1626 lines
41 KiB
C
1626 lines
41 KiB
C
|
/*
|
||
|
* Copyright (c) 2000-2019 Apple Inc. All rights reserved.
|
||
|
*
|
||
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
|
||
|
*
|
||
|
* This file contains Original Code and/or Modifications of Original Code
|
||
|
* as defined in and that are subject to the Apple Public Source License
|
||
|
* Version 2.0 (the 'License'). You may not use this file except in
|
||
|
* compliance with the License. The rights granted to you under the License
|
||
|
* may not be used to create, or enable the creation or redistribution of,
|
||
|
* unlawful or unlicensed copies of an Apple operating system, or to
|
||
|
* circumvent, violate, or enable the circumvention or violation of, any
|
||
|
* terms of an Apple operating system software license agreement.
|
||
|
*
|
||
|
* Please obtain a copy of the License at
|
||
|
* http://www.opensource.apple.com/apsl/ and read it before using this file.
|
||
|
*
|
||
|
* The Original Code and all software distributed under the License are
|
||
|
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
|
||
|
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
|
||
|
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
|
||
|
* Please see the License for the specific language governing rights and
|
||
|
* limitations under the License.
|
||
|
*
|
||
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
|
||
|
*/
|
||
|
/*
|
||
|
* Implementation of SVID semaphores
|
||
|
*
|
||
|
* Author: Daniel Boulet
|
||
|
*
|
||
|
* This software is provided ``AS IS'' without any warranties of any kind.
|
||
|
*/
|
||
|
/*
|
||
|
* John Bellardo modified the implementation for Darwin. 12/2000
|
||
|
*/
|
||
|
/*
|
||
|
* NOTICE: This file was modified by McAfee Research in 2004 to introduce
|
||
|
* support for mandatory and extensible security protections. This notice
|
||
|
* is included in support of clause 2.2 (b) of the Apple Public License,
|
||
|
* Version 2.0.
|
||
|
* Copyright (c) 2005-2006 SPARTA, Inc.
|
||
|
*/
|
||
|
|
||
|
#include <sys/param.h>
|
||
|
#include <sys/systm.h>
|
||
|
#include <sys/kernel.h>
|
||
|
#include <sys/proc_internal.h>
|
||
|
#include <sys/kauth.h>
|
||
|
#include <sys/sem_internal.h>
|
||
|
#include <sys/malloc.h>
|
||
|
#include <mach/mach_types.h>
|
||
|
|
||
|
#include <sys/filedesc.h>
|
||
|
#include <sys/file_internal.h>
|
||
|
#include <sys/sysctl.h>
|
||
|
#include <sys/ipcs.h>
|
||
|
#include <sys/sysent.h>
|
||
|
#include <sys/sysproto.h>
|
||
|
#if CONFIG_MACF
|
||
|
#include <security/mac_framework.h>
|
||
|
#endif
|
||
|
|
||
|
#include <security/audit/audit.h>
|
||
|
|
||
|
#if SYSV_SEM
|
||
|
|
||
|
|
||
|
/* Uncomment this line to see the debugging output */
|
||
|
/* #define SEM_DEBUG */
|
||
|
|
||
|
/* Uncomment this line to see MAC debugging output. */
|
||
|
/* #define MAC_DEBUG */
|
||
|
#if CONFIG_MACF_DEBUG
|
||
|
#define MPRINTF(a) printf(a)
|
||
|
#else
|
||
|
#define MPRINTF(a)
|
||
|
#endif
|
||
|
|
||
|
/* Hard system limits to avoid resource starvation / DOS attacks.
|
||
|
* These are not needed if we can make the semaphore pages swappable.
|
||
|
*/
|
||
|
static struct seminfo limitseminfo = {
|
||
|
.semmap = SEMMAP, /* # of entries in semaphore map */
|
||
|
.semmni = SEMMNI, /* # of semaphore identifiers */
|
||
|
.semmns = SEMMNS, /* # of semaphores in system */
|
||
|
.semmnu = SEMMNU, /* # of undo structures in system */
|
||
|
.semmsl = SEMMSL, /* max # of semaphores per id */
|
||
|
.semopm = SEMOPM, /* max # of operations per semop call */
|
||
|
.semume = SEMUME, /* max # of undo entries per process */
|
||
|
.semusz = SEMUSZ, /* size in bytes of undo structure */
|
||
|
.semvmx = SEMVMX, /* semaphore maximum value */
|
||
|
.semaem = SEMAEM /* adjust on exit max value */
|
||
|
};
|
||
|
|
||
|
/* Current system allocations. We use this structure to track how many
|
||
|
* resources we have allocated so far. This way we can set large hard limits
|
||
|
* and not allocate the memory for them up front.
|
||
|
*/
|
||
|
struct seminfo seminfo = {
|
||
|
.semmap = SEMMAP, /* Unused, # of entries in semaphore map */
|
||
|
.semmni = 0, /* # of semaphore identifiers */
|
||
|
.semmns = 0, /* # of semaphores in system */
|
||
|
.semmnu = 0, /* # of undo entries in system */
|
||
|
.semmsl = SEMMSL, /* max # of semaphores per id */
|
||
|
.semopm = SEMOPM, /* max # of operations per semop call */
|
||
|
.semume = SEMUME, /* max # of undo entries per process */
|
||
|
.semusz = SEMUSZ, /* size in bytes of undo structure */
|
||
|
.semvmx = SEMVMX, /* semaphore maximum value */
|
||
|
.semaem = SEMAEM /* adjust on exit max value */
|
||
|
};
|
||
|
|
||
|
|
||
|
static int semu_alloc(struct proc *p);
|
||
|
static int semundo_adjust(struct proc *p, int *supidx,
|
||
|
int semid, int semnum, int adjval);
|
||
|
static void semundo_clear(int semid, int semnum);
|
||
|
|
||
|
/* XXX casting to (sy_call_t *) is bogus, as usual. */
|
||
|
static sy_call_t* const semcalls[] = {
|
||
|
(sy_call_t *)semctl, (sy_call_t *)semget,
|
||
|
(sy_call_t *)semop
|
||
|
};
|
||
|
|
||
|
static int semtot = 0; /* # of used semaphores */
|
||
|
static struct semid_kernel **semas = NULL; /* semaphore id pool */
|
||
|
static struct sem *sem_pool = NULL; /* semaphore pool */
|
||
|
static int semu_list_idx = -1; /* active undo structures */
|
||
|
static struct sem_undo *semu = NULL; /* semaphore undo pool */
|
||
|
|
||
|
static LCK_GRP_DECLARE(sysv_sem_subsys_lck_grp, "sysv_sem_subsys_lock");
|
||
|
static LCK_MTX_DECLARE(sysv_sem_subsys_mutex, &sysv_sem_subsys_lck_grp);
|
||
|
|
||
|
#define SYSV_SEM_SUBSYS_LOCK() lck_mtx_lock(&sysv_sem_subsys_mutex)
|
||
|
#define SYSV_SEM_SUBSYS_UNLOCK() lck_mtx_unlock(&sysv_sem_subsys_mutex)
|
||
|
|
||
|
static __inline__ user_time_t
|
||
|
sysv_semtime(void)
|
||
|
{
|
||
|
struct timeval tv;
|
||
|
microtime(&tv);
|
||
|
return tv.tv_sec;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* XXX conversion of internal user_time_t to external tume_t loses
|
||
|
* XXX precision; not an issue for us now, since we are only ever
|
||
|
* XXX setting 32 bits worth of time into it.
|
||
|
*
|
||
|
* pad field contents are not moved correspondingly; contents will be lost
|
||
|
*
|
||
|
* NOTE: Source and target may *NOT* overlap! (target is smaller)
|
||
|
*/
|
||
|
static void
|
||
|
semid_ds_kernelto32(struct user_semid_ds *in, struct user32_semid_ds *out)
|
||
|
{
|
||
|
out->sem_perm = in->sem_perm;
|
||
|
out->sem_base = CAST_DOWN_EXPLICIT(__int32_t, in->sem_base);
|
||
|
out->sem_nsems = in->sem_nsems;
|
||
|
out->sem_otime = in->sem_otime; /* XXX loses precision */
|
||
|
out->sem_ctime = in->sem_ctime; /* XXX loses precision */
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
semid_ds_kernelto64(struct user_semid_ds *in, struct user64_semid_ds *out)
|
||
|
{
|
||
|
out->sem_perm = in->sem_perm;
|
||
|
out->sem_base = CAST_DOWN_EXPLICIT(__int32_t, in->sem_base);
|
||
|
out->sem_nsems = in->sem_nsems;
|
||
|
out->sem_otime = in->sem_otime; /* XXX loses precision */
|
||
|
out->sem_ctime = in->sem_ctime; /* XXX loses precision */
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* pad field contents are not moved correspondingly; contents will be lost
|
||
|
*
|
||
|
* NOTE: Source and target may are permitted to overlap! (source is smaller);
|
||
|
* this works because we copy fields in order from the end of the struct to
|
||
|
* the beginning.
