
||
|
{
|
||
|
tp->rcv_numsacks = 0;
|
||
|
bzero(&tp->sackblks[0], sizeof(struct sackblk) * MAX_SACK_BLKS);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Allocate struct sackhole.
|
||
|
*/
|
||
|
static struct sackhole *
|
||
|
tcp_sackhole_alloc(struct tcpcb *tp, tcp_seq start, tcp_seq end)
|
||
|
{
|
||
|
struct sackhole *hole;
|
||
|
|
||
|
if (tp->snd_numholes >= tcp_sack_maxholes ||
|
||
|
tcp_sack_globalholes >= tcp_sack_globalmaxholes) {
|
||
|
tcpstat.tcps_sack_sboverflow++;
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
hole = zalloc_flags(sack_hole_zone, Z_WAITOK | Z_NOFAIL);
|
||
|
|
||
|
hole->start = start;
|
||
|
hole->end = end;
|
||
|
hole->rxmit = start;
|
||
|
|
||
|
tp->snd_numholes++;
|
||
|
OSIncrementAtomic(&tcp_sack_globalholes);
|
||
|
|
||
|
return hole;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Free struct sackhole.
|
||
|
*/
|
||
|
static void
|
||
|
tcp_sackhole_free(struct tcpcb *tp, struct sackhole *hole)
|
||
|
{
|
||
|
zfree(sack_hole_zone, hole);
|
||
|
|
||
|
tp->snd_numholes--;
|
||
|
OSDecrementAtomic(&tcp_sack_globalholes);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Insert new SACK hole into scoreboard.
|
||
|
*/
|
||
|
static struct sackhole *
|
||
|
tcp_sackhole_insert(struct tcpcb *tp, tcp_seq start, tcp_seq end,
|
||
|
struct sackhole *after)
|
||
|
{
|
||
|
struct sackhole *hole;
|
||
|
|
||
|
/* Allocate a new SACK hole. */
|
||
|
hole = tcp_sackhole_alloc(tp, start, end);
|
||
|
if (hole == NULL) {
|
||
|
return NULL;
|
||
|
}
|
||
|
hole->rxmit_start = tcp_now;
|
||
|
/* Insert the new SACK hole into scoreboard */
|
||
|
if (after != NULL) {
|
||
|
TAILQ_INSERT_AFTER(&tp->snd_holes, after, hole, scblink);
|
||
|
} else {
|
||
|
TAILQ_INSERT_TAIL(&tp->snd_holes, hole, scblink);
|
||
|
}
|
||
|
|
||
|
/* Update SACK hint. */
|
||
|
if (tp->sackhint.nexthole == NULL) {
|
||
|
tp->sackhint.nexthole = hole;
|
||
|
}
|
||
|
|
||
|
return hole;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Remove SACK hole from scoreboard.
|
||
|
*/
|
||
|
static void
|
||
|
tcp_sackhole_remove(struct tcpcb *tp, struct sackhole *hole)
|
||
|
{
|
||
|
/* Update SACK hint. */
|
||
|
if (tp->sackhint.nexthole == hole) {
|
||
|
tp->sackhint.nexthole = TAILQ_NEXT(hole, scblink);
|
||
|
}
|
||
|
|
||
|
/* Remove this SACK hole. */
|
||
|
TAILQ_REMOVE(&tp->snd_holes, hole, scblink);
|
||
|
|
||
|
/* Free this SACK hole. */
|
||
|
tcp_sackhole_free(tp, hole);
|
||
|
}
|
||
|
/*
|
||
|
* When a new ack with SACK is received, check if it indicates packet
|
||
|
* reordering. If there is packet reordering, the socket is marked and
|
||
|
* the late time offset by which the packet was reordered with
|
||
|
* respect to its closest neighboring packets is computed.
|
||
|
*/
|
||
|
static void
|
||
|
tcp_sack_detect_reordering(struct tcpcb *tp, struct sackhole *s,
|
||
|
tcp_seq sacked_seq, tcp_seq snd_fack)
|
||
|
{
|
||
|
int32_t rext = 0, reordered = 0;
|
||
|
|
||
|
/*
|
||
|
* If the SACK hole is past snd_fack, this is from new SACK
|
||
|
* information, so we can ignore it.
