gems-kernel/source/THIRDPARTY/xnu/bsd/netinet/tcp_sack.c
2024-06-03 11:29:39 -05:00

973 lines
29 KiB
C

/*
* Copyright (c) 2004-2016 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#define _IP_VHL
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <sys/mbuf.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <kern/zalloc.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/in_pcb.h>
#include <netinet/ip_var.h>
#include <netinet6/in6_pcb.h>
#include <netinet/ip6.h>
#include <netinet6/ip6_var.h>
#include <netinet/tcp.h>
#include <netinet/tcp_fsm.h>
#include <netinet/tcp_seq.h>
#include <netinet/tcp_timer.h>
#include <netinet/tcp_var.h>
#include <netinet/tcpip.h>
#include <netinet/tcp_cache.h>
#if TCPDEBUG
#include <netinet/tcp_debug.h>
#endif
#include <sys/kdebug.h>
#if IPSEC
#include <netinet6/ipsec.h>
#endif /*IPSEC*/
#include <libkern/OSAtomic.h>
SYSCTL_SKMEM_TCP_INT(OID_AUTO, sack, CTLFLAG_RW | CTLFLAG_LOCKED,
int, tcp_do_sack, 1, "Enable/Disable TCP SACK support");
SYSCTL_SKMEM_TCP_INT(OID_AUTO, sack_maxholes, CTLFLAG_RW | CTLFLAG_LOCKED,
static int, tcp_sack_maxholes, 128,
"Maximum number of TCP SACK holes allowed per connection");
SYSCTL_SKMEM_TCP_INT(OID_AUTO, sack_globalmaxholes,
CTLFLAG_RW | CTLFLAG_LOCKED, static int, tcp_sack_globalmaxholes, 65536,
"Global maximum number of TCP SACK holes");
static SInt32 tcp_sack_globalholes = 0;
SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack_globalholes, CTLFLAG_RD | CTLFLAG_LOCKED,
&tcp_sack_globalholes, 0,
"Global number of TCP SACK holes currently allocated");
static KALLOC_TYPE_DEFINE(sack_hole_zone, struct sackhole, NET_KT_DEFAULT);
#define TCP_VALIDATE_SACK_SEQ_NUMBERS(_tp_, _sb_, _ack_) \
(SEQ_GT((_sb_)->end, (_sb_)->start) && \
SEQ_GT((_sb_)->start, (_tp_)->snd_una) && \
SEQ_GT((_sb_)->start, (_ack_)) && \
SEQ_LT((_sb_)->start, (_tp_)->snd_max) && \
SEQ_GT((_sb_)->end, (_tp_)->snd_una) && \
SEQ_LEQ((_sb_)->end, (_tp_)->snd_max))
/*
* This function is called upon receipt of new valid data (while not in header
* prediction mode), and it updates the ordered list of sacks.
*/
void
tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
{
/*
* First reported block MUST be the most recent one. Subsequent
* blocks SHOULD be in the order in which they arrived at the
* receiver. These two conditions make the implementation fully
* compliant with RFC 2018.
*/
struct sackblk head_blk, saved_blks[MAX_SACK_BLKS];
int num_head, num_saved, i;
/* SACK block for the received segment. */
head_blk.start = rcv_start;
head_blk.end = rcv_end;
/*
* Merge updated SACK blocks into head_blk, and
* save unchanged SACK blocks into saved_blks[].
* num_saved will have the number of the saved SACK blocks.
*/
num_saved = 0;
for (i = 0; i < tp->rcv_numsacks; i++) {
tcp_seq start = tp->sackblks[i].start;
tcp_seq end = tp->sackblks[i].end;
if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
/*
* Discard this SACK block.
*/
} else if (SEQ_LEQ(head_blk.start, end) &&
SEQ_GEQ(head_blk.end, start)) {
/*
* Merge this SACK block into head_blk.
* This SACK block itself will be discarded.
