gems-kernel/source/THIRDPARTY/xnu/bsd/kern/sysv_sem.c
2024-06-03 11:29:39 -05:00

1625 lines
41 KiB
C

/*
* Copyright (c) 2000-2019 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* Implementation of SVID semaphores
*
* Author: Daniel Boulet
*
* This software is provided ``AS IS'' without any warranties of any kind.
*/
/*
* John Bellardo modified the implementation for Darwin. 12/2000
*/
/*
* NOTICE: This file was modified by McAfee Research in 2004 to introduce
* support for mandatory and extensible security protections. This notice
* is included in support of clause 2.2 (b) of the Apple Public License,
* Version 2.0.
* Copyright (c) 2005-2006 SPARTA, Inc.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/proc_internal.h>
#include <sys/kauth.h>
#include <sys/sem_internal.h>
#include <sys/malloc.h>
#include <mach/mach_types.h>
#include <sys/filedesc.h>
#include <sys/file_internal.h>
#include <sys/sysctl.h>
#include <sys/ipcs.h>
#include <sys/sysent.h>
#include <sys/sysproto.h>
#if CONFIG_MACF
#include <security/mac_framework.h>
#endif
#include <security/audit/audit.h>
#if SYSV_SEM
/* Uncomment this line to see the debugging output */
/* #define SEM_DEBUG */
/* Uncomment this line to see MAC debugging output. */
/* #define MAC_DEBUG */
#if CONFIG_MACF_DEBUG
#define MPRINTF(a) printf(a)
#else
#define MPRINTF(a)
#endif
/* Hard system limits to avoid resource starvation / DOS attacks.
* These are not needed if we can make the semaphore pages swappable.
*/
static struct seminfo limitseminfo = {
.semmap = SEMMAP, /* # of entries in semaphore map */
.semmni = SEMMNI, /* # of semaphore identifiers */
.semmns = SEMMNS, /* # of semaphores in system */
.semmnu = SEMMNU, /* # of undo structures in system */
.semmsl = SEMMSL, /* max # of semaphores per id */
.semopm = SEMOPM, /* max # of operations per semop call */
.semume = SEMUME, /* max # of undo entries per process */
.semusz = SEMUSZ, /* size in bytes of undo structure */
.semvmx = SEMVMX, /* semaphore maximum value */
.semaem = SEMAEM /* adjust on exit max value */
};
/* Current system allocations. We use this structure to track how many
* resources we have allocated so far. This way we can set large hard limits
* and not allocate the memory for them up front.
*/
struct seminfo seminfo = {
.semmap = SEMMAP, /* Unused, # of entries in semaphore map */
.semmni = 0, /* # of semaphore identifiers */
.semmns = 0, /* # of semaphores in system */
.semmnu = 0, /* # of undo entries in system */
.semmsl = SEMMSL, /* max # of semaphores per id */
.semopm = SEMOPM, /* max # of operations per semop call */
.semume = SEMUME, /* max # of undo entries per process */
.semusz = SEMUSZ, /* size in bytes of undo structure */
.semvmx = SEMVMX, /* semaphore maximum value */
.semaem = SEMAEM /* adjust on exit max value */
};
static int semu_alloc(struct proc *p);
static int semundo_adjust(struct proc *p, int *supidx,
int semid, int semnum, int adjval);
static void semundo_clear(int semid, int semnum);
/* XXX casting to (sy_call_t *) is bogus, as usual. */
static sy_call_t* const semcalls[] = {
(sy_call_t *)semctl, (sy_call_t *)semget,
(sy_call_t *)semop
};
static int semtot = 0; /* # of used semaphores */
static struct semid_kernel **semas = NULL; /* semaphore id pool */
static struct sem *sem_pool = NULL; /* semaphore pool */
static int semu_list_idx = -1; /* active undo structures */
static struct sem_undo *semu = NULL; /* semaphore undo pool */
static LCK_GRP_DECLARE(sysv_sem_subsys_lck_grp, "sysv_sem_subsys_lock");
static LCK_MTX_DECLARE(sysv_sem_subsys_mutex, &sysv_sem_subsys_lck_grp);
#define SYSV_SEM_SUBSYS_LOCK() lck_mtx_lock(&sysv_sem_subsys_mutex)
#define SYSV_SEM_SUBSYS_UNLOCK() lck_mtx_unlock(&sysv_sem_subsys_mutex)
static __inline__ user_time_t
sysv_semtime(void)
{
struct timeval tv;
microtime(&tv);
return tv.tv_sec;
}
/*
* XXX conversion of internal user_time_t to external tume_t loses
* XXX precision; not an issue for us now, since we are only ever
* XXX setting 32 bits worth of time into it.
*
* pad field contents are not moved correspondingly; contents will be lost
*
* NOTE: Source and target may *NOT* overlap! (target is smaller)
*/
static void
semid_ds_kernelto32(struct user_semid_ds *in, struct user32_semid_ds *out)
{
out->sem_perm = in->sem_perm;
out->sem_base = CAST_DOWN_EXPLICIT(__int32_t, in->sem_base);
out->sem_nsems = in->sem_nsems;
out->sem_otime = in->sem_otime; /* XXX loses precision */
out->sem_ctime = in->sem_ctime; /* XXX loses precision */
}
static void
semid_ds_kernelto64(struct user_semid_ds *in, struct user64_semid_ds *out)
{
out->sem_perm = in->sem_perm;
out->sem_base = CAST_DOWN_EXPLICIT(__int32_t, in->sem_base);
out->sem_nsems = in->sem_nsems;
out->sem_otime = in->sem_otime; /* XXX loses precision */
out->sem_ctime = in->sem_ctime; /* XXX loses precision */
}
/*
* pad field contents are not moved correspondingly; contents will be lost
*
* NOTE: Source and target may are permitted to overlap! (source is smaller);
* this works because we copy fields in order from the end of the struct to
* the beginning.
*
* XXX use CAST_USER_ADDR_T() for lack of a CAST_USER_TIME_T(); net effect
* XXX is the same.