|
||
|
*/
|
||
|
if (SEQ_GT(s->end, snd_fack)) {
|
||
|
return;
|
||
|
}
|
||
|
/*
|
||
|
* If there has been a retransmit timeout, then the timestamp on
|
||
|
* the SACK segment will be newer. This might lead to a
|
||
|
* false-positive. Avoid re-ordering detection in this case.
|
||
|
*/
|
||
|
if (tp->t_rxtshift > 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Detect reordering from SACK information by checking
|
||
|
* if recently sacked data was never retransmitted from this hole.
|
||
|
*
|
||
|
* First, we look for the byte in the list of retransmitted segments. This one
|
||
|
* will contain even the segments that are retransmitted thanks to RTO/TLP.
|
||
|
*
|
||
|
* Then, we check the sackhole which indicates whether or not the sackhole
|
||
|
* was subject to retransmission.
|
||
|
*/
|
||
|
if (SEQ_LT(s->rxmit, sacked_seq) &&
|
||
|
(!tcp_do_better_lr || tcp_rxtseg_find(tp, sacked_seq - 1, sacked_seq - 1) == NULL)) {
|
||
|
reordered = 1;
|
||
|
tcpstat.tcps_avoid_rxmt++;
|
||
|
}
|
||
|
|
||
|
if (reordered) {
|
||
|
if (!(tp->t_flagsext & TF_PKTS_REORDERED)) {
|
||
|
tp->t_flagsext |= TF_PKTS_REORDERED;
|
||
|
tcpstat.tcps_detect_reordering++;
|
||
|
}
|
||
|
|
||
|
tcpstat.tcps_reordered_pkts++;
|
||
|
tp->t_reordered_pkts++;
|
||
|
|
||
|
/*
|
||
|
* If reordering is seen on a connection wth ECN enabled,
|
||
|
* increment the heuristic
|
||
|
*/
|
||
|
if (TCP_ECN_ENABLED(tp)) {
|
||
|
INP_INC_IFNET_STAT(tp->t_inpcb, ecn_fallback_reorder);
|
||
|
tcpstat.tcps_ecn_fallback_reorder++;
|
||
|
tcp_heuristic_ecn_aggressive(tp);
|
||
|
}
|
||
|
|
||
|
VERIFY(SEQ_GEQ(snd_fack, s->rxmit));
|
||
|
|
||
|
if (s->rxmit_start > 0) {
|
||
|
rext = timer_diff(tcp_now, 0, s->rxmit_start, 0);
|
||
|
if (rext < 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We take the maximum reorder window to schedule
|
||
|
* DELAYFR timer as that will take care of jitter
|
||
|
* on the network path.
|
||
|
*
|
||
|
* Computing average and standard deviation seems
|
||
|
* to cause unnecessary retransmissions when there
|
||
|
* is high jitter.
|
||
|
*
|
||
|
* We set a maximum of SRTT/2 and a minimum of
|
||
|
* 10 ms on the reorder window.
|
||
|
*/
|
||
|
tp->t_reorderwin = max(tp->t_reorderwin, rext);
|
||
|
tp->t_reorderwin = min(tp->t_reorderwin,
|
||
|
(tp->t_srtt >> (TCP_RTT_SHIFT - 1)));
|
||
|
tp->t_reorderwin = max(tp->t_reorderwin, 10);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
tcp_sack_update_byte_counter(struct tcpcb *tp, uint32_t start, uint32_t end,
|
||
|
uint32_t *newbytes_acked, uint32_t *towards_fr_acked)
|
||
|
{
|
||
|
*newbytes_acked += (end - start);
|
||
|
if (SEQ_GEQ(start, tp->send_highest_sack)) {
|
||
|
*towards_fr_acked += (end - start);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Process cumulative ACK and the TCP SACK option to update the scoreboard.
|
||
|
* tp->snd_holes is an ordered list of holes (oldest to newest, in terms of
|
||
|
* the sequence space).
|
||
|
*/
|
||
|
void
|
||
|
tcp_sack_doack(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th,
|
||
|
u_int32_t *newbytes_acked, uint32_t *after_rexmit_acked)
|
||
|
{
|
||
|
struct sackhole *cur, *temp;
|
||
|
struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1], *sblkp;
|
||
|
int i, j, num_sack_blks;
|
||
|
tcp_seq old_snd_fack = 0, th_ack = th->th_ack;
|
||
|
|
||
|
num_sack_blks = 0;
|
||
|
/*
|
||
|
* If SND.UNA will be advanced by SEG.ACK, and if SACK holes exist,
|
||
|
* treat [SND.UNA, SEG.ACK) as if it is a SACK block.