|
||
|
*
|
||
|
* XXX use CAST_USER_ADDR_T() for lack of a CAST_USER_TIME_T(); net effect
|
||
|
* XXX is the same.
|
||
|
*/
|
||
|
static void
|
||
|
semid_ds_32tokernel(struct user32_semid_ds *in, struct user_semid_ds *out)
|
||
|
{
|
||
|
out->sem_ctime = in->sem_ctime;
|
||
|
out->sem_otime = in->sem_otime;
|
||
|
out->sem_nsems = in->sem_nsems;
|
||
|
out->sem_base = (void *)(uintptr_t)in->sem_base;
|
||
|
out->sem_perm = in->sem_perm;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
semid_ds_64tokernel(struct user64_semid_ds *in, struct user_semid_ds *out)
|
||
|
{
|
||
|
out->sem_ctime = in->sem_ctime;
|
||
|
out->sem_otime = in->sem_otime;
|
||
|
out->sem_nsems = in->sem_nsems;
|
||
|
out->sem_base = (void *)(uintptr_t)in->sem_base;
|
||
|
out->sem_perm = in->sem_perm;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* semsys
|
||
|
*
|
||
|
* Entry point for all SEM calls: semctl, semget, semop
|
||
|
*
|
||
|
* Parameters: p Process requesting the call
|
||
|
* uap User argument descriptor (see below)
|
||
|
* retval Return value of the selected sem call
|
||
|
*
|
||
|
* Indirect parameters: uap->which sem call to invoke (index in array of sem calls)
|
||
|
* uap->a2 User argument descriptor
|
||
|
*
|
||
|
* Returns: 0 Success
|
||
|
* !0 Not success
|
||
|
*
|
||
|
* Implicit returns: retval Return value of the selected sem call
|
||
|
*
|
||
|
* DEPRECATED: This interface should not be used to call the other SEM
|
||
|
* functions (semctl, semget, semop). The correct usage is
|
||
|
* to call the other SEM functions directly.
|
||
|
*
|
||
|
*/
|
||
|
int
|
||
|
semsys(struct proc *p, struct semsys_args *uap, int32_t *retval)
|
||
|
{
|
||
|
/* The individual calls handling the locking now */
|
||
|
|
||
|
if (uap->which >= sizeof(semcalls) / sizeof(semcalls[0])) {
|
||
|
return EINVAL;
|
||
|
}
|
||
|
return (*semcalls[uap->which])(p, &uap->a2, retval);
|
||
|
}
|
||
|
|
||
|
static inline struct semid_kernel *
|
||
|
sema_get_by_id(size_t i)
|
||
|
{
|
||
|
return &semas[i / SEMMNI_INC][i % SEMMNI_INC];
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Expand the semu array to the given capacity. If the expansion fails
|
||
|
* return 0, otherwise return 1.
|
||
|
*
|
||
|
* Assumes we already have the subsystem lock.
|
||
|
*/
|
||
|
static int
|
||
|
grow_semu_array(void)
|
||
|
{
|
||
|
struct sem_undo *newSemu;
|
||
|
int old_size = seminfo.semmnu;
|
||
|
int new_size;
|
||
|
|
||
|
if (old_size >= limitseminfo.semmnu) { /* enforce hard limit */
|
||
|
return 0;
|
||
|
}
|
||
|
new_size = MIN(roundup(old_size + 1, SEMMNU_INC), limitseminfo.semmnu);
|
||
|
|
||
|
newSemu = krealloc_type(struct sem_undo, seminfo.semmnu, new_size,
|
||
|
semu, Z_WAITOK | Z_ZERO);
|
||
|
if (NULL == newSemu) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
semu = newSemu;
|
||
|
seminfo.semmnu = new_size;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Expand the semas array. If the expansion fails
|
||
|
* we return 0, otherwise we return 1.
|
||
|
*
|
||
|
* Assumes we already have the subsystem lock.
|
||
|
*/
|
||
|
static int
|
||
|
grow_sema_array(void)
|
||
|
{
|
||
|
struct semid_kernel *newSema, **newArr;
|
||
|
int old_size = seminfo.semmni;
|
||
|
|
||
|
if (old_size >= limitseminfo.semmni) { /* enforce hard limit */
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
newArr = krealloc_type(struct semid_kernel *,
|
||
|
old_size / SEMMNI_INC, old_size / SEMMNI_INC + 1,
|
||
|
semas, Z_WAITOK | Z_ZERO);
|
||
|
if (newArr == NULL) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
newSema = zalloc_permanent(sizeof(struct semid_kernel) * SEMMNI_INC,
|
||
|
ZALIGN(struct semid_kernel));
|
||
|
|
||
|
#if CONFIG_MACF
|
||
|
for (int i = 0; i < SEMMNI_INC; i++) {
|
||
|
mac_sysvsem_label_init(&newSema[i]);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* The new elements (from newSema[i] to newSema[newSize-1]) have their
|
||
|
* "sem_base" and "sem_perm.mode" set to 0 (i.e. NULL) by the Z_ZERO
|
||
|
* flag above, so they're already marked as "not in use".
|
||
|
*/
|
||
|
|
||
|
semas = newArr;
|
||
|
semas[old_size / SEMMNI_INC] = newSema;
|
||
|
seminfo.semmni += SEMMNI_INC;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Expand the sem_pool array to the given capacity. If the expansion fails
|
||
|
* we return 0 (fail), otherwise we return 1 (success).
|
||
|
*
|
||
|
* Assumes we already hold the subsystem lock.
|
||
|
*/
|
||
|
static int
|
||
|
grow_sem_pool(int new_pool_size)
|
||
|
{
|
||
|
struct sem *new_sem_pool = NULL;
|
||
|
|
||
|
if (new_pool_size < semtot) {
|
||
|
return 0;
|
||
|
}
|
||
|
/* enforce hard limit */
|
||
|
if (new_pool_size > limitseminfo.semmns) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
new_pool_size = (new_pool_size / SEMMNS_INC + 1) * SEMMNS_INC;
|
||
|
new_pool_size = new_pool_size > limitseminfo.semmns ? limitseminfo.semmns : new_pool_size;
|
||
|
|
||
|
new_sem_pool = krealloc_data(sem_pool,
|
||
|
sizeof(struct sem) * seminfo.semmns,
|
||
|
sizeof(struct sem) * new_pool_size,
|
||
|
Z_WAITOK | Z_ZERO);
|
||
|
|
||
|
if (NULL == new_sem_pool) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Update our id structures to point to the new semaphores */
|
||
|
for (int i = 0; i < seminfo.semmni; i++) {
|
||
|
struct semid_kernel *semakptr = sema_get_by_id(i);
|
||
|
|
||
|
if (semakptr->u.sem_perm.mode & SEM_ALLOC) { /* ID in use */
|
||
|
semakptr->u.sem_base = new_sem_pool +
|
||
|
(semakptr->u.sem_base - sem_pool);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
sem_pool = new_sem_pool;
|
||
|
seminfo.semmns = new_pool_size;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Allocate a new sem_undo structure for a process
|
||
|
* (returns ptr to structure or NULL if no more room)
|
||
|
*
|
||
|
* Assumes we already hold the subsystem lock.
|
||
|
*/
|
||
|
|
||
|
static int
|
||
|
semu_alloc(struct proc *p)
|
||
|
{
|
||
|
int i;
|
||
|
struct sem_undo *suptr;
|
||
|
int *supidx;
|
||
|
int attempt;
|
||
|
|
||
|
/*
|
||
|
* Try twice to allocate something.
|
||
|
* (we'll purge any empty structures after the first pass so
|
||
|
* two passes are always enough)
|
||
|
*/
|
||
|
|
||
|
for (attempt = 0; attempt < 2; attempt++) {
|
||
|
/*
|
||
|
* Look for a free structure.
|
||
|
* Fill it in and return it if we find one.