*/
if (SEQ_GT(head_blk.start, start)) {
head_blk.start = start;
}
if (SEQ_LT(head_blk.end, end)) {
head_blk.end = end;
}
} else {
/*
* Save this SACK block.
*/
saved_blks[num_saved].start = start;
saved_blks[num_saved].end = end;
num_saved++;
}
}
/*
* Update SACK list in tp->sackblks[].
*/
num_head = 0;
if (SEQ_GT(head_blk.start, tp->rcv_nxt)) {
/*
* The received data segment is an out-of-order segment.
* Put head_blk at the top of SACK list.
*/
tp->sackblks[0] = head_blk;
num_head = 1;
/*
* If the number of saved SACK blocks exceeds its limit,
* discard the last SACK block.
*/
if (num_saved >= MAX_SACK_BLKS) {
num_saved--;
}
}
if (num_saved > 0) {
/*
* Copy the saved SACK blocks back.
*/
bcopy(saved_blks, &tp->sackblks[num_head], sizeof(struct sackblk) * num_saved);
}
/* Save the number of SACK blocks. */
tp->rcv_numsacks = num_head + num_saved;
/* If we are requesting SACK recovery, reset the stretch-ack state
* so that connection will generate more acks after recovery and
* sender's cwnd will open.
*/
if ((tp->t_flags & TF_STRETCHACK) != 0 && tp->rcv_numsacks > 0) {
tcp_reset_stretch_ack(tp);
}
if (tp->rcv_numsacks > 0) {
tp->t_forced_acks = TCP_FORCED_ACKS_COUNT;
}
#if TRAFFIC_MGT
if (tp->acc_iaj > 0 && tp->rcv_numsacks > 0) {
reset_acc_iaj(tp);
}
#endif /* TRAFFIC_MGT */
}
/*
* Delete all receiver-side SACK information.
*/
void
tcp_clean_sackreport( struct tcpcb *tp)
{
tp->rcv_numsacks = 0;
bzero(&tp->sackblks[0], sizeof(struct sackblk) * MAX_SACK_BLKS);
}
/*
* Allocate struct sackhole.
*/
static struct sackhole *
tcp_sackhole_alloc(struct tcpcb *tp, tcp_seq start, tcp_seq end)
{
struct sackhole *hole;
if (tp->snd_numholes >= tcp_sack_maxholes ||
tcp_sack_globalholes >= tcp_sack_globalmaxholes) {
tcpstat.tcps_sack_sboverflow++;
return NULL;
}
hole = zalloc_flags(sack_hole_zone, Z_WAITOK | Z_NOFAIL);
hole->start = start;
hole->end = end;
hole->rxmit = start;
tp->snd_numholes++;
OSIncrementAtomic(&tcp_sack_globalholes);
return hole;
}
/*
* Free struct sackhole.
*/
static void
tcp_sackhole_free(struct tcpcb *tp, struct sackhole *hole)
{
zfree(sack_hole_zone, hole);
tp->snd_numholes--;
OSDecrementAtomic(&tcp_sack_globalholes);
}
/*
* Insert new SACK hole into scoreboard.
*/
static struct sackhole *
tcp_sackhole_insert(struct tcpcb *tp, tcp_seq start, tcp_seq end,
struct sackhole *after)
{
struct sackhole *hole;
/* Allocate a new SACK hole. */
hole = tcp_sackhole_alloc(tp, start, end);
if (hole == NULL) {
return NULL;
}
hole->rxmit_start = tcp_now;
/* Insert the new SACK hole into scoreboard */
if (after != NULL) {
TAILQ_INSERT_AFTER(&tp->snd_holes, after, hole, scblink);
} else {
TAILQ_INSERT_TAIL(&tp->snd_holes, hole, scblink);
}
/* Update SACK hint. */
if (tp->sackhint.nexthole == NULL) {
tp->sackhint.nexthole = hole;
}
return hole;
}
/*
* Remove SACK hole from scoreboard.