|
||
|
*/
|
||
|
if (SEQ_LT(tp->snd_una, th_ack) && !TAILQ_EMPTY(&tp->snd_holes)) {
|
||
|
sack_blocks[num_sack_blks].start = tp->snd_una;
|
||
|
sack_blocks[num_sack_blks++].end = th_ack;
|
||
|
}
|
||
|
/*
|
||
|
* Append received valid SACK blocks to sack_blocks[].
|
||
|
* Check that the SACK block range is valid.
|
||
|
*/
|
||
|
for (i = 0; i < to->to_nsacks; i++) {
|
||
|
bcopy((to->to_sacks + i * TCPOLEN_SACK),
|
||
|
&sack, sizeof(sack));
|
||
|
sack.start = ntohl(sack.start);
|
||
|
sack.end = ntohl(sack.end);
|
||
|
if (TCP_VALIDATE_SACK_SEQ_NUMBERS(tp, &sack, th_ack)) {
|
||
|
sack_blocks[num_sack_blks++] = sack;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Return if SND.UNA is not advanced and no valid SACK block
|
||
|
* is received.
|
||
|
*/
|
||
|
if (num_sack_blks == 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
VERIFY(num_sack_blks <= (TCP_MAX_SACK + 1));
|
||
|
/*
|
||
|
* Sort the SACK blocks so we can update the scoreboard
|
||
|
* with just one pass. The overhead of sorting upto 4+1 elements
|
||
|
* is less than making upto 4+1 passes over the scoreboard.
|
||
|
*/
|
||
|
for (i = 0; i < num_sack_blks; i++) {
|
||
|
for (j = i + 1; j < num_sack_blks; j++) {
|
||
|
if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
|
||
|
sack = sack_blocks[i];
|
||
|
sack_blocks[i] = sack_blocks[j];
|
||
|
sack_blocks[j] = sack;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (TAILQ_EMPTY(&tp->snd_holes)) {
|
||
|
/*
|
||
|
* Empty scoreboard. Need to initialize snd_fack (it may be
|
||
|
* uninitialized or have a bogus value). Scoreboard holes
|
||
|
* (from the sack blocks received) are created later below (in
|
||
|
* the logic that adds holes to the tail of the scoreboard).
|
||
|
*/
|
||
|
tp->snd_fack = SEQ_MAX(tp->snd_una, th_ack);
|
||
|
}
|
||
|
|
||
|
old_snd_fack = tp->snd_fack;
|
||
|
/*
|
||
|
* In the while-loop below, incoming SACK blocks (sack_blocks[])
|
||
|
* and SACK holes (snd_holes) are traversed from their tails with
|
||
|
* just one pass in order to reduce the number of compares especially
|
||
|
* when the bandwidth-delay product is large.
|
||
|
* Note: Typically, in the first RTT of SACK recovery, the highest
|
||
|
* three or four SACK blocks with the same ack number are received.
|
||
|
* In the second RTT, if retransmitted data segments are not lost,
|
||
|
* the highest three or four SACK blocks with ack number advancing
|
||
|
* are received.
|
||
|
*/
|
||
|
sblkp = &sack_blocks[num_sack_blks - 1]; /* Last SACK block */
|
||
|
if (SEQ_LT(tp->snd_fack, sblkp->start)) {
|
||
|
/*
|
||
|
* The highest SACK block is beyond fack.
|
||
|
* Append new SACK hole at the tail.
|
||
|
* If the second or later highest SACK blocks are also
|
||
|
* beyond the current fack, they will be inserted by
|
||
|
* way of hole splitting in the while-loop below.
|
||
|
*/
|
||
|
temp = tcp_sackhole_insert(tp, tp->snd_fack, sblkp->start, NULL);
|
||
|
if (temp != NULL) {
|
||
|
tp->snd_fack = sblkp->end;
|
||
|
tcp_sack_update_byte_counter(tp, sblkp->start, sblkp->end, newbytes_acked, after_rexmit_acked);
|
||
|
|
||
|
/* Go to the previous sack block. */
|
||
|
sblkp--;
|
||
|
} else {
|
||
|
/*
|
||
|
* We failed to add a new hole based on the current
|
||
|
* sack block. Skip over all the sack blocks that
|
||
|
* fall completely to the right of snd_fack and proceed
|
||
|
* to trim the scoreboard based on the remaining sack
|
||
|
* blocks. This also trims the scoreboard for th_ack
|
||
|
* (which is sack_blocks[0]).