|
||
|
*/
|
||
|
|
||
|
for (i = 0; i < seminfo.semmnu; i++) {
|
||
|
suptr = SEMU(i);
|
||
|
if (suptr->un_proc == NULL) {
|
||
|
suptr->un_next_idx = semu_list_idx;
|
||
|
semu_list_idx = i;
|
||
|
suptr->un_cnt = 0;
|
||
|
suptr->un_ent = NULL;
|
||
|
suptr->un_proc = p;
|
||
|
return i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We didn't find a free one, if this is the first attempt
|
||
|
* then try to free some structures.
|
||
|
*/
|
||
|
|
||
|
if (attempt == 0) {
|
||
|
/* All the structures are in use - try to free some */
|
||
|
int did_something = 0;
|
||
|
|
||
|
supidx = &semu_list_idx;
|
||
|
while (*supidx != -1) {
|
||
|
suptr = SEMU(*supidx);
|
||
|
if (suptr->un_cnt == 0) {
|
||
|
suptr->un_proc = NULL;
|
||
|
*supidx = suptr->un_next_idx;
|
||
|
did_something = 1;
|
||
|
} else {
|
||
|
supidx = &(suptr->un_next_idx);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* If we didn't free anything. Try expanding
|
||
|
* the semu[] array. If that doesn't work
|
||
|
* then fail. We expand last to get the
|
||
|
* most reuse out of existing resources.
|
||
|
*/
|
||
|
if (!did_something && !grow_semu_array()) {
|
||
|
return -1;
|
||
|
}
|
||
|
} else {
|
||
|
/*
|
||
|
* The second pass failed even though we freed
|
||
|
* something after the first pass!
|
||
|
* This is IMPOSSIBLE!
|
||
|
*/
|
||
|
panic("semu_alloc - second attempt failed");
|
||
|
}
|
||
|
}
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Adjust a particular entry for a particular proc
|
||
|
*
|
||
|
* Assumes we already hold the subsystem lock.
|
||
|
*/
|
||
|
static int
|
||
|
semundo_adjust(struct proc *p, int *supidx, int semid,
|
||
|
int semnum, int adjval)
|
||
|
{
|
||
|
struct sem_undo *suptr;
|
||
|
int suidx;
|
||
|
struct undo *sueptr, **suepptr, *new_sueptr;
|
||
|
int i;
|
||
|
|
||
|
/*
|
||
|
* Look for and remember the sem_undo if the caller doesn't provide it
|
||
|
*/
|
||
|
|
||
|
suidx = *supidx;
|
||
|
if (suidx == -1) {
|
||
|
for (suidx = semu_list_idx; suidx != -1;
|
||
|
suidx = suptr->un_next_idx) {
|
||
|
suptr = SEMU(suidx);
|
||
|
if (suptr->un_proc == p) {
|
||
|
*supidx = suidx;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (suidx == -1) {
|
||
|
if (adjval == 0) {
|
||
|
return 0;
|
||
|
}
|
||
|
suidx = semu_alloc(p);
|
||
|
if (suidx == -1) {
|
||
|
return ENOSPC;
|
||
|
}
|
||
|
*supidx = suidx;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Look for the requested entry and adjust it (delete if adjval becomes
|
||
|
* 0).
|
||
|
*/
|
||
|
suptr = SEMU(suidx);
|
||
|
new_sueptr = NULL;
|
||
|
for (i = 0, suepptr = &suptr->un_ent, sueptr = suptr->un_ent;
|
||
|
i < suptr->un_cnt;
|
||
|
i++, suepptr = &sueptr->une_next, sueptr = sueptr->une_next) {
|
||
|
if (sueptr->une_id != semid || sueptr->une_num != semnum) {
|
||
|
continue;
|
||
|
}
|
||
|
if (adjval == 0) {
|
||
|
sueptr->une_adjval = 0;
|
||
|
} else {
|
||
|
sueptr->une_adjval += adjval;
|
||
|
}
|
||
|
if (sueptr->une_adjval == 0) {
|
||
|
suptr->un_cnt--;
|
||
|
*suepptr = sueptr->une_next;
|
||
|
kfree_type(struct undo, sueptr);
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Didn't find the right entry - create it */
|
||
|
if (adjval == 0) {
|
||
|
/* no adjustment: no need for a new entry */
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (suptr->un_cnt == limitseminfo.semume) {
|
||
|
/* reached the limit number of semaphore undo entries */
|
||
|
return EINVAL;
|
||
|
}
|
||
|
|
||
|
/* allocate a new semaphore undo entry */
|
||
|
new_sueptr = kalloc_type(struct undo, Z_WAITOK | Z_NOFAIL);
|
||
|
|
||
|
/* fill in the new semaphore undo entry */
|
||
|
new_sueptr->une_next = suptr->un_ent;
|
||
|
suptr->un_ent = new_sueptr;
|
||
|
suptr->un_cnt++;
|
||
|
new_sueptr->une_adjval = adjval;
|
||
|
new_sueptr->une_id = semid;
|
||
|
new_sueptr->une_num = semnum;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Assumes we already hold the subsystem lock.
|
||
|
*/
|
||
|
static void
|
||
|
semundo_clear(int semid, int semnum)
|
||
|
{
|
||
|
struct sem_undo *suptr;
|
||
|
int suidx;
|
||
|
|
||
|
for (suidx = semu_list_idx; suidx != -1; suidx = suptr->un_next_idx) {
|
||
|
struct undo *sueptr;
|
||
|
struct undo **suepptr;
|
||
|
int i = 0;
|
||
|
|
||
|
suptr = SEMU(suidx);
|
||
|
sueptr = suptr->un_ent;
|
||
|
suepptr = &suptr->un_ent;
|
||
|
while (i < suptr->un_cnt) {
|
||
|
if (sueptr->une_id == semid) {
|
||
|
if (semnum == -1 || sueptr->une_num == semnum) {
|
||
|
suptr->un_cnt--;
|
||
|
*suepptr = sueptr->une_next;
|
||
|
kfree_type(struct undo, sueptr);
|
||
|
sueptr = *suepptr;
|
||
|
continue;
|
||
|
}
|
||
|
if (semnum != -1) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
i++;
|
||
|
suepptr = &sueptr->une_next;
|
||
|
sueptr = sueptr->une_next;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Note that the user-mode half of this passes a union coerced to a
|
||
|
* user_addr_t. The union contains either an int or a pointer, and
|
||
|
* so we have to coerce it back, variant on whether the calling
|
||
|
* process is 64 bit or not. The coercion works for the 'val' element
|
||
|
* because the alignment is the same in user and kernel space.