*/
static void
tcp_sackhole_remove(struct tcpcb *tp, struct sackhole *hole)
{
/* Update SACK hint. */
if (tp->sackhint.nexthole == hole) {
tp->sackhint.nexthole = TAILQ_NEXT(hole, scblink);
}
/* Remove this SACK hole. */
TAILQ_REMOVE(&tp->snd_holes, hole, scblink);
/* Free this SACK hole. */
tcp_sackhole_free(tp, hole);
}
/*
* When a new ack with SACK is received, check if it indicates packet
* reordering. If there is packet reordering, the socket is marked and
* the late time offset by which the packet was reordered with
* respect to its closest neighboring packets is computed.
*/
static void
tcp_sack_detect_reordering(struct tcpcb *tp, struct sackhole *s,
tcp_seq sacked_seq, tcp_seq snd_fack)
{
int32_t rext = 0, reordered = 0;
/*
* If the SACK hole is past snd_fack, this is from new SACK
* information, so we can ignore it.
*/
if (SEQ_GT(s->end, snd_fack)) {
return;
}
/*
* If there has been a retransmit timeout, then the timestamp on
* the SACK segment will be newer. This might lead to a
* false-positive. Avoid re-ordering detection in this case.
*/
if (tp->t_rxtshift > 0) {
return;
}
/*
* Detect reordering from SACK information by checking
* if recently sacked data was never retransmitted from this hole.
*
* First, we look for the byte in the list of retransmitted segments. This one
* will contain even the segments that are retransmitted thanks to RTO/TLP.
*
* Then, we check the sackhole which indicates whether or not the sackhole
* was subject to retransmission.
*/
if (SEQ_LT(s->rxmit, sacked_seq) &&
(!tcp_do_better_lr || tcp_rxtseg_find(tp, sacked_seq - 1, sacked_seq - 1) == NULL)) {
reordered = 1;
tcpstat.tcps_avoid_rxmt++;
}
if (reordered) {
if (!(tp->t_flagsext & TF_PKTS_REORDERED)) {
tp->t_flagsext |= TF_PKTS_REORDERED;
tcpstat.tcps_detect_reordering++;
}
tcpstat.tcps_reordered_pkts++;
tp->t_reordered_pkts++;
/*
* If reordering is seen on a connection wth ECN enabled,
* increment the heuristic
*/
if (TCP_ECN_ENABLED(tp)) {
INP_INC_IFNET_STAT(tp->t_inpcb, ecn_fallback_reorder);
tcpstat.tcps_ecn_fallback_reorder++;
tcp_heuristic_ecn_aggressive(tp);
}
VERIFY(SEQ_GEQ(snd_fack, s->rxmit));
if (s->rxmit_start > 0) {
rext = timer_diff(tcp_now, 0, s->rxmit_start, 0);
if (rext < 0) {
return;
}
/*
* We take the maximum reorder window to schedule
* DELAYFR timer as that will take care of jitter
* on the network path.
*
* Computing average and standard deviation seems
* to cause unnecessary retransmissions when there
* is high jitter.
*
* We set a maximum of SRTT/2 and a minimum of
* 10 ms on the reorder window.
*/
tp->t_reorderwin = max(tp->t_reorderwin, rext);
tp->t_reorderwin = min(tp->t_reorderwin,
(tp->t_srtt >> (TCP_RTT_SHIFT - 1)));
tp->t_reorderwin = max(tp->t_reorderwin, 10);
}
}
}
static void
tcp_sack_update_byte_counter(struct tcpcb *tp, uint32_t start, uint32_t end,
uint32_t *newbytes_acked, uint32_t *towards_fr_acked)
{
*newbytes_acked += (end - start);
if (SEQ_GEQ(start, tp->send_highest_sack)) {
*towards_fr_acked += (end - start);
}
}
/*
* Process cumulative ACK and the TCP SACK option to update the scoreboard.
* tp->snd_holes is an ordered list of holes (oldest to newest, in terms of
* the sequence space).