|
||
|
*/
|
||
|
while (sblkp >= sack_blocks &&
|
||
|
SEQ_LT(tp->snd_fack, sblkp->start)) {
|
||
|
sblkp--;
|
||
|
}
|
||
|
if (sblkp >= sack_blocks &&
|
||
|
SEQ_LT(tp->snd_fack, sblkp->end)) {
|
||
|
tcp_sack_update_byte_counter(tp, tp->snd_fack, sblkp->end, newbytes_acked, after_rexmit_acked);
|
||
|
tp->snd_fack = sblkp->end;
|
||
|
}
|
||
|
}
|
||
|
} else if (SEQ_LT(tp->snd_fack, sblkp->end)) {
|
||
|
/* fack is advanced. */
|
||
|
tcp_sack_update_byte_counter(tp, tp->snd_fack, sblkp->end, newbytes_acked, after_rexmit_acked);
|
||
|
tp->snd_fack = sblkp->end;
|
||
|
}
|
||
|
/* We must have at least one SACK hole in scoreboard */
|
||
|
cur = TAILQ_LAST(&tp->snd_holes, sackhole_head); /* Last SACK hole */
|
||
|
/*
|
||
|
* Since the incoming sack blocks are sorted, we can process them
|
||
|
* making one sweep of the scoreboard.
|
||
|
*/
|
||
|
while (sblkp >= sack_blocks && cur != NULL) {
|
||
|
if (SEQ_GEQ(sblkp->start, cur->end)) {
|
||
|
/*
|
||
|
* SACKs data beyond the current hole.
|
||
|
* Go to the previous sack block.
|
||
|
*/
|
||
|
sblkp--;
|
||
|
continue;
|
||
|
}
|
||
|
if (SEQ_LEQ(sblkp->end, cur->start)) {
|
||
|
/*
|
||
|
* SACKs data before the current hole.
|
||
|
* Go to the previous hole.
|
||
|
*/
|
||
|
cur = TAILQ_PREV(cur, sackhole_head, scblink);
|
||
|
continue;
|
||
|
}
|
||
|
tp->sackhint.sack_bytes_rexmit -= (cur->rxmit - cur->start);
|
||
|
if (tp->sackhint.sack_bytes_rexmit < 0) {
|
||
|
tp->sackhint.sack_bytes_rexmit = 0;
|
||
|
}
|
||
|
|
||
|
if (SEQ_LEQ(sblkp->start, cur->start)) {
|
||
|
/* Data acks at least the beginning of hole */
|
||
|
if (SEQ_GEQ(sblkp->end, cur->end)) {
|
||
|
/* Acks entire hole, so delete hole */
|
||
|
tcp_sack_update_byte_counter(tp, cur->start, cur->end, newbytes_acked, after_rexmit_acked);
|
||
|
|
||
|
tcp_sack_detect_reordering(tp, cur,
|
||
|
cur->end, old_snd_fack);
|
||
|
temp = cur;
|
||
|
cur = TAILQ_PREV(cur, sackhole_head, scblink);
|
||
|
tcp_sackhole_remove(tp, temp);
|
||
|
/*
|
||
|
* The sack block may ack all or part of the next
|
||
|
* hole too, so continue onto the next hole.