|
||
|
*/
|
||
|
int
|
||
|
semctl(struct proc *p, struct semctl_args *uap, int32_t *retval)
|
||
|
{
|
||
|
int semid = uap->semid;
|
||
|
int semnum = uap->semnum;
|
||
|
int cmd = uap->cmd;
|
||
|
user_semun_t user_arg = (user_semun_t)uap->arg;
|
||
|
kauth_cred_t cred = kauth_cred_get();
|
||
|
int i, rval, eval;
|
||
|
struct user_semid_ds sbuf;
|
||
|
struct semid_kernel *semakptr;
|
||
|
|
||
|
|
||
|
AUDIT_ARG(svipc_cmd, cmd);
|
||
|
AUDIT_ARG(svipc_id, semid);
|
||
|
|
||
|
SYSV_SEM_SUBSYS_LOCK();
|
||
|
|
||
|
#ifdef SEM_DEBUG
|
||
|
printf("call to semctl(%d, %d, %d, 0x%qx)\n", semid, semnum, cmd, user_arg);
|
||
|
#endif
|
||
|
|
||
|
semid = IPCID_TO_IX(semid);
|
||
|
|
||
|
if (semid < 0 || semid >= seminfo.semmni) {
|
||
|
#ifdef SEM_DEBUG
|
||
|
printf("Invalid semid\n");
|
||
|
#endif
|
||
|
eval = EINVAL;
|
||
|
goto semctlout;
|
||
|
}
|
||
|
|
||
|
semakptr = sema_get_by_id(semid);
|
||
|
if ((semakptr->u.sem_perm.mode & SEM_ALLOC) == 0 ||
|
||
|
semakptr->u.sem_perm._seq != IPCID_TO_SEQ(uap->semid)) {
|
||
|
eval = EINVAL;
|
||
|
goto semctlout;
|
||
|
}
|
||
|
#if CONFIG_MACF
|
||
|
eval = mac_sysvsem_check_semctl(cred, semakptr, cmd);
|
||
|
if (eval) {
|
||
|
goto semctlout;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
eval = 0;
|
||
|
rval = 0;
|
||
|
|
||
|
switch (cmd) {
|
||
|
case IPC_RMID:
|
||
|
if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_M))) {
|
||
|
goto semctlout;
|
||
|
}
|
||
|
|
||
|
semakptr->u.sem_perm.cuid = kauth_cred_getuid(cred);
|
||
|
semakptr->u.sem_perm.uid = kauth_cred_getuid(cred);
|
||
|
semtot -= semakptr->u.sem_nsems;
|
||
|
for (i = semakptr->u.sem_base - sem_pool; i < semtot; i++) {
|
||
|
sem_pool[i] = sem_pool[i + semakptr->u.sem_nsems];
|
||
|
}
|
||
|
for (i = 0; i < seminfo.semmni; i++) {
|
||
|
struct semid_kernel *semakptr2 = sema_get_by_id(i);
|
||
|
|
||
|
if ((semakptr2->u.sem_perm.mode & SEM_ALLOC) &&
|
||
|
semakptr2->u.sem_base > semakptr->u.sem_base) {
|
||
|
semakptr2->u.sem_base -= semakptr->u.sem_nsems;
|
||
|
}
|
||
|
}
|
||
|
semakptr->u.sem_perm.mode = 0;
|
||
|
#if CONFIG_MACF
|
||
|
mac_sysvsem_label_recycle(semakptr);
|
||
|
#endif
|
||
|
semundo_clear(semid, -1);
|
||
|
wakeup((caddr_t)semakptr);
|
||
|
break;
|
||
|
|
||
|
case IPC_SET:
|
||
|
if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_M))) {
|
||
|
goto semctlout;
|
||
|
}
|
||
|
|
||
|
if (IS_64BIT_PROCESS(p)) {
|
||
|
struct user64_semid_ds ds64;
|
||
|
eval = copyin(user_arg.buf, &ds64, sizeof(ds64));
|
||
|
semid_ds_64tokernel(&ds64, &sbuf);
|
||
|
} else {
|
||
|
struct user32_semid_ds ds32;
|
||
|
eval = copyin(user_arg.buf, &ds32, sizeof(ds32));
|
||
|
semid_ds_32tokernel(&ds32, &sbuf);
|
||
|
}
|
||
|
|
||
|
if (eval != 0) {
|
||
|
goto semctlout;
|
||
|
}
|
||
|
|
||
|
semakptr->u.sem_perm.uid = sbuf.sem_perm.uid;
|
||
|
semakptr->u.sem_perm.gid = sbuf.sem_perm.gid;
|
||
|
semakptr->u.sem_perm.mode = (semakptr->u.sem_perm.mode &
|
||
|
~0777) | (sbuf.sem_perm.mode & 0777);
|
||
|
semakptr->u.sem_ctime = sysv_semtime();
|
||
|
break;
|
||
|
|
||
|
case IPC_STAT:
|
||
|
if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R))) {
|
||
|
goto semctlout;
|
||
|
}
|
||
|
|
||
|
if (IS_64BIT_PROCESS(p)) {
|
||
|
struct user64_semid_ds semid_ds64;
|
||
|
bzero(&semid_ds64, sizeof(semid_ds64));
|
||
|
semid_ds_kernelto64(&semakptr->u, &semid_ds64);
|
||
|
eval = copyout(&semid_ds64, user_arg.buf, sizeof(semid_ds64));
|
||
|
} else {
|
||
|
struct user32_semid_ds semid_ds32;
|
||
|
bzero(&semid_ds32, sizeof(semid_ds32));
|
||
|
semid_ds_kernelto32(&semakptr->u, &semid_ds32);
|
||
|
eval = copyout(&semid_ds32, user_arg.buf, sizeof(semid_ds32));
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case GETNCNT:
|
||
|
if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R))) {
|
||
|
goto semctlout;
|
||
|
}
|
||
|
if (semnum < 0 || semnum >= semakptr->u.sem_nsems) {
|
||
|
eval = EINVAL;
|
||
|
goto semctlout;
|
||
|
}
|
||
|
rval = semakptr->u.sem_base[semnum].semncnt;
|
||
|
break;
|
||
|
|
||
|
case GETPID:
|
||
|
if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R))) {
|
||
|
goto semctlout;
|
||
|
}
|
||
|
if (semnum < 0 || semnum >= semakptr->u.sem_nsems) {
|
||
|
eval = EINVAL;
|
||
|
goto semctlout;
|
||
|
}
|
||
|
rval = semakptr->u.sem_base[semnum].sempid;
|
||
|
break;
|
||
|
|
||
|
case GETVAL:
|
||
|
if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R))) {
|
||
|
goto semctlout;
|
||
|
}
|
||
|
if (semnum < 0 || semnum >= semakptr->u.sem_nsems) {
|
||
|
eval = EINVAL;
|
||
|
goto semctlout;
|
||
|
}
|
||
|
rval = semakptr->u.sem_base[semnum].semval;
|
||
|
break;
|
||
|
|
||
|
case GETALL:
|
||
|
if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R))) {
|
||
|
goto semctlout;
|
||
|
}
|
||
|
/* XXXXXXXXXXXXXXXX TBD XXXXXXXXXXXXXXXX */
|
||
|
for (i = 0; i < semakptr->u.sem_nsems; i++) {
|
||
|
/* XXX could be done in one go... */
|
||
|
eval = copyout((caddr_t)&semakptr->u.sem_base[i].semval,
|
||
|
user_arg.array + (i * sizeof(unsigned short)),
|
||
|
sizeof(unsigned short));
|
||
|
if (eval != 0) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case GETZCNT:
|
||
|
if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R))) {
|
||
|
goto semctlout;
|
||
|
}
|
||
|
if (semnum < 0 || semnum >= semakptr->u.sem_nsems) {
|
||
|
eval = EINVAL;
|
||
|
goto semctlout;
|
||
|
}
|
||
|
rval = semakptr->u.sem_base[semnum].semzcnt;
|
||
|
break;
|
||
|
|
||
|
case SETVAL:
|
||
|
if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_W))) {
|
||
|
#ifdef SEM_DEBUG
|
||
|
printf("Invalid credentials for write\n");
|
||
|
#endif
|
||
|
goto semctlout;
|
||
|
}
|
||
|
if (semnum < 0 || semnum >= semakptr->u.sem_nsems) {
|
||
|
#ifdef SEM_DEBUG
|
||
|
printf("Invalid number out of range for set\n");
|
||
|
#endif
|
||
|
eval = EINVAL;
|
||
|
goto semctlout;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Cast down a pointer instead of using 'val' member directly
|
||
|
* to avoid introducing endieness and a pad field into the
|
||
|
* header file. Ugly, but it works.