*/
static void
semid_ds_32tokernel(struct user32_semid_ds *in, struct user_semid_ds *out)
{
out->sem_ctime = in->sem_ctime;
out->sem_otime = in->sem_otime;
out->sem_nsems = in->sem_nsems;
out->sem_base = (void *)(uintptr_t)in->sem_base;
out->sem_perm = in->sem_perm;
}
static void
semid_ds_64tokernel(struct user64_semid_ds *in, struct user_semid_ds *out)
{
out->sem_ctime = in->sem_ctime;
out->sem_otime = in->sem_otime;
out->sem_nsems = in->sem_nsems;
out->sem_base = (void *)(uintptr_t)in->sem_base;
out->sem_perm = in->sem_perm;
}
/*
* semsys
*
* Entry point for all SEM calls: semctl, semget, semop
*
* Parameters: p Process requesting the call
* uap User argument descriptor (see below)
* retval Return value of the selected sem call
*
* Indirect parameters: uap->which sem call to invoke (index in array of sem calls)
* uap->a2 User argument descriptor
*
* Returns: 0 Success
* !0 Not success
*
* Implicit returns: retval Return value of the selected sem call
*
* DEPRECATED: This interface should not be used to call the other SEM
* functions (semctl, semget, semop). The correct usage is
* to call the other SEM functions directly.
*
*/
int
semsys(struct proc *p, struct semsys_args *uap, int32_t *retval)
{
/* The individual calls handling the locking now */
if (uap->which >= sizeof(semcalls) / sizeof(semcalls[0])) {
return EINVAL;
}
return (*semcalls[uap->which])(p, &uap->a2, retval);
}
static inline struct semid_kernel *
sema_get_by_id(size_t i)
{
return &semas[i / SEMMNI_INC][i % SEMMNI_INC];
}
/*
* Expand the semu array to the given capacity. If the expansion fails
* return 0, otherwise return 1.
*
* Assumes we already have the subsystem lock.
*/
static int
grow_semu_array(void)
{
struct sem_undo *newSemu;
int old_size = seminfo.semmnu;
int new_size;
if (old_size >= limitseminfo.semmnu) { /* enforce hard limit */
return 0;
}
new_size = MIN(roundup(old_size + 1, SEMMNU_INC), limitseminfo.semmnu);
newSemu = krealloc_type(struct sem_undo, seminfo.semmnu, new_size,
semu, Z_WAITOK | Z_ZERO);
if (NULL == newSemu) {
return 0;
}
semu = newSemu;
seminfo.semmnu = new_size;
return 1;
}
/*
* Expand the semas array. If the expansion fails
* we return 0, otherwise we return 1.
*
* Assumes we already have the subsystem lock.
*/
static int
grow_sema_array(void)
{
struct semid_kernel *newSema, **newArr;
int old_size = seminfo.semmni;
if (old_size >= limitseminfo.semmni) { /* enforce hard limit */
return 0;
}
newArr = krealloc_type(struct semid_kernel *,
old_size / SEMMNI_INC, old_size / SEMMNI_INC + 1,
semas, Z_WAITOK | Z_ZERO);
if (newArr == NULL) {
return 0;
}
newSema = zalloc_permanent(sizeof(struct semid_kernel) * SEMMNI_INC,
ZALIGN(struct semid_kernel));
#if CONFIG_MACF
for (int i = 0; i < SEMMNI_INC; i++) {
mac_sysvsem_label_init(&newSema[i]);
}
#endif
/*
* The new elements (from newSema[i] to newSema[newSize-1]) have their
* "sem_base" and "sem_perm.mode" set to 0 (i.e. NULL) by the Z_ZERO
* flag above, so they're already marked as "not in use".
*/
semas = newArr;
semas[old_size / SEMMNI_INC] = newSema;
seminfo.semmni += SEMMNI_INC;
return 1;
}
/*
* Expand the sem_pool array to the given capacity. If the expansion fails
* we return 0 (fail), otherwise we return 1 (success).
*
* Assumes we already hold the subsystem lock.
*/
static int
grow_sem_pool(int new_pool_size)
{
struct sem *new_sem_pool = NULL;
if (new_pool_size < semtot) {
return 0;
}
/* enforce hard limit */
if (new_pool_size > limitseminfo.semmns) {
return 0;
}
new_pool_size = (new_pool_size / SEMMNS_INC + 1) * SEMMNS_INC;
new_pool_size = new_pool_size > limitseminfo.semmns ? limitseminfo.semmns : new_pool_size;
new_sem_pool = krealloc_data(sem_pool,
sizeof(struct sem) * seminfo.semmns,
sizeof(struct sem) * new_pool_size,
Z_WAITOK | Z_ZERO);
if (NULL == new_sem_pool) {
return 0;
}
/* Update our id structures to point to the new semaphores */
for (int i = 0; i < seminfo.semmni; i++) {
struct semid_kernel *semakptr = sema_get_by_id(i);
if (semakptr->u.sem_perm.mode & SEM_ALLOC) { /* ID in use */
semakptr->u.sem_base = new_sem_pool +
(semakptr->u.sem_base - sem_pool);
}
}
sem_pool = new_sem_pool;
seminfo.semmns = new_pool_size;
return 1;
}
/*
* Allocate a new sem_undo structure for a process
* (returns ptr to structure or NULL if no more room)
*
* Assumes we already hold the subsystem lock.
*/
static int
semu_alloc(struct proc *p)
{
int i;
struct sem_undo *suptr;
int *supidx;
int attempt;
/*
* Try twice to allocate something.
* (we'll purge any empty structures after the first pass so
* two passes are always enough)
*/
for (attempt = 0; attempt < 2; attempt++) {
/*
* Look for a free structure.
* Fill it in and return it if we find one.
*/
for (i = 0; i < seminfo.semmnu; i++) {
suptr = SEMU(i);
if (suptr->un_proc == NULL) {
suptr->un_next_idx = semu_list_idx;
semu_list_idx = i;
suptr->un_cnt = 0;
suptr->un_ent = NULL;
suptr->un_proc = p;
return i;
}
}
/*
* We didn't find a free one, if this is the first attempt
* then try to free some structures.