*/
void
tcp_sack_doack(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th,
u_int32_t *newbytes_acked, uint32_t *after_rexmit_acked)
{
struct sackhole *cur, *temp;
struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1], *sblkp;
int i, j, num_sack_blks;
tcp_seq old_snd_fack = 0, th_ack = th->th_ack;
num_sack_blks = 0;
/*
* If SND.UNA will be advanced by SEG.ACK, and if SACK holes exist,
* treat [SND.UNA, SEG.ACK) as if it is a SACK block.
*/
if (SEQ_LT(tp->snd_una, th_ack) && !TAILQ_EMPTY(&tp->snd_holes)) {
sack_blocks[num_sack_blks].start = tp->snd_una;
sack_blocks[num_sack_blks++].end = th_ack;
}
/*
* Append received valid SACK blocks to sack_blocks[].
* Check that the SACK block range is valid.
*/
for (i = 0; i < to->to_nsacks; i++) {
bcopy((to->to_sacks + i * TCPOLEN_SACK),
&sack, sizeof(sack));
sack.start = ntohl(sack.start);
sack.end = ntohl(sack.end);
if (TCP_VALIDATE_SACK_SEQ_NUMBERS(tp, &sack, th_ack)) {
sack_blocks[num_sack_blks++] = sack;
}
}
/*
* Return if SND.UNA is not advanced and no valid SACK block
* is received.
*/
if (num_sack_blks == 0) {
return;
}
VERIFY(num_sack_blks <= (TCP_MAX_SACK + 1));
/*
* Sort the SACK blocks so we can update the scoreboard
* with just one pass. The overhead of sorting upto 4+1 elements
* is less than making upto 4+1 passes over the scoreboard.
*/
for (i = 0; i < num_sack_blks; i++) {
for (j = i + 1; j < num_sack_blks; j++) {
if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
sack = sack_blocks[i];
sack_blocks[i] = sack_blocks[j];
sack_blocks[j] = sack;
}
}
}
if (TAILQ_EMPTY(&tp->snd_holes)) {
/*
* Empty scoreboard. Need to initialize snd_fack (it may be
* uninitialized or have a bogus value). Scoreboard holes
* (from the sack blocks received) are created later below (in
* the logic that adds holes to the tail of the scoreboard).
*/
tp->snd_fack = SEQ_MAX(tp->snd_una, th_ack);
}
old_snd_fack = tp->snd_fack;
/*
* In the while-loop below, incoming SACK blocks (sack_blocks[])
* and SACK holes (snd_holes) are traversed from their tails with
* just one pass in order to reduce the number of compares especially
* when the bandwidth-delay product is large.
* Note: Typically, in the first RTT of SACK recovery, the highest
* three or four SACK blocks with the same ack number are received.
* In the second RTT, if retransmitted data segments are not lost,
* the highest three or four SACK blocks with ack number advancing
* are received.
*/
sblkp = &sack_blocks[num_sack_blks - 1]; /* Last SACK block */
if (SEQ_LT(tp->snd_fack, sblkp->start)) {
/*
* The highest SACK block is beyond fack.
* Append new SACK hole at the tail.
* If the second or later highest SACK blocks are also
* beyond the current fack, they will be inserted by
* way of hole splitting in the while-loop below.
*/
temp = tcp_sackhole_insert(tp, tp->snd_fack, sblkp->start, NULL);
if (temp != NULL) {
tp->snd_fack = sblkp->end;
tcp_sack_update_byte_counter(tp, sblkp->start, sblkp->end, newbytes_acked, after_rexmit_acked);
/* Go to the previous sack block. */
sblkp--;
} else {
/*
* We failed to add a new hole based on the current
* sack block. Skip over all the sack blocks that
* fall completely to the right of snd_fack and proceed
* to trim the scoreboard based on the remaining sack
* blocks. This also trims the scoreboard for th_ack
* (which is sack_blocks[0]).