|
||
|
*/
|
||
|
u_int newsemval = CAST_DOWN_EXPLICIT(u_int, user_arg.buf);
|
||
|
|
||
|
/*
|
||
|
* The check is being performed as unsigned values to match
|
||
|
* eventual destination
|
||
|
*/
|
||
|
if (newsemval > (u_int)seminfo.semvmx) {
|
||
|
#ifdef SEM_DEBUG
|
||
|
printf("Out of range sem value for set\n");
|
||
|
#endif
|
||
|
eval = ERANGE;
|
||
|
goto semctlout;
|
||
|
}
|
||
|
semakptr->u.sem_base[semnum].semval = newsemval;
|
||
|
semakptr->u.sem_base[semnum].sempid = proc_getpid(p);
|
||
|
/* XXX scottl Should there be a MAC call here? */
|
||
|
semundo_clear(semid, semnum);
|
||
|
wakeup((caddr_t)semakptr);
|
||
|
break;
|
||
|
|
||
|
case SETALL:
|
||
|
if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_W))) {
|
||
|
goto semctlout;
|
||
|
}
|
||
|
/*** XXXXXXXXXXXX TBD ********/
|
||
|
for (i = 0; i < semakptr->u.sem_nsems; i++) {
|
||
|
/* XXX could be done in one go... */
|
||
|
eval = copyin(user_arg.array + (i * sizeof(unsigned short)),
|
||
|
(caddr_t)&semakptr->u.sem_base[i].semval,
|
||
|
sizeof(unsigned short));
|
||
|
if (eval != 0) {
|
||
|
break;
|
||
|
}
|
||
|
semakptr->u.sem_base[i].sempid = proc_getpid(p);
|
||
|
}
|
||
|
/* XXX scottl Should there be a MAC call here? */
|
||
|
semundo_clear(semid, -1);
|
||
|
wakeup((caddr_t)semakptr);
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
eval = EINVAL;
|
||
|
goto semctlout;
|
||
|
}
|
||
|
|
||
|
if (eval == 0) {
|
||
|
*retval = rval;
|
||
|
}
|
||
|
semctlout:
|
||
|
SYSV_SEM_SUBSYS_UNLOCK();
|
||
|
return eval;
|
||
|
}
|
||
|
|
||
|
int
|
||
|
semget(__unused struct proc *p, struct semget_args *uap, int32_t *retval)
|
||
|
{
|
||
|
int semid, eval;
|
||
|
int key = uap->key;
|
||
|
int nsems = uap->nsems;
|
||
|
int semflg = uap->semflg;
|
||
|
kauth_cred_t cred = kauth_cred_get();
|
||
|
struct semid_kernel *semakptr;
|
||
|
|
||
|
#ifdef SEM_DEBUG
|
||
|
if (key != IPC_PRIVATE) {
|
||
|
printf("semget(0x%x, %d, 0%o)\n", key, nsems, semflg);
|
||
|
} else {
|
||
|
printf("semget(IPC_PRIVATE, %d, 0%o)\n", nsems, semflg);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
|
||
|
SYSV_SEM_SUBSYS_LOCK();
|
||
|
|
||
|
|
||
|
if (key != IPC_PRIVATE) {
|
||
|
for (semid = 0; semid < seminfo.semmni; semid++) {
|
||
|
semakptr = sema_get_by_id(semid);
|
||
|
if ((semakptr->u.sem_perm.mode & SEM_ALLOC) &&
|
||
|
semakptr->u.sem_perm._key == key) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (semid < seminfo.semmni) {
|
||
|
#ifdef SEM_DEBUG
|
||
|
printf("found public key\n");
|
||
|
#endif
|
||
|
if ((eval = ipcperm(cred, &semakptr->u.sem_perm,
|
||
|
semflg & 0700))) {
|
||
|
goto semgetout;
|
||
|
}
|
||
|
if (nsems < 0 || semakptr->u.sem_nsems < nsems) {
|
||
|
#ifdef SEM_DEBUG
|
||
|
printf("too small\n");
|
||
|
#endif
|
||
|
eval = EINVAL;
|
||
|
goto semgetout;
|
||
|
}
|
||
|
if ((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) {
|
||
|
#ifdef SEM_DEBUG
|
||
|
printf("not exclusive\n");
|
||
|
#endif
|
||
|
eval = EEXIST;
|
||
|
goto semgetout;
|
||
|
}
|
||
|
#if CONFIG_MACF
|
||
|
eval = mac_sysvsem_check_semget(cred, semakptr);
|
||
|
if (eval) {
|
||
|
goto semgetout;
|
||
|
}
|
||
|
#endif
|
||
|
goto found;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifdef SEM_DEBUG
|
||
|
printf("need to allocate an id for the request\n");
|
||
|
#endif
|
||
|
if (key == IPC_PRIVATE || (semflg & IPC_CREAT)) {
|
||
|
if (nsems <= 0 || nsems > limitseminfo.semmsl) {
|
||
|
#ifdef SEM_DEBUG
|
||
|
printf("nsems out of range (0<%d<=%d)\n", nsems,
|
||
|
seminfo.semmsl);
|
||
|
#endif
|
||
|
eval = EINVAL;
|
||
|
goto semgetout;
|
||
|
}
|
||
|
if (nsems > seminfo.semmns - semtot) {
|
||
|
#ifdef SEM_DEBUG
|
||
|
printf("not enough semaphores left (need %d, got %d)\n",
|
||
|
nsems, seminfo.semmns - semtot);
|
||
|
#endif
|
||
|
if (!grow_sem_pool(semtot + nsems)) {
|
||
|
#ifdef SEM_DEBUG
|
||
|
printf("failed to grow the sem array\n");
|
||
|
#endif
|
||
|
eval = ENOSPC;
|
||
|
goto semgetout;
|
||
|
}
|
||
|
}
|
||
|
for (semid = 0; semid < seminfo.semmni; semid++) {
|
||
|
if ((sema_get_by_id(semid)->u.sem_perm.mode & SEM_ALLOC) == 0) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (semid == seminfo.semmni && !grow_sema_array()) {
|
||
|
eval = ENOSPC;
|
||
|
goto semgetout;
|
||
|
}
|
||
|
#ifdef SEM_DEBUG
|
||
|
printf("semid %d is available\n", semid);
|
||
|
#endif
|
||
|
semakptr = sema_get_by_id(semid);
|
||
|
semakptr->u.sem_perm._key = key;
|
||
|
semakptr->u.sem_perm.cuid = kauth_cred_getuid(cred);
|
||
|
semakptr->u.sem_perm.uid = kauth_cred_getuid(cred);
|
||
|
semakptr->u.sem_perm.cgid = kauth_cred_getgid(cred);
|
||
|
semakptr->u.sem_perm.gid = kauth_cred_getgid(cred);
|
||
|
semakptr->u.sem_perm.mode = (semflg & 0777) | SEM_ALLOC;
|
||
|
semakptr->u.sem_perm._seq =
|
||
|
(semakptr->u.sem_perm._seq + 1) & 0x7fff;
|
||
|
semakptr->u.sem_nsems = nsems;
|
||
|
semakptr->u.sem_otime = 0;
|
||
|
semakptr->u.sem_ctime = sysv_semtime();
|
||
|
semakptr->u.sem_base = &sem_pool[semtot];
|
||
|
semtot += nsems;
|
||
|
bzero(semakptr->u.sem_base,
|
||
|
sizeof(semakptr->u.sem_base[0]) * nsems);
|
||
|
#if CONFIG_MACF
|
||
|
mac_sysvsem_label_associate(cred, semakptr);
|
||
|
#endif
|
||
|
#ifdef SEM_DEBUG
|
||
|
printf("sembase = 0x%x, next = 0x%x\n", semakptr->u.sem_base,
|
||
|
&sem_pool[semtot]);
|
||
|
#endif
|
||
|
} else {
|
||
|
#ifdef SEM_DEBUG
|
||
|
printf("didn't find it and wasn't asked to create it\n");
|
||
|
#endif
|
||
|
eval = ENOENT;
|
||
|
goto semgetout;
|
||
|
}
|
||
|
|
||
|
found:
|
||
|
*retval = IXSEQ_TO_IPCID(semid, semakptr->u.sem_perm);
|
||
|
AUDIT_ARG(svipc_id, *retval);
|
||
|
#ifdef SEM_DEBUG
|
||
|
printf("semget is done, returning %d\n", *retval);
|
||
|
#endif
|
||
|
eval = 0;
|
||
|
|
||
|
semgetout:
|
||
|
SYSV_SEM_SUBSYS_UNLOCK();
|
||
|
return eval;
|
||
|
}
|
||
|
|
||
|
int
|
||
|
semop(struct proc *p, struct semop_args *uap, int32_t *retval)
|
||
|
{
|
||
|
int semid = uap->semid;
|
||
|
int nsops = uap->nsops;
|
||
|
struct sembuf sops[seminfo.semopm];
|
||
|
struct semid_kernel *semakptr;
|
||
|
struct sembuf *sopptr = NULL; /* protected by 'semptr' */
|
||
|
struct sem *semptr = NULL; /* protected by 'if' */
|
||
|
int supidx = -1;
|
||
|
int i, j, eval;
|
||
|
int do_wakeup, do_undos;
|
||
|
|
||
|
AUDIT_ARG(svipc_id, uap->semid);
|
||
|
|
||
|
SYSV_SEM_SUBSYS_LOCK();
|
||
|
|
||
|
#ifdef SEM_DEBUG
|
||
|
printf("call to semop(%d, 0x%x, %d)\n", semid, sops, nsops);
|
||
|
#endif
|
||
|
|
||
|
semid = IPCID_TO_IX(semid); /* Convert back to zero origin */
|
||
|
|
||
|
if (semid < 0 || semid >= seminfo.semmni) {
|
||
|
eval = EINVAL;
|
||
|
goto semopout;
|
||
|
}
|
||
|
|
||
|
semakptr = sema_get_by_id(semid);
|
||
|
if ((semakptr->u.sem_perm.mode & SEM_ALLOC) == 0) {
|
||
|
eval = EINVAL;
|
||
|
goto semopout;
|
||
|
}
|
||
|
if (semakptr->u.sem_perm._seq != IPCID_TO_SEQ(uap->semid)) {
|
||
|
eval = EINVAL;
|
||
|
goto semopout;
|
||
|
}
|
||
|
|
||
|
if ((eval = ipcperm(kauth_cred_get(), &semakptr->u.sem_perm, IPC_W))) {
|
||
|
#ifdef SEM_DEBUG
|
||
|
printf("eval = %d from ipaccess\n", eval);
|
||
|
#endif
|
||
|
goto semopout;
|
||
|
}
|
||
|
|
||
|
if (nsops < 0 || nsops > seminfo.semopm) {
|
||
|
#ifdef SEM_DEBUG
|
||
|
printf("too many sops (max=%d, nsops=%d)\n",
|
||
|
seminfo.semopm, nsops);
|
||
|
#endif
|
||
|
eval = E2BIG;
|
||
|
goto semopout;
|
||
|
}
|
||
|
|
||
|
/* OK for LP64, since sizeof(struct sembuf) is currently invariant */
|
||
|
if ((eval = copyin(uap->sops, &sops, nsops * sizeof(struct sembuf))) != 0) {
|
||
|
#ifdef SEM_DEBUG
|
||
|
printf("eval = %d from copyin(%08x, %08x, %ld)\n", eval,
|
||
|
uap->sops, &sops, nsops * sizeof(struct sembuf));
|
||
|
#endif
|
||
|
goto semopout;
|
||
|
}
|
||
|
|
||
|
#if CONFIG_MACF
|
||
|
/*
|
||
|
* Initial pass thru sops to see what permissions are needed.