*/
if (attempt == 0) {
/* All the structures are in use - try to free some */
int did_something = 0;
supidx = &semu_list_idx;
while (*supidx != -1) {
suptr = SEMU(*supidx);
if (suptr->un_cnt == 0) {
suptr->un_proc = NULL;
*supidx = suptr->un_next_idx;
did_something = 1;
} else {
supidx = &(suptr->un_next_idx);
}
}
/* If we didn't free anything. Try expanding
* the semu[] array. If that doesn't work
* then fail. We expand last to get the
* most reuse out of existing resources.
*/
if (!did_something && !grow_semu_array()) {
return -1;
}
} else {
/*
* The second pass failed even though we freed
* something after the first pass!
* This is IMPOSSIBLE!
*/
panic("semu_alloc - second attempt failed");
}
}
return -1;
}
/*
* Adjust a particular entry for a particular proc
*
* Assumes we already hold the subsystem lock.
*/
static int
semundo_adjust(struct proc *p, int *supidx, int semid,
int semnum, int adjval)
{
struct sem_undo *suptr;
int suidx;
struct undo *sueptr, **suepptr, *new_sueptr;
int i;
/*
* Look for and remember the sem_undo if the caller doesn't provide it
*/
suidx = *supidx;
if (suidx == -1) {
for (suidx = semu_list_idx; suidx != -1;
suidx = suptr->un_next_idx) {
suptr = SEMU(suidx);
if (suptr->un_proc == p) {
*supidx = suidx;
break;
}
}
if (suidx == -1) {
if (adjval == 0) {
return 0;
}
suidx = semu_alloc(p);
if (suidx == -1) {
return ENOSPC;
}
*supidx = suidx;
}
}
/*
* Look for the requested entry and adjust it (delete if adjval becomes
* 0).
*/
suptr = SEMU(suidx);
new_sueptr = NULL;
for (i = 0, suepptr = &suptr->un_ent, sueptr = suptr->un_ent;
i < suptr->un_cnt;
i++, suepptr = &sueptr->une_next, sueptr = sueptr->une_next) {
if (sueptr->une_id != semid || sueptr->une_num != semnum) {
continue;
}
if (adjval == 0) {
sueptr->une_adjval = 0;
} else {
sueptr->une_adjval += adjval;
}
if (sueptr->une_adjval == 0) {
suptr->un_cnt--;
*suepptr = sueptr->une_next;
kfree_type(struct undo, sueptr);
}
return 0;
}
/* Didn't find the right entry - create it */
if (adjval == 0) {
/* no adjustment: no need for a new entry */
return 0;
}
if (suptr->un_cnt == limitseminfo.semume) {
/* reached the limit number of semaphore undo entries */
return EINVAL;
}
/* allocate a new semaphore undo entry */
new_sueptr = kalloc_type(struct undo, Z_WAITOK | Z_NOFAIL);
/* fill in the new semaphore undo entry */
new_sueptr->une_next = suptr->un_ent;
suptr->un_ent = new_sueptr;
suptr->un_cnt++;
new_sueptr->une_adjval = adjval;
new_sueptr->une_id = semid;
new_sueptr->une_num = semnum;
return 0;
}
/* Assumes we already hold the subsystem lock.
*/
static void
semundo_clear(int semid, int semnum)
{
struct sem_undo *suptr;
int suidx;
for (suidx = semu_list_idx; suidx != -1; suidx = suptr->un_next_idx) {
struct undo *sueptr;
struct undo **suepptr;
int i = 0;
suptr = SEMU(suidx);
sueptr = suptr->un_ent;
suepptr = &suptr->un_ent;
while (i < suptr->un_cnt) {
if (sueptr->une_id == semid) {
if (semnum == -1 || sueptr->une_num == semnum) {
suptr->un_cnt--;
*suepptr = sueptr->une_next;
kfree_type(struct undo, sueptr);
sueptr = *suepptr;
continue;
}
if (semnum != -1) {
break;
}
}
i++;
suepptr = &sueptr->une_next;
sueptr = sueptr->une_next;
}
}
}
/*
* Note that the user-mode half of this passes a union coerced to a
* user_addr_t. The union contains either an int or a pointer, and
* so we have to coerce it back, variant on whether the calling
* process is 64 bit or not. The coercion works for the 'val' element
* because the alignment is the same in user and kernel space.