*/
while (sblkp >= sack_blocks &&
SEQ_LT(tp->snd_fack, sblkp->start)) {
sblkp--;
}
if (sblkp >= sack_blocks &&
SEQ_LT(tp->snd_fack, sblkp->end)) {
tcp_sack_update_byte_counter(tp, tp->snd_fack, sblkp->end, newbytes_acked, after_rexmit_acked);
tp->snd_fack = sblkp->end;
}
}
} else if (SEQ_LT(tp->snd_fack, sblkp->end)) {
/* fack is advanced. */
tcp_sack_update_byte_counter(tp, tp->snd_fack, sblkp->end, newbytes_acked, after_rexmit_acked);
tp->snd_fack = sblkp->end;
}
/* We must have at least one SACK hole in scoreboard */
cur = TAILQ_LAST(&tp->snd_holes, sackhole_head); /* Last SACK hole */
/*
* Since the incoming sack blocks are sorted, we can process them
* making one sweep of the scoreboard.
*/
while (sblkp >= sack_blocks && cur != NULL) {
if (SEQ_GEQ(sblkp->start, cur->end)) {
/*
* SACKs data beyond the current hole.
* Go to the previous sack block.
*/
sblkp--;
continue;
}
if (SEQ_LEQ(sblkp->end, cur->start)) {
/*
* SACKs data before the current hole.
* Go to the previous hole.
*/
cur = TAILQ_PREV(cur, sackhole_head, scblink);
continue;
}
tp->sackhint.sack_bytes_rexmit -= (cur->rxmit - cur->start);
if (tp->sackhint.sack_bytes_rexmit < 0) {
tp->sackhint.sack_bytes_rexmit = 0;
}
if (SEQ_LEQ(sblkp->start, cur->start)) {
/* Data acks at least the beginning of hole */
if (SEQ_GEQ(sblkp->end, cur->end)) {
/* Acks entire hole, so delete hole */
tcp_sack_update_byte_counter(tp, cur->start, cur->end, newbytes_acked, after_rexmit_acked);
tcp_sack_detect_reordering(tp, cur,
cur->end, old_snd_fack);
temp = cur;
cur = TAILQ_PREV(cur, sackhole_head, scblink);
tcp_sackhole_remove(tp, temp);
/*
* The sack block may ack all or part of the next
* hole too, so continue onto the next hole.
*/
continue;
} else {
/* Move start of hole forward */
tcp_sack_update_byte_counter(tp, cur->start, sblkp->end, newbytes_acked, after_rexmit_acked);
tcp_sack_detect_reordering(tp, cur,
sblkp->end, old_snd_fack);
cur->start = sblkp->end;
cur->rxmit = SEQ_MAX(cur->rxmit, cur->start);
}
} else {
/* Data acks at least the end of hole */
if (SEQ_GEQ(sblkp->end, cur->end)) {
/* Move end of hole backward */
tcp_sack_update_byte_counter(tp, sblkp->start, cur->end, newbytes_acked, after_rexmit_acked);
tcp_sack_detect_reordering(tp, cur,
cur->end, old_snd_fack);
cur->end = sblkp->start;
cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
} else {
/*
* ACKs some data in the middle of a hole;
* need to split current hole
*/
tcp_sack_detect_reordering(tp, cur,
sblkp->end, old_snd_fack);
temp = tcp_sackhole_insert(tp, sblkp->end,
cur->end, cur);
if (temp != NULL) {
tcp_sack_update_byte_counter(tp, sblkp->start, sblkp->end, newbytes_acked, after_rexmit_acked);
if (SEQ_GT(cur->rxmit, temp->rxmit)) {
temp->rxmit = cur->rxmit;
tp->sackhint.sack_bytes_rexmit
+= (temp->rxmit
- temp->start);
}
cur->end = sblkp->start;
cur->rxmit = SEQ_MIN(cur->rxmit,
cur->end);
/*
* Reset the rxmit_start to that of
* the current hole as that will
* help to compute the reorder
* window correctly
*/
temp->rxmit_start = cur->rxmit_start;
}
}
}
tp->sackhint.sack_bytes_rexmit += (cur->rxmit - cur->start);
/*
* Testing sblkp->start against cur->start tells us whether
* we're done with the sack block or the sack hole.