|
||
|
*/
|
||
|
j = 0; /* permission needed */
|
||
|
for (i = 0; i < nsops; i++) {
|
||
|
j |= (sops[i].sem_op == 0) ? SEM_R : SEM_A;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The MAC hook checks whether the thread has read (and possibly
|
||
|
* write) permissions to the semaphore array based on the
|
||
|
* sopptr->sem_op value.
|
||
|
*/
|
||
|
eval = mac_sysvsem_check_semop(kauth_cred_get(), semakptr, j);
|
||
|
if (eval) {
|
||
|
goto semopout;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Loop trying to satisfy the vector of requests.
|
||
|
* If we reach a point where we must wait, any requests already
|
||
|
* performed are rolled back and we go to sleep until some other
|
||
|
* process wakes us up. At this point, we start all over again.
|
||
|
*
|
||
|
* This ensures that from the perspective of other tasks, a set
|
||
|
* of requests is atomic (never partially satisfied).
|
||
|
*/
|
||
|
do_undos = 0;
|
||
|
|
||
|
for (;;) {
|
||
|
do_wakeup = 0;
|
||
|
|
||
|
for (i = 0; i < nsops; i++) {
|
||
|
sopptr = &sops[i];
|
||
|
|
||
|
if (sopptr->sem_num >= semakptr->u.sem_nsems) {
|
||
|
eval = EFBIG;
|
||
|
goto semopout;
|
||
|
}
|
||
|
|
||
|
semptr = &semakptr->u.sem_base[sopptr->sem_num];
|
||
|
|
||
|
#ifdef SEM_DEBUG
|
||
|
printf("semop: semakptr=%x, sem_base=%x, semptr=%x, sem[%d]=%d : op=%d, flag=%s\n",
|
||
|
semakptr, semakptr->u.sem_base, semptr,
|
||
|
sopptr->sem_num, semptr->semval, sopptr->sem_op,
|
||
|
(sopptr->sem_flg & IPC_NOWAIT) ? "nowait" : "wait");
|
||
|
#endif
|
||
|
|
||
|
if (sopptr->sem_op < 0) {
|
||
|
if (semptr->semval + sopptr->sem_op < 0) {
|
||
|
#ifdef SEM_DEBUG
|
||
|
printf("semop: can't do it now\n");
|
||
|
#endif
|
||
|
break;
|
||
|
} else {
|
||
|
semptr->semval += sopptr->sem_op;
|
||
|
if (semptr->semval == 0 &&
|
||
|
semptr->semzcnt > 0) {
|
||
|
do_wakeup = 1;
|
||
|
}
|
||
|
}
|
||
|
if (sopptr->sem_flg & SEM_UNDO) {
|
||
|
do_undos = 1;
|
||
|
}
|
||
|
} else if (sopptr->sem_op == 0) {
|
||
|
if (semptr->semval > 0) {
|
||
|
#ifdef SEM_DEBUG
|
||
|
printf("semop: not zero now\n");
|
||
|
#endif
|
||
|
break;
|
||
|
}
|
||
|
} else {
|
||
|
if (semptr->semncnt > 0) {
|
||
|
do_wakeup = 1;
|
||
|
}
|
||
|
semptr->semval += sopptr->sem_op;
|
||
|
if (sopptr->sem_flg & SEM_UNDO) {
|
||
|
do_undos = 1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Did we get through the entire vector?
|
||
|
*/
|
||
|
if (i >= nsops) {
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* No ... rollback anything that we've already done
|
||
|
*/
|
||
|
#ifdef SEM_DEBUG
|
||
|
printf("semop: rollback 0 through %d\n", i - 1);
|
||
|
#endif
|
||
|
for (j = 0; j < i; j++) {
|
||
|
semakptr->u.sem_base[sops[j].sem_num].semval -=
|
||
|
sops[j].sem_op;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If the request that we couldn't satisfy has the
|
||
|
* NOWAIT flag set then return with EAGAIN.
|
||
|
*/
|
||
|
if (sopptr->sem_flg & IPC_NOWAIT) {
|
||
|
eval = EAGAIN;
|
||
|
goto semopout;
|
||
|
}
|
||
|
|
||
|
if (sopptr->sem_op == 0) {
|
||
|
semptr->semzcnt++;
|
||
|
} else {
|
||
|
semptr->semncnt++;
|
||
|
}
|
||
|
|
||
|
#ifdef SEM_DEBUG
|
||
|
printf("semop: good night!\n");
|
||
|
#endif
|
||
|
/* Release our lock on the semaphore subsystem so
|
||
|
* another thread can get at the semaphore we are
|
||
|
* waiting for. We will get the lock back after we
|
||
|
* wake up.
|
||
|
*/
|
||
|
eval = msleep((caddr_t)semakptr, &sysv_sem_subsys_mutex, (PZERO - 4) | PCATCH,
|
||
|
"semwait", 0);
|
||
|
|
||
|
#ifdef SEM_DEBUG
|
||
|
printf("semop: good morning (eval=%d)!\n", eval);
|
||
|
#endif
|
||
|
if (eval != 0) {
|
||
|
eval = EINTR;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* IMPORTANT: while we were asleep, the semaphore array might
|
||
|
* have been reallocated somewhere else (see grow_sema_array()).
|
||
|
* When we wake up, we have to re-lookup the semaphore
|
||
|
* structures and re-validate them.
|
||
|
*/
|
||
|
|
||
|
semptr = NULL;
|
||
|
|
||
|
/*
|
||
|
* Make sure that the semaphore still exists
|
||
|
*
|
||
|
* XXX POSIX: Third test this 'if' and 'EINTR' precedence may
|
||
|
* fail testing; if so, we will need to revert this code.
|
||
|
*/
|
||
|
if ((semakptr->u.sem_perm.mode & SEM_ALLOC) == 0 ||
|
||
|
semakptr->u.sem_perm._seq != IPCID_TO_SEQ(uap->semid) ||
|
||
|
sopptr->sem_num >= semakptr->u.sem_nsems) {
|
||
|
/* The man page says to return EIDRM. */
|
||
|
/* Unfortunately, BSD doesn't define that code! */
|
||
|
if (eval == EINTR) {
|
||
|
/*
|
||
|
* EINTR takes precedence over the fact that
|
||
|
* the semaphore disappeared while we were
|
||
|
* sleeping...
|
||
|
*/
|
||
|
} else {
|
||
|
#ifdef EIDRM
|
||
|
eval = EIDRM;
|
||
|
#else
|
||
|
eval = EINVAL; /* Ancient past */
|
||
|
#endif
|
||
|
}
|
||
|
goto semopout;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The semaphore is still alive. Readjust the count of
|
||
|
* waiting processes. semptr needs to be recomputed
|
||
|
* because the sem[] may have been reallocated while
|
||
|
* we were sleeping, updating our sem_base pointer.
|
||
|
*/
|
||
|
semptr = &semakptr->u.sem_base[sopptr->sem_num];
|
||
|
if (sopptr->sem_op == 0) {
|
||
|
semptr->semzcnt--;
|
||
|
} else {
|
||
|
semptr->semncnt--;
|
||
|
}
|
||
|
|
||
|
if (eval != 0) { /* EINTR */
|
||
|
goto semopout;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
done:
|
||
|
/*
|
||
|
* Process any SEM_UNDO requests.