*/
int
semctl(struct proc *p, struct semctl_args *uap, int32_t *retval)
{
int semid = uap->semid;
int semnum = uap->semnum;
int cmd = uap->cmd;
user_semun_t user_arg = (user_semun_t)uap->arg;
kauth_cred_t cred = kauth_cred_get();
int i, rval, eval;
struct user_semid_ds sbuf;
struct semid_kernel *semakptr;
AUDIT_ARG(svipc_cmd, cmd);
AUDIT_ARG(svipc_id, semid);
SYSV_SEM_SUBSYS_LOCK();
#ifdef SEM_DEBUG
printf("call to semctl(%d, %d, %d, 0x%qx)\n", semid, semnum, cmd, user_arg);
#endif
semid = IPCID_TO_IX(semid);
if (semid < 0 || semid >= seminfo.semmni) {
#ifdef SEM_DEBUG
printf("Invalid semid\n");
#endif
eval = EINVAL;
goto semctlout;
}
semakptr = sema_get_by_id(semid);
if ((semakptr->u.sem_perm.mode & SEM_ALLOC) == 0 ||
semakptr->u.sem_perm._seq != IPCID_TO_SEQ(uap->semid)) {
eval = EINVAL;
goto semctlout;
}
#if CONFIG_MACF
eval = mac_sysvsem_check_semctl(cred, semakptr, cmd);
if (eval) {
goto semctlout;
}
#endif
eval = 0;
rval = 0;
switch (cmd) {
case IPC_RMID:
if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_M))) {
goto semctlout;
}
semakptr->u.sem_perm.cuid = kauth_cred_getuid(cred);
semakptr->u.sem_perm.uid = kauth_cred_getuid(cred);
semtot -= semakptr->u.sem_nsems;
for (i = semakptr->u.sem_base - sem_pool; i < semtot; i++) {
sem_pool[i] = sem_pool[i + semakptr->u.sem_nsems];
}
for (i = 0; i < seminfo.semmni; i++) {
struct semid_kernel *semakptr2 = sema_get_by_id(i);
if ((semakptr2->u.sem_perm.mode & SEM_ALLOC) &&
semakptr2->u.sem_base > semakptr->u.sem_base) {
semakptr2->u.sem_base -= semakptr->u.sem_nsems;
}
}
semakptr->u.sem_perm.mode = 0;
#if CONFIG_MACF
mac_sysvsem_label_recycle(semakptr);
#endif
semundo_clear(semid, -1);
wakeup((caddr_t)semakptr);
break;
case IPC_SET:
if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_M))) {
goto semctlout;
}
if (IS_64BIT_PROCESS(p)) {
struct user64_semid_ds ds64;
eval = copyin(user_arg.buf, &ds64, sizeof(ds64));
semid_ds_64tokernel(&ds64, &sbuf);
} else {
struct user32_semid_ds ds32;
eval = copyin(user_arg.buf, &ds32, sizeof(ds32));
semid_ds_32tokernel(&ds32, &sbuf);
}
if (eval != 0) {
goto semctlout;
}
semakptr->u.sem_perm.uid = sbuf.sem_perm.uid;
semakptr->u.sem_perm.gid = sbuf.sem_perm.gid;
semakptr->u.sem_perm.mode = (semakptr->u.sem_perm.mode &
~0777) | (sbuf.sem_perm.mode & 0777);
semakptr->u.sem_ctime = sysv_semtime();
break;
case IPC_STAT:
if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R))) {
goto semctlout;
}
if (IS_64BIT_PROCESS(p)) {
struct user64_semid_ds semid_ds64;
bzero(&semid_ds64, sizeof(semid_ds64));
semid_ds_kernelto64(&semakptr->u, &semid_ds64);
eval = copyout(&semid_ds64, user_arg.buf, sizeof(semid_ds64));
} else {
struct user32_semid_ds semid_ds32;
bzero(&semid_ds32, sizeof(semid_ds32));
semid_ds_kernelto32(&semakptr->u, &semid_ds32);
eval = copyout(&semid_ds32, user_arg.buf, sizeof(semid_ds32));
}
break;
case GETNCNT:
if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R))) {
goto semctlout;
}
if (semnum < 0 || semnum >= semakptr->u.sem_nsems) {
eval = EINVAL;
goto semctlout;
}
rval = semakptr->u.sem_base[semnum].semncnt;
break;
case GETPID:
if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R))) {
goto semctlout;
}
if (semnum < 0 || semnum >= semakptr->u.sem_nsems) {
eval = EINVAL;
goto semctlout;
}
rval = semakptr->u.sem_base[semnum].sempid;
break;
case GETVAL:
if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R))) {
goto semctlout;
}
if (semnum < 0 || semnum >= semakptr->u.sem_nsems) {
eval = EINVAL;
goto semctlout;
}
rval = semakptr->u.sem_base[semnum].semval;
break;
case GETALL:
if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R))) {
goto semctlout;
}
/* XXXXXXXXXXXXXXXX TBD XXXXXXXXXXXXXXXX */
for (i = 0; i < semakptr->u.sem_nsems; i++) {
/* XXX could be done in one go... */
eval = copyout((caddr_t)&semakptr->u.sem_base[i].semval,
user_arg.array + (i * sizeof(unsigned short)),
sizeof(unsigned short));
if (eval != 0) {
break;
}
}
break;
case GETZCNT:
if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R))) {
goto semctlout;
}
if (semnum < 0 || semnum >= semakptr->u.sem_nsems) {
eval = EINVAL;
goto semctlout;
}
rval = semakptr->u.sem_base[semnum].semzcnt;
break;
case SETVAL:
if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_W))) {
#ifdef SEM_DEBUG
printf("Invalid credentials for write\n");
#endif
goto semctlout;
}
if (semnum < 0 || semnum >= semakptr->u.sem_nsems) {
#ifdef SEM_DEBUG
printf("Invalid number out of range for set\n");
#endif
eval = EINVAL;
goto semctlout;
}
/*
* Cast down a pointer instead of using 'val' member directly
* to avoid introducing endieness and a pad field into the
* header file. Ugly, but it works.