* Accordingly, we advance one or the other.
*/
if (SEQ_LEQ(sblkp->start, cur->start)) {
cur = TAILQ_PREV(cur, sackhole_head, scblink);
} else {
sblkp--;
}
}
}
/*
* Free all SACK holes to clear the scoreboard.
*/
void
tcp_free_sackholes(struct tcpcb *tp)
{
struct sackhole *q;
while ((q = TAILQ_FIRST(&tp->snd_holes)) != NULL) {
tcp_sackhole_remove(tp, q);
}
tp->sackhint.sack_bytes_rexmit = 0;
tp->sackhint.sack_bytes_acked = 0;
tp->t_new_dupacks = 0;
tp->sackhint.nexthole = NULL;
tp->sack_newdata = 0;
}
/*
* Partial ack handling within a sack recovery episode.
* Keeping this very simple for now. When a partial ack
* is received, force snd_cwnd to a value that will allow
* the sender to transmit no more than 2 segments.
* If necessary, a better scheme can be adopted at a
* later point, but for now, the goal is to prevent the
* sender from bursting a large amount of data in the midst
* of sack recovery.
*/
void
tcp_sack_partialack(struct tcpcb *tp, struct tcphdr *th)
{
int num_segs = 1;
tp->t_timer[TCPT_REXMT] = 0;
tp->t_rtttime = 0;
/* send one or 2 segments based on how much new data was acked */
if (((BYTES_ACKED(th, tp)) / tp->t_maxseg) > 2) {
num_segs = 2;
}
if (tcp_do_better_lr) {
tp->snd_cwnd = tcp_flight_size(tp) + num_segs * tp->t_maxseg;
} else {
tp->snd_cwnd = (tp->sackhint.sack_bytes_rexmit +
(tp->snd_nxt - tp->sack_newdata) +
num_segs * tp->t_maxseg);
}
if (tp->snd_cwnd > tp->snd_ssthresh) {
tp->snd_cwnd = tp->snd_ssthresh;
}
if (SEQ_LT(tp->snd_fack, tp->snd_recover) &&
tp->snd_fack == th->th_ack && TAILQ_EMPTY(&tp->snd_holes)) {
struct sackhole *temp;
/*
* we received a partial ack but there is no sack_hole
* that will cover the remaining seq space. In this case,
* create a hole from snd_fack to snd_recover so that
* the sack recovery will continue.
*/
temp = tcp_sackhole_insert(tp, tp->snd_fack,
tp->snd_recover, NULL);
if (temp != NULL) {
tp->snd_fack = tp->snd_recover;
}
}
(void) tcp_output(tp);
}
/*
* Debug version of tcp_sack_output() that walks the scoreboard. Used for
* now to sanity check the hint.
*/
static struct sackhole *
tcp_sack_output_debug(struct tcpcb *tp, int *sack_bytes_rexmt)
{
struct sackhole *p;
*sack_bytes_rexmt = 0;
TAILQ_FOREACH(p, &tp->snd_holes, scblink) {
if (SEQ_LT(p->rxmit, p->end)) {
if (SEQ_LT(p->rxmit, tp->snd_una)) {/* old SACK hole */
continue;
}
*sack_bytes_rexmt += (p->rxmit - p->start);
break;
}
*sack_bytes_rexmt += (p->rxmit - p->start);
}
return p;
}
/*
* Returns the next hole to retransmit and the number of retransmitted bytes
* from the scoreboard. We store both the next hole and the number of
* retransmitted bytes as hints (and recompute these on the fly upon SACK/ACK
* reception). This avoids scoreboard traversals completely.
*
* The loop here will traverse *at most* one link. Here's the argument.
* For the loop to traverse more than 1 link before finding the next hole to
* retransmit, we would need to have at least 1 node following the current hint
* with (rxmit == end). But, for all holes following the current hint,
* (start == rxmit), since we have not yet retransmitted from them. Therefore,
* in order to traverse more 1 link in the loop below, we need to have at least
* one node following the current hint with (start == rxmit == end).