|
||
|
*/
|
||
|
if (do_undos) {
|
||
|
for (i = 0; i < nsops; i++) {
|
||
|
/*
|
||
|
* We only need to deal with SEM_UNDO's for non-zero
|
||
|
* op's.
|
||
|
*/
|
||
|
int adjval;
|
||
|
|
||
|
if ((sops[i].sem_flg & SEM_UNDO) == 0) {
|
||
|
continue;
|
||
|
}
|
||
|
adjval = sops[i].sem_op;
|
||
|
if (adjval == 0) {
|
||
|
continue;
|
||
|
}
|
||
|
eval = semundo_adjust(p, &supidx, semid,
|
||
|
sops[i].sem_num, -adjval);
|
||
|
if (eval == 0) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Oh-Oh! We ran out of either sem_undo's or undo's.
|
||
|
* Rollback the adjustments to this point and then
|
||
|
* rollback the semaphore ups and down so we can return
|
||
|
* with an error with all structures restored. We
|
||
|
* rollback the undo's in the exact reverse order that
|
||
|
* we applied them. This guarantees that we won't run
|
||
|
* out of space as we roll things back out.
|
||
|
*/
|
||
|
for (j = i - 1; j >= 0; j--) {
|
||
|
if ((sops[j].sem_flg & SEM_UNDO) == 0) {
|
||
|
continue;
|
||
|
}
|
||
|
adjval = sops[j].sem_op;
|
||
|
if (adjval == 0) {
|
||
|
continue;
|
||
|
}
|
||
|
if (semundo_adjust(p, &supidx, semid,
|
||
|
sops[j].sem_num, adjval) != 0) {
|
||
|
panic("semop - can't undo undos");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (j = 0; j < nsops; j++) {
|
||
|
semakptr->u.sem_base[sops[j].sem_num].semval -=
|
||
|
sops[j].sem_op;
|
||
|
}
|
||
|
|
||
|
#ifdef SEM_DEBUG
|
||
|
printf("eval = %d from semundo_adjust\n", eval);
|
||
|
#endif
|
||
|
goto semopout;
|
||
|
} /* loop through the sops */
|
||
|
} /* if (do_undos) */
|
||
|
|
||
|
/* We're definitely done - set the sempid's */
|
||
|
for (i = 0; i < nsops; i++) {
|
||
|
sopptr = &sops[i];
|
||
|
semptr = &semakptr->u.sem_base[sopptr->sem_num];
|
||
|
semptr->sempid = proc_getpid(p);
|
||
|
}
|
||
|
semakptr->u.sem_otime = sysv_semtime();
|
||
|
|
||
|
if (do_wakeup) {
|
||
|
#ifdef SEM_DEBUG
|
||
|
printf("semop: doing wakeup\n");
|
||
|
#ifdef SEM_WAKEUP
|
||
|
sem_wakeup((caddr_t)semakptr);
|
||
|
#else
|
||
|
wakeup((caddr_t)semakptr);
|
||
|
#endif
|
||
|
printf("semop: back from wakeup\n");
|
||
|
#else
|
||
|
wakeup((caddr_t)semakptr);
|
||
|
#endif
|
||
|
}
|
||
|
#ifdef SEM_DEBUG
|
||
|
printf("semop: done\n");
|
||
|
#endif
|
||
|
*retval = 0;
|
||
|
eval = 0;
|
||
|
semopout:
|
||
|
SYSV_SEM_SUBSYS_UNLOCK();
|
||
|
return eval;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Go through the undo structures for this process and apply the adjustments to
|
||
|
* semaphores.
|
||
|
*/
|
||
|
void
|
||
|
semexit(struct proc *p)
|
||
|
{
|
||
|
struct sem_undo *suptr = NULL;
|
||
|
int suidx;
|
||
|
int *supidx;
|
||
|
int did_something;
|
||
|
|
||
|
/* If we have not allocated our semaphores yet there can't be
|
||
|
* anything to undo, but we need the lock to prevent
|
||
|
* dynamic memory race conditions.
|
||
|
*/
|
||
|
SYSV_SEM_SUBSYS_LOCK();
|
||
|
|
||
|
if (!sem_pool) {
|
||
|
SYSV_SEM_SUBSYS_UNLOCK();
|
||
|
return;
|
||
|
}
|
||
|
did_something = 0;
|
||
|
|
||
|
/*
|
||
|
* Go through the chain of undo vectors looking for one
|
||
|
* associated with this process.
|
||
|
*/
|
||
|
|
||
|
for (supidx = &semu_list_idx; (suidx = *supidx) != -1;
|
||
|
supidx = &suptr->un_next_idx) {
|
||
|
suptr = SEMU(suidx);
|
||
|
if (suptr->un_proc == p) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (suidx == -1) {
|
||
|
goto unlock;
|
||
|
}
|
||
|
|
||
|
#ifdef SEM_DEBUG
|
||
|
printf("proc @%08x has undo structure with %d entries\n", p,
|
||
|
suptr->un_cnt);
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* If there are any active undo elements then process them.
|
||
|
*/
|
||
|
if (suptr->un_cnt > 0) {
|
||
|
while (suptr->un_ent != NULL) {
|
||
|
struct undo *sueptr;
|
||
|
int semid;
|
||
|
int semnum;
|
||
|
int adjval;
|
||
|
struct semid_kernel *semakptr;
|
||
|
|
||
|
sueptr = suptr->un_ent;
|
||
|
semid = sueptr->une_id;
|
||
|
semnum = sueptr->une_num;
|
||
|
adjval = sueptr->une_adjval;
|
||
|
|
||
|
semakptr = sema_get_by_id(semid);
|
||
|
if ((semakptr->u.sem_perm.mode & SEM_ALLOC) == 0) {
|
||
|
panic("semexit - semid not allocated");
|
||
|
}
|
||
|
if (semnum >= semakptr->u.sem_nsems) {
|
||
|
panic("semexit - semnum out of range");
|
||
|
}
|
||
|
|
||
|
#ifdef SEM_DEBUG
|
||
|
printf("semexit: %08x id=%d num=%d(adj=%d) ; sem=%d\n",
|
||
|
suptr->un_proc,
|
||
|
semid,
|
||
|
semnum,
|
||
|
adjval,
|
||
|
semakptr->u.sem_base[semnum].semval);
|
||
|
#endif
|
||
|
|
||
|
if (adjval < 0) {
|
||
|
if (semakptr->u.sem_base[semnum].semval < -adjval) {
|
||
|
semakptr->u.sem_base[semnum].semval = 0;
|
||
|
} else {
|
||
|
semakptr->u.sem_base[semnum].semval +=
|
||
|
adjval;
|
||
|
}
|
||
|
} else {
|
||
|
semakptr->u.sem_base[semnum].semval += adjval;
|
||
|
}
|
||
|
|
||
|
/* Maybe we should build a list of semakptr's to wake
|
||
|
* up, finish all access to data structures, release the
|
||
|
* subsystem lock, and wake all the processes. Something
|
||
|
* to think about.
|
||
|
*/
|
||
|
#ifdef SEM_WAKEUP
|
||
|
sem_wakeup((caddr_t)semakptr);
|
||
|
#else
|
||
|
wakeup((caddr_t)semakptr);
|
||
|
#endif
|
||
|
#ifdef SEM_DEBUG
|
||
|
printf("semexit: back from wakeup\n");
|
||
|
#endif
|
||
|
suptr->un_cnt--;
|
||
|
suptr->un_ent = sueptr->une_next;
|
||
|
kfree_type(struct undo, sueptr);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Deallocate the undo vector.
|
||
|
*/
|
||
|
#ifdef SEM_DEBUG
|
||
|
printf("removing vector\n");
|
||
|
#endif
|
||
|
suptr->un_proc = NULL;
|
||
|
*supidx = suptr->un_next_idx;
|
||
|
|
||
|
unlock:
|
||
|
/*
|
||
|
* There is a semaphore leak (i.e. memory leak) in this code.
|
||
|
* We should be deleting the IPC_PRIVATE semaphores when they are
|
||
|
* no longer needed, and we dont. We would have to track which processes
|
||
|
* know about which IPC_PRIVATE semaphores, updating the list after
|
||
|
* every fork. We can't just delete them semaphore when the process
|
||
|
* that created it dies, because that process may well have forked
|
||
|
* some children. So we need to wait until all of it's children have
|
||
|
* died, and so on. Maybe we should tag each IPC_PRIVATE sempahore
|
||
|
* with the creating group ID, count the number of processes left in
|
||
|
* that group, and delete the semaphore when the group is gone.