*/
u_int newsemval = CAST_DOWN_EXPLICIT(u_int, user_arg.buf);
/*
* The check is being performed as unsigned values to match
* eventual destination
*/
if (newsemval > (u_int)seminfo.semvmx) {
#ifdef SEM_DEBUG
printf("Out of range sem value for set\n");
#endif
eval = ERANGE;
goto semctlout;
}
semakptr->u.sem_base[semnum].semval = newsemval;
semakptr->u.sem_base[semnum].sempid = proc_getpid(p);
/* XXX scottl Should there be a MAC call here? */
semundo_clear(semid, semnum);
wakeup((caddr_t)semakptr);
break;
case SETALL:
if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_W))) {
goto semctlout;
}
/*** XXXXXXXXXXXX TBD ********/
for (i = 0; i < semakptr->u.sem_nsems; i++) {
/* XXX could be done in one go... */
eval = copyin(user_arg.array + (i * sizeof(unsigned short)),
(caddr_t)&semakptr->u.sem_base[i].semval,
sizeof(unsigned short));
if (eval != 0) {
break;
}
semakptr->u.sem_base[i].sempid = proc_getpid(p);
}
/* XXX scottl Should there be a MAC call here? */
semundo_clear(semid, -1);
wakeup((caddr_t)semakptr);
break;
default:
eval = EINVAL;
goto semctlout;
}
if (eval == 0) {
*retval = rval;
}
semctlout:
SYSV_SEM_SUBSYS_UNLOCK();
return eval;
}
int
semget(__unused struct proc *p, struct semget_args *uap, int32_t *retval)
{
int semid, eval;
int key = uap->key;
int nsems = uap->nsems;
int semflg = uap->semflg;
kauth_cred_t cred = kauth_cred_get();
struct semid_kernel *semakptr;
#ifdef SEM_DEBUG
if (key != IPC_PRIVATE) {
printf("semget(0x%x, %d, 0%o)\n", key, nsems, semflg);
} else {
printf("semget(IPC_PRIVATE, %d, 0%o)\n", nsems, semflg);
}
#endif
SYSV_SEM_SUBSYS_LOCK();
if (key != IPC_PRIVATE) {
for (semid = 0; semid < seminfo.semmni; semid++) {
semakptr = sema_get_by_id(semid);
if ((semakptr->u.sem_perm.mode & SEM_ALLOC) &&
semakptr->u.sem_perm._key == key) {
break;
}
}
if (semid < seminfo.semmni) {
#ifdef SEM_DEBUG
printf("found public key\n");
#endif
if ((eval = ipcperm(cred, &semakptr->u.sem_perm,
semflg & 0700))) {
goto semgetout;
}
if (nsems < 0 || semakptr->u.sem_nsems < nsems) {
#ifdef SEM_DEBUG
printf("too small\n");
#endif
eval = EINVAL;
goto semgetout;
}
if ((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) {
#ifdef SEM_DEBUG
printf("not exclusive\n");
#endif
eval = EEXIST;
goto semgetout;
}
#if CONFIG_MACF
eval = mac_sysvsem_check_semget(cred, semakptr);
if (eval) {
goto semgetout;
}
#endif
goto found;
}
}
#ifdef SEM_DEBUG
printf("need to allocate an id for the request\n");
#endif
if (key == IPC_PRIVATE || (semflg & IPC_CREAT)) {
if (nsems <= 0 || nsems > limitseminfo.semmsl) {
#ifdef SEM_DEBUG
printf("nsems out of range (0<%d<=%d)\n", nsems,
seminfo.semmsl);
#endif
eval = EINVAL;
goto semgetout;
}
if (nsems > seminfo.semmns - semtot) {
#ifdef SEM_DEBUG
printf("not enough semaphores left (need %d, got %d)\n",
nsems, seminfo.semmns - semtot);
#endif
if (!grow_sem_pool(semtot + nsems)) {
#ifdef SEM_DEBUG
printf("failed to grow the sem array\n");
#endif
eval = ENOSPC;
goto semgetout;
}
}
for (semid = 0; semid < seminfo.semmni; semid++) {
if ((sema_get_by_id(semid)->u.sem_perm.mode & SEM_ALLOC) == 0) {
break;
}
}
if (semid == seminfo.semmni && !grow_sema_array()) {
eval = ENOSPC;
goto semgetout;
}
#ifdef SEM_DEBUG
printf("semid %d is available\n", semid);
#endif
semakptr = sema_get_by_id(semid);
semakptr->u.sem_perm._key = key;
semakptr->u.sem_perm.cuid = kauth_cred_getuid(cred);
semakptr->u.sem_perm.uid = kauth_cred_getuid(cred);
semakptr->u.sem_perm.cgid = kauth_cred_getgid(cred);
semakptr->u.sem_perm.gid = kauth_cred_getgid(cred);
semakptr->u.sem_perm.mode = (semflg & 0777) | SEM_ALLOC;
semakptr->u.sem_perm._seq =
(semakptr->u.sem_perm._seq + 1) & 0x7fff;
semakptr->u.sem_nsems = nsems;
semakptr->u.sem_otime = 0;
semakptr->u.sem_ctime = sysv_semtime();
semakptr->u.sem_base = &sem_pool[semtot];
semtot += nsems;
bzero(semakptr->u.sem_base,
sizeof(semakptr->u.sem_base[0]) * nsems);
#if CONFIG_MACF
mac_sysvsem_label_associate(cred, semakptr);
#endif
#ifdef SEM_DEBUG
printf("sembase = 0x%x, next = 0x%x\n", semakptr->u.sem_base,
&sem_pool[semtot]);
#endif
} else {
#ifdef SEM_DEBUG
printf("didn't find it and wasn't asked to create it\n");
#endif
eval = ENOENT;
goto semgetout;
}
found:
*retval = IXSEQ_TO_IPCID(semid, semakptr->u.sem_perm);
AUDIT_ARG(svipc_id, *retval);
#ifdef SEM_DEBUG
printf("semget is done, returning %d\n", *retval);
#endif
eval = 0;
semgetout:
SYSV_SEM_SUBSYS_UNLOCK();
return eval;
}
int
semop(struct proc *p, struct semop_args *uap, int32_t *retval)
{
int semid = uap->semid;
int nsops = uap->nsops;
struct sembuf sops[seminfo.semopm];
struct semid_kernel *semakptr;
struct sembuf *sopptr = NULL; /* protected by 'semptr' */
struct sem *semptr = NULL; /* protected by 'if' */
int supidx = -1;
int i, j, eval;
int do_wakeup, do_undos;
AUDIT_ARG(svipc_id, uap->semid);
SYSV_SEM_SUBSYS_LOCK();
#ifdef SEM_DEBUG
printf("call to semop(%d, 0x%x, %d)\n", semid, sops, nsops);
#endif
semid = IPCID_TO_IX(semid); /* Convert back to zero origin */
if (semid < 0 || semid >= seminfo.semmni) {
eval = EINVAL;
goto semopout;
}
semakptr = sema_get_by_id(semid);
if ((semakptr->u.sem_perm.mode & SEM_ALLOC) == 0) {
eval = EINVAL;
goto semopout;
}
if (semakptr->u.sem_perm._seq != IPCID_TO_SEQ(uap->semid)) {
eval = EINVAL;
goto semopout;
}
if ((eval = ipcperm(kauth_cred_get(), &semakptr->u.sem_perm, IPC_W))) {
#ifdef SEM_DEBUG
printf("eval = %d from ipaccess\n", eval);
#endif
goto semopout;
}
if (nsops < 0 || nsops > seminfo.semopm) {
#ifdef SEM_DEBUG
printf("too many sops (max=%d, nsops=%d)\n",
seminfo.semopm, nsops);
#endif
eval = E2BIG;
goto semopout;
}
/* OK for LP64, since sizeof(struct sembuf) is currently invariant */
if ((eval = copyin(uap->sops, &sops, nsops * sizeof(struct sembuf))) != 0) {
#ifdef SEM_DEBUG
printf("eval = %d from copyin(%08x, %08x, %ld)\n", eval,
uap->sops, &sops, nsops * sizeof(struct sembuf));
#endif
goto semopout;
}
#if CONFIG_MACF
/*
* Initial pass thru sops to see what permissions are needed.