* But that can't happen, (start == end) means that all the data in that hole
* has been sacked, in which case, the hole would have been removed from the
* scoreboard.
*/
struct sackhole *
tcp_sack_output(struct tcpcb *tp, int *sack_bytes_rexmt)
{
struct sackhole *hole = NULL, *dbg_hole = NULL;
int dbg_bytes_rexmt;
dbg_hole = tcp_sack_output_debug(tp, &dbg_bytes_rexmt);
*sack_bytes_rexmt = tp->sackhint.sack_bytes_rexmit;
hole = tp->sackhint.nexthole;
if (hole == NULL || SEQ_LT(hole->rxmit, hole->end)) {
goto out;
}
while ((hole = TAILQ_NEXT(hole, scblink)) != NULL) {
if (SEQ_LT(hole->rxmit, hole->end)) {
tp->sackhint.nexthole = hole;
break;
}
}
out:
if (dbg_hole != hole) {
printf("%s: Computed sack hole not the same as cached value\n", __func__);
hole = dbg_hole;
}
if (*sack_bytes_rexmt != dbg_bytes_rexmt) {
printf("%s: Computed sack_bytes_retransmitted (%d) not "
"the same as cached value (%d)\n",
__func__, dbg_bytes_rexmt, *sack_bytes_rexmt);
*sack_bytes_rexmt = dbg_bytes_rexmt;
}
return hole;
}
void
tcp_sack_lost_rexmit(struct tcpcb *tp)
{
struct sackhole *hole = TAILQ_FIRST(&tp->snd_holes);
while (hole) {
hole->rxmit = hole->start;
hole->rxmit_start = tcp_now;
hole = TAILQ_NEXT(hole, scblink);
}
tp->sackhint.nexthole = TAILQ_FIRST(&tp->snd_holes);
tp->sackhint.sack_bytes_rexmit = 0;
tp->sack_newdata = tp->snd_nxt;
}
/*
* After a timeout, the SACK list may be rebuilt. This SACK information
* should be used to avoid retransmitting SACKed data. This function
* traverses the SACK list to see if snd_nxt should be moved forward.
*/
uint32_t
tcp_sack_adjust(struct tcpcb *tp)
{
struct sackhole *p, *cur = TAILQ_FIRST(&tp->snd_holes);
if (cur == NULL) {
return 0; /* No holes */
}
if (SEQ_GEQ(tp->snd_nxt, tp->snd_fack)) {
return 0; /* We're already beyond any SACKed blocks */
}
/*
* Two cases for which we want to advance snd_nxt:
* i) snd_nxt lies between end of one hole and beginning of another
* ii) snd_nxt lies between end of last hole and snd_fack
*/
while ((p = TAILQ_NEXT(cur, scblink)) != NULL) {
if (SEQ_LT(tp->snd_nxt, cur->end)) {
return cur->end - tp->snd_nxt;
}
if (SEQ_GEQ(tp->snd_nxt, p->start)) {
cur = p;
} else {
tp->snd_nxt = p->start;
return p->end - tp->snd_nxt;
}
}
if (SEQ_LT(tp->snd_nxt, cur->end)) {
return cur->end - tp->snd_nxt;
}
tp->snd_nxt = tp->snd_fack;
return 0;
}
/*
* This function returns TRUE if more than (tcprexmtthresh - 1) * SMSS
* bytes with sequence numbers greater than snd_una have been SACKed.