|
||
|
*/
|
||
|
continue;
|
||
|
} else {
|
||
|
/* Move start of hole forward */
|
||
|
tcp_sack_update_byte_counter(tp, cur->start, sblkp->end, newbytes_acked, after_rexmit_acked);
|
||
|
tcp_sack_detect_reordering(tp, cur,
|
||
|
sblkp->end, old_snd_fack);
|
||
|
cur->start = sblkp->end;
|
||
|
cur->rxmit = SEQ_MAX(cur->rxmit, cur->start);
|
||
|
}
|
||
|
} else {
|
||
|
/* Data acks at least the end of hole */
|
||
|
if (SEQ_GEQ(sblkp->end, cur->end)) {
|
||
|
/* Move end of hole backward */
|
||
|
tcp_sack_update_byte_counter(tp, sblkp->start, cur->end, newbytes_acked, after_rexmit_acked);
|
||
|
tcp_sack_detect_reordering(tp, cur,
|
||
|
cur->end, old_snd_fack);
|
||
|
cur->end = sblkp->start;
|
||
|
cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
|
||
|
} else {
|
||
|
/*
|
||
|
* ACKs some data in the middle of a hole;
|
||
|
* need to split current hole
|
||
|
*/
|
||
|
tcp_sack_detect_reordering(tp, cur,
|
||
|
sblkp->end, old_snd_fack);
|
||
|
temp = tcp_sackhole_insert(tp, sblkp->end,
|
||
|
cur->end, cur);
|
||
|
if (temp != NULL) {
|
||
|
tcp_sack_update_byte_counter(tp, sblkp->start, sblkp->end, newbytes_acked, after_rexmit_acked);
|
||
|
if (SEQ_GT(cur->rxmit, temp->rxmit)) {
|
||
|
temp->rxmit = cur->rxmit;
|
||
|
tp->sackhint.sack_bytes_rexmit
|
||
|
+= (temp->rxmit
|
||
|
- temp->start);
|
||
|
}
|
||
|
cur->end = sblkp->start;
|
||
|
cur->rxmit = SEQ_MIN(cur->rxmit,
|
||
|
cur->end);
|
||
|
/*
|
||
|
* Reset the rxmit_start to that of
|
||
|
* the current hole as that will
|
||
|
* help to compute the reorder
|
||
|
* window correctly
|
||
|
*/
|
||
|
temp->rxmit_start = cur->rxmit_start;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
tp->sackhint.sack_bytes_rexmit += (cur->rxmit - cur->start);
|
||
|
/*
|
||
|
* Testing sblkp->start against cur->start tells us whether
|
||
|
* we're done with the sack block or the sack hole.
|
||
|
* Accordingly, we advance one or the other.
|
||
|
*/
|
||
|
if (SEQ_LEQ(sblkp->start, cur->start)) {
|
||
|
cur = TAILQ_PREV(cur, sackhole_head, scblink);
|
||
|
} else {
|
||
|
sblkp--;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Free all SACK holes to clear the scoreboard.
|
||
|
*/
|
||
|
void
|
||
|
tcp_free_sackholes(struct tcpcb *tp)
|
||
|
{
|
||
|
struct sackhole *q;
|
||
|
|
||
|
while ((q = TAILQ_FIRST(&tp->snd_holes)) != NULL) {
|
||
|
tcp_sackhole_remove(tp, q);
|
||
|
}
|
||
|
tp->sackhint.sack_bytes_rexmit = 0;
|
||
|
tp->sackhint.sack_bytes_acked = 0;
|
||
|
tp->t_new_dupacks = 0;
|
||
|
tp->sackhint.nexthole = NULL;
|
||
|
tp->sack_newdata = 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Partial ack handling within a sack recovery episode.
|
||
|
* Keeping this very simple for now. When a partial ack
|
||
|
* is received, force snd_cwnd to a value that will allow
|
||
|
* the sender to transmit no more than 2 segments.
|
||
|
* If necessary, a better scheme can be adopted at a
|
||
|
* later point, but for now, the goal is to prevent the
|
||
|
* sender from bursting a large amount of data in the midst
|
||
|
* of sack recovery.
|
||
|
*/
|
||
|
void
|
||
|
tcp_sack_partialack(struct tcpcb *tp, struct tcphdr *th)
|
||
|
{
|
||
|
int num_segs = 1;
|
||
|
|
||
|
tp->t_timer[TCPT_REXMT] = 0;
|
||
|
tp->t_rtttime = 0;
|
||
|
/* send one or 2 segments based on how much new data was acked */
|
||
|
if (((BYTES_ACKED(th, tp)) / tp->t_maxseg) > 2) {
|
||
|
num_segs = 2;
|
||
|
}
|
||
|
if (tcp_do_better_lr) {
|
||
|
tp->snd_cwnd = tcp_flight_size(tp) + num_segs * tp->t_maxseg;
|
||
|
} else {
|
||
|
tp->snd_cwnd = (tp->sackhint.sack_bytes_rexmit +
|
||
|
(tp->snd_nxt - tp->sack_newdata) +
|
||
|
num_segs * tp->t_maxseg);
|
||
|
}
|
||
|
if (tp->snd_cwnd > tp->snd_ssthresh) {
|
||
|
tp->snd_cwnd = tp->snd_ssthresh;
|
||
|
}
|
||
|
if (SEQ_LT(tp->snd_fack, tp->snd_recover) &&
|
||
|
tp->snd_fack == th->th_ack && TAILQ_EMPTY(&tp->snd_holes)) {
|
||
|
struct sackhole *temp;
|
||
|
/*
|
||
|
* we received a partial ack but there is no sack_hole
|
||
|
* that will cover the remaining seq space. In this case,
|
||
|
* create a hole from snd_fack to snd_recover so that
|
||
|
* the sack recovery will continue.