*/
j = 0; /* permission needed */
for (i = 0; i < nsops; i++) {
j |= (sops[i].sem_op == 0) ? SEM_R : SEM_A;
}
/*
* The MAC hook checks whether the thread has read (and possibly
* write) permissions to the semaphore array based on the
* sopptr->sem_op value.
*/
eval = mac_sysvsem_check_semop(kauth_cred_get(), semakptr, j);
if (eval) {
goto semopout;
}
#endif
/*
* Loop trying to satisfy the vector of requests.
* If we reach a point where we must wait, any requests already
* performed are rolled back and we go to sleep until some other
* process wakes us up. At this point, we start all over again.
*
* This ensures that from the perspective of other tasks, a set
* of requests is atomic (never partially satisfied).
*/
do_undos = 0;
for (;;) {
do_wakeup = 0;
for (i = 0; i < nsops; i++) {
sopptr = &sops[i];
if (sopptr->sem_num >= semakptr->u.sem_nsems) {
eval = EFBIG;
goto semopout;
}
semptr = &semakptr->u.sem_base[sopptr->sem_num];
#ifdef SEM_DEBUG
printf("semop: semakptr=%x, sem_base=%x, semptr=%x, sem[%d]=%d : op=%d, flag=%s\n",
semakptr, semakptr->u.sem_base, semptr,
sopptr->sem_num, semptr->semval, sopptr->sem_op,
(sopptr->sem_flg & IPC_NOWAIT) ? "nowait" : "wait");
#endif
if (sopptr->sem_op < 0) {
if (semptr->semval + sopptr->sem_op < 0) {
#ifdef SEM_DEBUG
printf("semop: can't do it now\n");
#endif
break;
} else {
semptr->semval += sopptr->sem_op;
if (semptr->semval == 0 &&
semptr->semzcnt > 0) {
do_wakeup = 1;
}
}
if (sopptr->sem_flg & SEM_UNDO) {
do_undos = 1;
}
} else if (sopptr->sem_op == 0) {
if (semptr->semval > 0) {
#ifdef SEM_DEBUG
printf("semop: not zero now\n");
#endif
break;
}
} else {
if (semptr->semncnt > 0) {
do_wakeup = 1;
}
semptr->semval += sopptr->sem_op;
if (sopptr->sem_flg & SEM_UNDO) {
do_undos = 1;
}
}
}
/*
* Did we get through the entire vector?
*/
if (i >= nsops) {
goto done;
}
/*
* No ... rollback anything that we've already done
*/
#ifdef SEM_DEBUG
printf("semop: rollback 0 through %d\n", i - 1);
#endif
for (j = 0; j < i; j++) {
semakptr->u.sem_base[sops[j].sem_num].semval -=
sops[j].sem_op;
}
/*
* If the request that we couldn't satisfy has the
* NOWAIT flag set then return with EAGAIN.
*/
if (sopptr->sem_flg & IPC_NOWAIT) {
eval = EAGAIN;
goto semopout;
}
if (sopptr->sem_op == 0) {
semptr->semzcnt++;
} else {
semptr->semncnt++;
}
#ifdef SEM_DEBUG
printf("semop: good night!\n");
#endif
/* Release our lock on the semaphore subsystem so
* another thread can get at the semaphore we are
* waiting for. We will get the lock back after we
* wake up.
*/
eval = msleep((caddr_t)semakptr, &sysv_sem_subsys_mutex, (PZERO - 4) | PCATCH,
"semwait", 0);
#ifdef SEM_DEBUG
printf("semop: good morning (eval=%d)!\n", eval);
#endif
if (eval != 0) {
eval = EINTR;
}
/*
* IMPORTANT: while we were asleep, the semaphore array might
* have been reallocated somewhere else (see grow_sema_array()).
* When we wake up, we have to re-lookup the semaphore
* structures and re-validate them.
*/
semptr = NULL;
/*
* Make sure that the semaphore still exists
*
* XXX POSIX: Third test this 'if' and 'EINTR' precedence may
* fail testing; if so, we will need to revert this code.
*/
if ((semakptr->u.sem_perm.mode & SEM_ALLOC) == 0 ||
semakptr->u.sem_perm._seq != IPCID_TO_SEQ(uap->semid) ||
sopptr->sem_num >= semakptr->u.sem_nsems) {
/* The man page says to return EIDRM. */
/* Unfortunately, BSD doesn't define that code! */
if (eval == EINTR) {
/*
* EINTR takes precedence over the fact that
* the semaphore disappeared while we were
* sleeping...
*/
} else {
#ifdef EIDRM
eval = EIDRM;
#else
eval = EINVAL; /* Ancient past */
#endif
}
goto semopout;
}
/*
* The semaphore is still alive. Readjust the count of
* waiting processes. semptr needs to be recomputed
* because the sem[] may have been reallocated while
* we were sleeping, updating our sem_base pointer.
*/
semptr = &semakptr->u.sem_base[sopptr->sem_num];
if (sopptr->sem_op == 0) {
semptr->semzcnt--;
} else {
semptr->semncnt--;
}
if (eval != 0) { /* EINTR */
goto semopout;
}
}
done:
/*
* Process any SEM_UNDO requests.
*/
if (do_undos) {
for (i = 0; i < nsops; i++) {
/*
* We only need to deal with SEM_UNDO's for non-zero
* op's.