*/
boolean_t
tcp_sack_byte_islost(struct tcpcb *tp)
{
u_int32_t unacked_bytes, sndhole_bytes = 0;
struct sackhole *sndhole;
if (!SACK_ENABLED(tp) || IN_FASTRECOVERY(tp) ||
TAILQ_EMPTY(&tp->snd_holes) ||
(tp->t_flagsext & TF_PKTS_REORDERED)) {
return FALSE;
}
unacked_bytes = tp->snd_max - tp->snd_una;
TAILQ_FOREACH(sndhole, &tp->snd_holes, scblink) {
sndhole_bytes += (sndhole->end - sndhole->start);
}
VERIFY(unacked_bytes >= sndhole_bytes);
return (unacked_bytes - sndhole_bytes) >
((tcprexmtthresh - 1) * tp->t_maxseg);
}
/*
* Process any DSACK options that might be present on an input packet
*/
boolean_t
tcp_sack_process_dsack(struct tcpcb *tp, struct tcpopt *to,
struct tcphdr *th)
{
struct sackblk first_sack, second_sack;
bcopy(to->to_sacks, &first_sack, sizeof(first_sack));
first_sack.start = ntohl(first_sack.start);
first_sack.end = ntohl(first_sack.end);
if (to->to_nsacks > 1) {
bcopy((to->to_sacks + TCPOLEN_SACK), &second_sack,
sizeof(second_sack));
second_sack.start = ntohl(second_sack.start);
second_sack.end = ntohl(second_sack.end);
}
if (SEQ_LT(first_sack.start, th->th_ack) &&
SEQ_LEQ(first_sack.end, th->th_ack)) {
/*
* There is a dsack option reporting a duplicate segment
* also covered by cumulative acknowledgement.
*
* Validate the sequence numbers before looking at dsack
* option. The duplicate notification can come after
* snd_una moves forward. In order to set a window of valid
* sequence numbers to look for, we set a maximum send
* window within which the DSACK option will be processed.
*/
if (!(TCP_DSACK_SEQ_IN_WINDOW(tp, first_sack.start, th->th_ack) &&
TCP_DSACK_SEQ_IN_WINDOW(tp, first_sack.end, th->th_ack))) {
to->to_nsacks--;
to->to_sacks += TCPOLEN_SACK;
tcpstat.tcps_dsack_recvd_old++;
/*
* returning true here so that the ack will not be
* treated as duplicate ack.
*/
return TRUE;
}
} else if (to->to_nsacks > 1 &&
SEQ_LEQ(second_sack.start, first_sack.start) &&
SEQ_GEQ(second_sack.end, first_sack.end)) {
/*
* there is a dsack option in the first block not
* covered by the cumulative acknowledgement but covered
* by the second sack block.
*
* verify the sequence numbes on the second sack block
* before processing the DSACK option. Returning false
* here will treat the ack as a duplicate ack.
*/
if (!TCP_VALIDATE_SACK_SEQ_NUMBERS(tp, &second_sack,
th->th_ack)) {
to->to_nsacks--;
to->to_sacks += TCPOLEN_SACK;
tcpstat.tcps_dsack_recvd_old++;
return TRUE;
}
} else {
/* no dsack options, proceed with processing the sack */
return FALSE;
}
/* Update the tcpopt pointer to exclude dsack block */
to->to_nsacks--;
to->to_sacks += TCPOLEN_SACK;
tcpstat.tcps_dsack_recvd++;
tp->t_dsack_recvd++;
/* Update the sender's retransmit segment state */
if (((tp->t_rxtshift == 1 && first_sack.start == tp->snd_una) ||
((tp->t_flagsext & TF_SENT_TLPROBE) &&
first_sack.end == tp->t_tlphighrxt)) &&
TAILQ_EMPTY(&tp->snd_holes) &&
SEQ_GT(th->th_ack, tp->snd_una)) {
/*
* If the dsack is for a retransmitted packet and one of
* the two cases is true, it indicates ack loss:
* - retransmit timeout and first_sack.start == snd_una
* - TLP probe and first_sack.end == tlphighrxt
*
* Ignore dsack and do not update state when there is
* ack loss
*/
tcpstat.tcps_dsack_ackloss++;
return TRUE;
} else {
tcp_rxtseg_set_spurious(tp, first_sack.start, (first_sack.end - 1));
}
return TRUE;
}