|
||
|
* Until that code gets implemented we will leak IPC_PRIVATE semaphores.
|
||
|
* There is an upper bound on the size of our semaphore array, so
|
||
|
* leaking the semaphores should not work as a DOS attack.
|
||
|
*
|
||
|
* Please note that the original BSD code this file is based on had the
|
||
|
* same leaky semaphore problem.
|
||
|
*/
|
||
|
|
||
|
SYSV_SEM_SUBSYS_UNLOCK();
|
||
|
}
|
||
|
|
||
|
|
||
|
/* (struct sysctl_oid *oidp, void *arg1, int arg2, \
|
||
|
* struct sysctl_req *req) */
|
||
|
static int
|
||
|
sysctl_seminfo(__unused struct sysctl_oid *oidp, void *arg1,
|
||
|
__unused int arg2, struct sysctl_req *req)
|
||
|
{
|
||
|
int error = 0;
|
||
|
|
||
|
error = SYSCTL_OUT(req, arg1, sizeof(int));
|
||
|
if (error || req->newptr == USER_ADDR_NULL) {
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
SYSV_SEM_SUBSYS_LOCK();
|
||
|
|
||
|
/* Set the values only if shared memory is not initialised */
|
||
|
if ((sem_pool == NULL) &&
|
||
|
(semas == NULL) &&
|
||
|
(semu == NULL) &&
|
||
|
(semu_list_idx == -1)) {
|
||
|
if ((error = SYSCTL_IN(req, arg1, sizeof(int)))) {
|
||
|
goto out;
|
||
|
}
|
||
|
} else {
|
||
|
error = EINVAL;
|
||
|
}
|
||
|
out:
|
||
|
SYSV_SEM_SUBSYS_UNLOCK();
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
/* SYSCTL_NODE(_kern, KERN_SYSV, sysv, CTLFLAG_RW, 0, "SYSV"); */
|
||
|
extern struct sysctl_oid_list sysctl__kern_sysv_children;
|
||
|
SYSCTL_PROC(_kern_sysv, OID_AUTO, semmni, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
|
||
|
&limitseminfo.semmni, 0, &sysctl_seminfo, "I", "semmni");
|
||
|
|
||
|
SYSCTL_PROC(_kern_sysv, OID_AUTO, semmns, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
|
||
|
&limitseminfo.semmns, 0, &sysctl_seminfo, "I", "semmns");
|
||
|
|
||
|
SYSCTL_PROC(_kern_sysv, OID_AUTO, semmnu, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
|
||
|
&limitseminfo.semmnu, 0, &sysctl_seminfo, "I", "semmnu");
|
||
|
|
||
|
SYSCTL_PROC(_kern_sysv, OID_AUTO, semmsl, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
|
||
|
&limitseminfo.semmsl, 0, &sysctl_seminfo, "I", "semmsl");
|
||
|
|
||
|
SYSCTL_PROC(_kern_sysv, OID_AUTO, semume, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
|
||
|
&limitseminfo.semume, 0, &sysctl_seminfo, "I", "semume");
|
||
|
|
||
|
|
||
|
static int
|
||
|
IPCS_sem_sysctl(__unused struct sysctl_oid *oidp, __unused void *arg1,
|
||
|
__unused int arg2, struct sysctl_req *req)
|
||
|
{
|
||
|
int error;
|
||
|
int cursor;
|
||
|
union {
|
||
|
struct user32_IPCS_command u32;
|
||
|
struct user_IPCS_command u64;
|
||
|
} ipcs = { };
|
||
|
struct user32_semid_ds semid_ds32 = { }; /* post conversion, 32 bit version */
|
||
|
struct user64_semid_ds semid_ds64 = { }; /* post conversion, 64 bit version */
|
||
|
void *semid_dsp;
|
||
|
size_t ipcs_sz;
|
||
|
size_t semid_ds_sz;
|
||
|
struct proc *p = current_proc();
|
||
|
|
||
|
if (IS_64BIT_PROCESS(p)) {
|
||
|
ipcs_sz = sizeof(struct user_IPCS_command);
|
||
|
semid_ds_sz = sizeof(struct user64_semid_ds);
|
||
|
} else {
|
||
|
ipcs_sz = sizeof(struct user32_IPCS_command);
|
||
|
semid_ds_sz = sizeof(struct user32_semid_ds);
|
||
|
}
|
||
|
|
||
|
/* Copy in the command structure */
|
||
|
if ((error = SYSCTL_IN(req, &ipcs, ipcs_sz)) != 0) {
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
if (!IS_64BIT_PROCESS(p)) { /* convert in place */
|
||
|
ipcs.u64.ipcs_data = CAST_USER_ADDR_T(ipcs.u32.ipcs_data);
|
||
|
}
|
||
|
|
||
|
/* Let us version this interface... */
|
||
|
if (ipcs.u64.ipcs_magic != IPCS_MAGIC) {
|
||
|
return EINVAL;
|
||
|
}
|
||
|
|
||
|
SYSV_SEM_SUBSYS_LOCK();
|
||
|
switch (ipcs.u64.ipcs_op) {
|
||
|
case IPCS_SEM_CONF: /* Obtain global configuration data */
|
||
|
if (ipcs.u64.ipcs_datalen != sizeof(struct seminfo)) {
|
||
|
error = ERANGE;
|
||
|
break;
|
||
|
}
|
||
|
if (ipcs.u64.ipcs_cursor != 0) { /* fwd. compat. */
|
||
|
error = EINVAL;
|
||
|
break;
|
||
|
}
|
||
|
error = copyout(&seminfo, ipcs.u64.ipcs_data, ipcs.u64.ipcs_datalen);
|
||
|
break;
|
||
|
|
||
|
case IPCS_SEM_ITER: /* Iterate over existing segments */
|
||
|
cursor = ipcs.u64.ipcs_cursor;
|
||
|
if (cursor < 0 || cursor >= seminfo.semmni) {
|
||
|
error = ERANGE;
|
||
|
break;
|
||
|
}
|
||
|
if (ipcs.u64.ipcs_datalen != (int)semid_ds_sz) {
|
||
|
error = EINVAL;
|
||
|
break;
|
||
|
}
|
||
|
for (; cursor < seminfo.semmni; cursor++) {
|
||
|
if (sema_get_by_id(cursor)->u.sem_perm.mode & SEM_ALLOC) {
|
||
|
break;
|
||
|
}
|
||
|
continue;
|
||
|
}
|
||
|
if (cursor == seminfo.semmni) {
|
||
|
error = ENOENT;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
semid_dsp = &sema_get_by_id(cursor)->u; /* default: 64 bit */
|
||
|
|
||
|
/*
|
||
|
* If necessary, convert the 64 bit kernel segment
|
||
|
* descriptor to a 32 bit user one.
|
||
|
*/
|
||
|
if (!IS_64BIT_PROCESS(p)) {
|
||
|
bzero(&semid_ds32, sizeof(semid_ds32));
|
||
|
semid_ds_kernelto32(semid_dsp, &semid_ds32);
|
||
|
semid_dsp = &semid_ds32;
|
||
|
} else {
|
||
|
bzero(&semid_ds64, sizeof(semid_ds64));
|
||
|
semid_ds_kernelto64(semid_dsp, &semid_ds64);
|
||
|
semid_dsp = &semid_ds64;
|
||
|
}
|
||
|
|
||
|
error = copyout(semid_dsp, ipcs.u64.ipcs_data, ipcs.u64.ipcs_datalen);
|
||
|
if (!error) {
|
||
|
/* update cursor */
|
||
|
ipcs.u64.ipcs_cursor = cursor + 1;
|
||
|
|
||
|
if (!IS_64BIT_PROCESS(p)) { /* convert in place */
|
||
|
ipcs.u32.ipcs_data = CAST_DOWN_EXPLICIT(user32_addr_t, ipcs.u64.ipcs_data);
|
||
|
}
|
||
|
|
||
|
error = SYSCTL_OUT(req, &ipcs, ipcs_sz);
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
error = EINVAL;
|
||
|
break;
|
||
|
}
|
||
|
SYSV_SEM_SUBSYS_UNLOCK();
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
SYSCTL_DECL(_kern_sysv_ipcs);
|
||
|
SYSCTL_PROC(_kern_sysv_ipcs, OID_AUTO, sem, CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_LOCKED,
|
||
|
0, 0, IPCS_sem_sysctl,
|
||
|
"S,IPCS_sem_command",
|
||
|
"ipcs sem command interface");
|
||
|
|
||
|
#endif /* SYSV_SEM */
|