*/
int adjval;
if ((sops[i].sem_flg & SEM_UNDO) == 0) {
continue;
}
adjval = sops[i].sem_op;
if (adjval == 0) {
continue;
}
eval = semundo_adjust(p, &supidx, semid,
sops[i].sem_num, -adjval);
if (eval == 0) {
continue;
}
/*
* Oh-Oh! We ran out of either sem_undo's or undo's.
* Rollback the adjustments to this point and then
* rollback the semaphore ups and down so we can return
* with an error with all structures restored. We
* rollback the undo's in the exact reverse order that
* we applied them. This guarantees that we won't run
* out of space as we roll things back out.
*/
for (j = i - 1; j >= 0; j--) {
if ((sops[j].sem_flg & SEM_UNDO) == 0) {
continue;
}
adjval = sops[j].sem_op;
if (adjval == 0) {
continue;
}
if (semundo_adjust(p, &supidx, semid,
sops[j].sem_num, adjval) != 0) {
panic("semop - can't undo undos");
}
}
for (j = 0; j < nsops; j++) {
semakptr->u.sem_base[sops[j].sem_num].semval -=
sops[j].sem_op;
}
#ifdef SEM_DEBUG
printf("eval = %d from semundo_adjust\n", eval);
#endif
goto semopout;
} /* loop through the sops */
} /* if (do_undos) */
/* We're definitely done - set the sempid's */
for (i = 0; i < nsops; i++) {
sopptr = &sops[i];
semptr = &semakptr->u.sem_base[sopptr->sem_num];
semptr->sempid = proc_getpid(p);
}
semakptr->u.sem_otime = sysv_semtime();
if (do_wakeup) {
#ifdef SEM_DEBUG
printf("semop: doing wakeup\n");
#ifdef SEM_WAKEUP
sem_wakeup((caddr_t)semakptr);
#else
wakeup((caddr_t)semakptr);
#endif
printf("semop: back from wakeup\n");
#else
wakeup((caddr_t)semakptr);
#endif
}
#ifdef SEM_DEBUG
printf("semop: done\n");
#endif
*retval = 0;
eval = 0;
semopout:
SYSV_SEM_SUBSYS_UNLOCK();
return eval;
}
/*
* Go through the undo structures for this process and apply the adjustments to
* semaphores.
*/
void
semexit(struct proc *p)
{
struct sem_undo *suptr = NULL;
int suidx;
int *supidx;
int did_something;
/* If we have not allocated our semaphores yet there can't be
* anything to undo, but we need the lock to prevent
* dynamic memory race conditions.
*/
SYSV_SEM_SUBSYS_LOCK();
if (!sem_pool) {
SYSV_SEM_SUBSYS_UNLOCK();
return;
}
did_something = 0;
/*
* Go through the chain of undo vectors looking for one
* associated with this process.
*/
for (supidx = &semu_list_idx; (suidx = *supidx) != -1;
supidx = &suptr->un_next_idx) {
suptr = SEMU(suidx);
if (suptr->un_proc == p) {
break;
}
}
if (suidx == -1) {
goto unlock;
}
#ifdef SEM_DEBUG
printf("proc @%08x has undo structure with %d entries\n", p,
suptr->un_cnt);
#endif
/*
* If there are any active undo elements then process them.
*/
if (suptr->un_cnt > 0) {
while (suptr->un_ent != NULL) {
struct undo *sueptr;
int semid;
int semnum;
int adjval;
struct semid_kernel *semakptr;
sueptr = suptr->un_ent;
semid = sueptr->une_id;
semnum = sueptr->une_num;
adjval = sueptr->une_adjval;
semakptr = sema_get_by_id(semid);
if ((semakptr->u.sem_perm.mode & SEM_ALLOC) == 0) {
panic("semexit - semid not allocated");
}
if (semnum >= semakptr->u.sem_nsems) {
panic("semexit - semnum out of range");
}
#ifdef SEM_DEBUG
printf("semexit: %08x id=%d num=%d(adj=%d) ; sem=%d\n",
suptr->un_proc,
semid,
semnum,
adjval,
semakptr->u.sem_base[semnum].semval);
#endif
if (adjval < 0) {
if (semakptr->u.sem_base[semnum].semval < -adjval) {
semakptr->u.sem_base[semnum].semval = 0;
} else {
semakptr->u.sem_base[semnum].semval +=
adjval;
}
} else {
semakptr->u.sem_base[semnum].semval += adjval;
}
/* Maybe we should build a list of semakptr's to wake
* up, finish all access to data structures, release the
* subsystem lock, and wake all the processes. Something
* to think about.
*/
#ifdef SEM_WAKEUP
sem_wakeup((caddr_t)semakptr);
#else
wakeup((caddr_t)semakptr);
#endif
#ifdef SEM_DEBUG
printf("semexit: back from wakeup\n");
#endif
suptr->un_cnt--;
suptr->un_ent = sueptr->une_next;
kfree_type(struct undo, sueptr);
}
}
/*
* Deallocate the undo vector.
*/
#ifdef SEM_DEBUG
printf("removing vector\n");
#endif
suptr->un_proc = NULL;
*supidx = suptr->un_next_idx;
unlock:
/*
* There is a semaphore leak (i.e. memory leak) in this code.
* We should be deleting the IPC_PRIVATE semaphores when they are
* no longer needed, and we dont. We would have to track which processes
* know about which IPC_PRIVATE semaphores, updating the list after
* every fork. We can't just delete them semaphore when the process
* that created it dies, because that process may well have forked
* some children. So we need to wait until all of it's children have
* died, and so on. Maybe we should tag each IPC_PRIVATE sempahore
* with the creating group ID, count the number of processes left in
* that group, and delete the semaphore when the group is gone.
* Until that code gets implemented we will leak IPC_PRIVATE semaphores.
* There is an upper bound on the size of our semaphore array, so
* leaking the semaphores should not work as a DOS attack.
*
* Please note that the original BSD code this file is based on had the
* same leaky semaphore problem.