|
||
|
*/
|
||
|
temp = tcp_sackhole_insert(tp, tp->snd_fack,
|
||
|
tp->snd_recover, NULL);
|
||
|
if (temp != NULL) {
|
||
|
tp->snd_fack = tp->snd_recover;
|
||
|
}
|
||
|
}
|
||
|
(void) tcp_output(tp);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Debug version of tcp_sack_output() that walks the scoreboard. Used for
|
||
|
* now to sanity check the hint.
|
||
|
*/
|
||
|
static struct sackhole *
|
||
|
tcp_sack_output_debug(struct tcpcb *tp, int *sack_bytes_rexmt)
|
||
|
{
|
||
|
struct sackhole *p;
|
||
|
|
||
|
*sack_bytes_rexmt = 0;
|
||
|
TAILQ_FOREACH(p, &tp->snd_holes, scblink) {
|
||
|
if (SEQ_LT(p->rxmit, p->end)) {
|
||
|
if (SEQ_LT(p->rxmit, tp->snd_una)) {/* old SACK hole */
|
||
|
continue;
|
||
|
}
|
||
|
*sack_bytes_rexmt += (p->rxmit - p->start);
|
||
|
break;
|
||
|
}
|
||
|
*sack_bytes_rexmt += (p->rxmit - p->start);
|
||
|
}
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Returns the next hole to retransmit and the number of retransmitted bytes
|
||
|
* from the scoreboard. We store both the next hole and the number of
|
||
|
* retransmitted bytes as hints (and recompute these on the fly upon SACK/ACK
|
||
|
* reception). This avoids scoreboard traversals completely.
|
||
|
*
|
||
|
* The loop here will traverse *at most* one link. Here's the argument.
|
||
|
* For the loop to traverse more than 1 link before finding the next hole to
|
||
|
* retransmit, we would need to have at least 1 node following the current hint
|
||
|
* with (rxmit == end). But, for all holes following the current hint,
|
||
|
* (start == rxmit), since we have not yet retransmitted from them. Therefore,
|
||
|
* in order to traverse more 1 link in the loop below, we need to have at least
|
||
|
* one node following the current hint with (start == rxmit == end).
|
||
|
* But that can't happen, (start == end) means that all the data in that hole
|
||
|
* has been sacked, in which case, the hole would have been removed from the
|
||
|
* scoreboard.
|
||
|
*/
|
||
|
struct sackhole *
|
||
|
tcp_sack_output(struct tcpcb *tp, int *sack_bytes_rexmt)
|
||
|
{
|
||
|
struct sackhole *hole = NULL, *dbg_hole = NULL;
|
||
|
int dbg_bytes_rexmt;
|
||
|
|
||
|
dbg_hole = tcp_sack_output_debug(tp, &dbg_bytes_rexmt);
|
||
|
*sack_bytes_rexmt = tp->sackhint.sack_bytes_rexmit;
|
||
|
hole = tp->sackhint.nexthole;
|
||
|
if (hole == NULL || SEQ_LT(hole->rxmit, hole->end)) {
|
||
|
goto out;
|
||
|
}
|
||
|
while ((hole = TAILQ_NEXT(hole, scblink)) != NULL) {
|
||
|
if (SEQ_LT(hole->rxmit, hole->end)) {
|
||
|
tp->sackhint.nexthole = hole;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
out:
|
||
|
if (dbg_hole != hole) {
|
||
|
printf("%s: Computed sack hole not the same as cached value\n", __func__);
|
||
|
hole = dbg_hole;
|
||
|
}
|
||
|
if (*sack_bytes_rexmt != dbg_bytes_rexmt) {
|
||
|
printf("%s: Computed sack_bytes_retransmitted (%d) not "
|
||
|
"the same as cached value (%d)\n",
|
||
|
__func__, dbg_bytes_rexmt, *sack_bytes_rexmt);
|
||
|
*sack_bytes_rexmt = dbg_bytes_rexmt;
|
||
|
}
|
||
|
return hole;
|
||
|
}
|
||
|
|
||
|
void
|
||
|
tcp_sack_lost_rexmit(struct tcpcb *tp)
|
||
|
{
|
||
|
struct sackhole *hole = TAILQ_FIRST(&tp->snd_holes);
|
||
|
|
||
|
while (hole) {
|
||
|
hole->rxmit = hole->start;
|
||
|
hole->rxmit_start = tcp_now;
|
||
|
|
||
|
hole = TAILQ_NEXT(hole, scblink);
|
||
|
}
|
||
|
|
||
|
tp->sackhint.nexthole = TAILQ_FIRST(&tp->snd_holes);
|
||
|
tp->sackhint.sack_bytes_rexmit = 0;
|
||
|
tp->sack_newdata = tp->snd_nxt;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* After a timeout, the SACK list may be rebuilt. This SACK information
|
||
|
* should be used to avoid retransmitting SACKed data. This function
|
||
|
* traverses the SACK list to see if snd_nxt should be moved forward.