*/
SYSV_SEM_SUBSYS_UNLOCK();
}
/* (struct sysctl_oid *oidp, void *arg1, int arg2, \
* struct sysctl_req *req) */
static int
sysctl_seminfo(__unused struct sysctl_oid *oidp, void *arg1,
__unused int arg2, struct sysctl_req *req)
{
int error = 0;
error = SYSCTL_OUT(req, arg1, sizeof(int));
if (error || req->newptr == USER_ADDR_NULL) {
return error;
}
SYSV_SEM_SUBSYS_LOCK();
/* Set the values only if shared memory is not initialised */
if ((sem_pool == NULL) &&
(semas == NULL) &&
(semu == NULL) &&
(semu_list_idx == -1)) {
if ((error = SYSCTL_IN(req, arg1, sizeof(int)))) {
goto out;
}
} else {
error = EINVAL;
}
out:
SYSV_SEM_SUBSYS_UNLOCK();
return error;
}
/* SYSCTL_NODE(_kern, KERN_SYSV, sysv, CTLFLAG_RW, 0, "SYSV"); */
extern struct sysctl_oid_list sysctl__kern_sysv_children;
SYSCTL_PROC(_kern_sysv, OID_AUTO, semmni, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
&limitseminfo.semmni, 0, &sysctl_seminfo, "I", "semmni");
SYSCTL_PROC(_kern_sysv, OID_AUTO, semmns, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
&limitseminfo.semmns, 0, &sysctl_seminfo, "I", "semmns");
SYSCTL_PROC(_kern_sysv, OID_AUTO, semmnu, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
&limitseminfo.semmnu, 0, &sysctl_seminfo, "I", "semmnu");
SYSCTL_PROC(_kern_sysv, OID_AUTO, semmsl, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
&limitseminfo.semmsl, 0, &sysctl_seminfo, "I", "semmsl");
SYSCTL_PROC(_kern_sysv, OID_AUTO, semume, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
&limitseminfo.semume, 0, &sysctl_seminfo, "I", "semume");
static int
IPCS_sem_sysctl(__unused struct sysctl_oid *oidp, __unused void *arg1,
__unused int arg2, struct sysctl_req *req)
{
int error;
int cursor;
union {
struct user32_IPCS_command u32;
struct user_IPCS_command u64;
} ipcs = { };
struct user32_semid_ds semid_ds32 = { }; /* post conversion, 32 bit version */
struct user64_semid_ds semid_ds64 = { }; /* post conversion, 64 bit version */
void *semid_dsp;
size_t ipcs_sz;
size_t semid_ds_sz;
struct proc *p = current_proc();
if (IS_64BIT_PROCESS(p)) {
ipcs_sz = sizeof(struct user_IPCS_command);
semid_ds_sz = sizeof(struct user64_semid_ds);
} else {
ipcs_sz = sizeof(struct user32_IPCS_command);
semid_ds_sz = sizeof(struct user32_semid_ds);
}
/* Copy in the command structure */
if ((error = SYSCTL_IN(req, &ipcs, ipcs_sz)) != 0) {
return error;
}
if (!IS_64BIT_PROCESS(p)) { /* convert in place */
ipcs.u64.ipcs_data = CAST_USER_ADDR_T(ipcs.u32.ipcs_data);
}
/* Let us version this interface... */
if (ipcs.u64.ipcs_magic != IPCS_MAGIC) {
return EINVAL;
}
SYSV_SEM_SUBSYS_LOCK();
switch (ipcs.u64.ipcs_op) {
case IPCS_SEM_CONF: /* Obtain global configuration data */
if (ipcs.u64.ipcs_datalen != sizeof(struct seminfo)) {
error = ERANGE;
break;
}
if (ipcs.u64.ipcs_cursor != 0) { /* fwd. compat. */
error = EINVAL;
break;
}
error = copyout(&seminfo, ipcs.u64.ipcs_data, ipcs.u64.ipcs_datalen);
break;
case IPCS_SEM_ITER: /* Iterate over existing segments */
cursor = ipcs.u64.ipcs_cursor;
if (cursor < 0 || cursor >= seminfo.semmni) {
error = ERANGE;
break;
}
if (ipcs.u64.ipcs_datalen != (int)semid_ds_sz) {
error = EINVAL;
break;
}
for (; cursor < seminfo.semmni; cursor++) {
if (sema_get_by_id(cursor)->u.sem_perm.mode & SEM_ALLOC) {
break;
}
continue;
}
if (cursor == seminfo.semmni) {
error = ENOENT;
break;
}
semid_dsp = &sema_get_by_id(cursor)->u; /* default: 64 bit */
/*
* If necessary, convert the 64 bit kernel segment
* descriptor to a 32 bit user one.
*/
if (!IS_64BIT_PROCESS(p)) {
bzero(&semid_ds32, sizeof(semid_ds32));
semid_ds_kernelto32(semid_dsp, &semid_ds32);
semid_dsp = &semid_ds32;
} else {
bzero(&semid_ds64, sizeof(semid_ds64));
semid_ds_kernelto64(semid_dsp, &semid_ds64);
semid_dsp = &semid_ds64;
}
error = copyout(semid_dsp, ipcs.u64.ipcs_data, ipcs.u64.ipcs_datalen);
if (!error) {
/* update cursor */
ipcs.u64.ipcs_cursor = cursor + 1;
if (!IS_64BIT_PROCESS(p)) { /* convert in place */
ipcs.u32.ipcs_data = CAST_DOWN_EXPLICIT(user32_addr_t, ipcs.u64.ipcs_data);
}
error = SYSCTL_OUT(req, &ipcs, ipcs_sz);
}
break;
default:
error = EINVAL;
break;
}
SYSV_SEM_SUBSYS_UNLOCK();
return error;
}
SYSCTL_DECL(_kern_sysv_ipcs);
SYSCTL_PROC(_kern_sysv_ipcs, OID_AUTO, sem, CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_LOCKED,
0, 0, IPCS_sem_sysctl,
"S,IPCS_sem_command",
"ipcs sem command interface");
#endif /* SYSV_SEM */