|
||
|
*/
|
||
|
uint32_t
|
||
|
tcp_sack_adjust(struct tcpcb *tp)
|
||
|
{
|
||
|
struct sackhole *p, *cur = TAILQ_FIRST(&tp->snd_holes);
|
||
|
|
||
|
if (cur == NULL) {
|
||
|
return 0; /* No holes */
|
||
|
}
|
||
|
if (SEQ_GEQ(tp->snd_nxt, tp->snd_fack)) {
|
||
|
return 0; /* We're already beyond any SACKed blocks */
|
||
|
}
|
||
|
/*
|
||
|
* Two cases for which we want to advance snd_nxt:
|
||
|
* i) snd_nxt lies between end of one hole and beginning of another
|
||
|
* ii) snd_nxt lies between end of last hole and snd_fack
|
||
|
*/
|
||
|
while ((p = TAILQ_NEXT(cur, scblink)) != NULL) {
|
||
|
if (SEQ_LT(tp->snd_nxt, cur->end)) {
|
||
|
return cur->end - tp->snd_nxt;
|
||
|
}
|
||
|
if (SEQ_GEQ(tp->snd_nxt, p->start)) {
|
||
|
cur = p;
|
||
|
} else {
|
||
|
tp->snd_nxt = p->start;
|
||
|
return p->end - tp->snd_nxt;
|
||
|
}
|
||
|
}
|
||
|
if (SEQ_LT(tp->snd_nxt, cur->end)) {
|
||
|
return cur->end - tp->snd_nxt;
|
||
|
}
|
||
|
tp->snd_nxt = tp->snd_fack;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This function returns TRUE if more than (tcprexmtthresh - 1) * SMSS
|
||
|
* bytes with sequence numbers greater than snd_una have been SACKed.
|
||
|
*/
|
||
|
boolean_t
|
||
|
tcp_sack_byte_islost(struct tcpcb *tp)
|
||
|
{
|
||
|
u_int32_t unacked_bytes, sndhole_bytes = 0;
|
||
|
struct sackhole *sndhole;
|
||
|
if (!SACK_ENABLED(tp) || IN_FASTRECOVERY(tp) ||
|
||
|
TAILQ_EMPTY(&tp->snd_holes) ||
|
||
|
(tp->t_flagsext & TF_PKTS_REORDERED)) {
|
||
|
return FALSE;
|
||
|
}
|
||
|
|
||
|
unacked_bytes = tp->snd_max - tp->snd_una;
|
||
|
|
||
|
TAILQ_FOREACH(sndhole, &tp->snd_holes, scblink) {
|
||
|
sndhole_bytes += (sndhole->end - sndhole->start);
|
||
|
}
|
||
|
|
||
|
VERIFY(unacked_bytes >= sndhole_bytes);
|
||
|
return (unacked_bytes - sndhole_bytes) >
|
||
|
((tcprexmtthresh - 1) * tp->t_maxseg);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Process any DSACK options that might be present on an input packet
|
||
|
*/
|
||
|
|
||
|
boolean_t
|
||
|
tcp_sack_process_dsack(struct tcpcb *tp, struct tcpopt *to,
|
||
|
struct tcphdr *th)
|
||
|
{
|
||
|
struct sackblk first_sack, second_sack;
|
||
|
|
||
|
bcopy(to->to_sacks, &first_sack, sizeof(first_sack));
|
||
|
first_sack.start = ntohl(first_sack.start);
|
||
|
first_sack.end = ntohl(first_sack.end);
|
||
|
|
||
|
if (to->to_nsacks > 1) {
|
||
|
bcopy((to->to_sacks + TCPOLEN_SACK), &second_sack,
|
||
|
sizeof(second_sack));
|
||
|
second_sack.start = ntohl(second_sack.start);
|
||
|
second_sack.end = ntohl(second_sack.end);
|
||
|
}
|
||
|
|
||
|
if (SEQ_LT(first_sack.start, th->th_ack) &&
|
||
|
SEQ_LEQ(first_sack.end, th->th_ack)) {
|
||
|
/*
|
||
|
* There is a dsack option reporting a duplicate segment
|
||
|
* also covered by cumulative acknowledgement.
|
||
|
*
|
||
|
* Validate the sequence numbers before looking at dsack
|
||
|
* option. The duplicate notification can come after
|
||
|
* snd_una moves forward. In order to set a window of valid
|
||
|
* sequence numbers to look for, we set a maximum send
|
||
|
* window within which the DSACK option will be processed.
|
||
|
*/
|
||
|
if (!(TCP_DSACK_SEQ_IN_WINDOW(tp, first_sack.start, th->th_ack) &&
|
||
|
TCP_DSACK_SEQ_IN_WINDOW(tp, first_sack.end, th->th_ack))) {
|
||
|
to->to_nsacks--;
|
||
|
to->to_sacks += TCPOLEN_SACK;
|
||
|
tcpstat.tcps_dsack_recvd_old++;
|
||
|
|
||
|
/*
|
||
|
* returning true here so that the ack will not be
|
||
|
* treated as duplicate ack.
|
||
|
*/
|
||
|
return TRUE;
|
||
|
}
|
||
|
} else if (to->to_nsacks > 1 &&
|
||
|
SEQ_LEQ(second_sack.start, first_sack.start) &&
|
||
|
SEQ_GEQ(second_sack.end, first_sack.end)) {
|
||
|
/*
|
||
|
* there is a dsack option in the first block not
|
||
|
* covered by the cumulative acknowledgement but covered
|
||
|
* by the second sack block.
|
||
|
*
|
||
|
* verify the sequence numbes on the second sack block
|
||
|
* before processing the DSACK option. Returning false
|
||
|
* here will treat the ack as a duplicate ack.
|
||
|
*/
|
||
|
if (!TCP_VALIDATE_SACK_SEQ_NUMBERS(tp, &second_sack,
|
||
|
th->th_ack)) {
|
||
|
to->to_nsacks--;
|
||
|
to->to_sacks += TCPOLEN_SACK;
|
||
|
tcpstat.tcps_dsack_recvd_old++;
|
||
|
return TRUE;
|
||
|
}
|
||
|
} else {
|
||
|
/* no dsack options, proceed with processing the sack */
|
||
|
return FALSE;
|
||
|
}
|
||
|
|
||
|
/* Update the tcpopt pointer to exclude dsack block */
|
||
|
to->to_nsacks--;
|
||
|
to->to_sacks += TCPOLEN_SACK;
|
||
|
tcpstat.tcps_dsack_recvd++;
|
||
|
tp->t_dsack_recvd++;
|
||
|
|
||
|
/* Update the sender's retransmit segment state */
|
||
|
if (((tp->t_rxtshift == 1 && first_sack.start == tp->snd_una) ||
|
||
|
((tp->t_flagsext & TF_SENT_TLPROBE) &&
|
||
|
first_sack.end == tp->t_tlphighrxt)) &&
|
||
|
TAILQ_EMPTY(&tp->snd_holes) &&
|
||
|
SEQ_GT(th->th_ack, tp->snd_una)) {
|
||
|
/*
|
||
|
* If the dsack is for a retransmitted packet and one of
|
||
|
* the two cases is true, it indicates ack loss:
|
||
|
* - retransmit timeout and first_sack.start == snd_una
|
||
|
* - TLP probe and first_sack.end == tlphighrxt
|
||
|
*
|
||
|
* Ignore dsack and do not update state when there is
|
||
|
* ack loss
|
||
|
*/
|
||
|
tcpstat.tcps_dsack_ackloss++;
|
||
|
|
||
|
return TRUE;
|
||
|
} else {
|
||
|
tcp_rxtseg_set_spurious(tp, first_sack.start, (first_sack.end - 1));
|
||
|
}
|
||
|
return TRUE;
|
||
|
}
|