2300 lines
60 KiB
C
2300 lines
60 KiB
C
|
/*
|
||
|
* Copyright (c) 2000-2021 Apple Inc. All rights reserved.
|
||
|
*
|
||
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
|
||
|
*
|
||
|
* This file contains Original Code and/or Modifications of Original Code
|
||
|
* as defined in and that are subject to the Apple Public Source License
|
||
|
* Version 2.0 (the 'License'). You may not use this file except in
|
||
|
* compliance with the License. The rights granted to you under the License
|
||
|
* may not be used to create, or enable the creation or redistribution of,
|
||
|
* unlawful or unlicensed copies of an Apple operating system, or to
|
||
|
* circumvent, violate, or enable the circumvention or violation of, any
|
||
|
* terms of an Apple operating system software license agreement.
|
||
|
*
|
||
|
* Please obtain a copy of the License at
|
||
|
* http://www.opensource.apple.com/apsl/ and read it before using this file.
|
||
|
*
|
||
|
* The Original Code and all software distributed under the License are
|
||
|
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
|
||
|
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
|
||
|
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
|
||
|
* Please see the License for the specific language governing rights and
|
||
|
* limitations under the License.
|
||
|
*
|
||
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
|
||
|
*/
|
||
|
/*
|
||
|
* Copyright (c) 1988, 1991, 1993
|
||
|
* The Regents of the University of California. All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* 1. Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* 3. All advertising materials mentioning features or use of this software
|
||
|
* must display the following acknowledgement:
|
||
|
* This product includes software developed by the University of
|
||
|
* California, Berkeley and its contributors.
|
||
|
* 4. Neither the name of the University nor the names of its contributors
|
||
|
* may be used to endorse or promote products derived from this software
|
||
|
* without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
||
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
||
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
|
* SUCH DAMAGE.
|
||
|
*
|
||
|
* @(#)rtsock.c 8.5 (Berkeley) 11/2/94
|
||
|
*/
|
||
|
|
||
|
#include <sys/param.h>
|
||
|
#include <sys/systm.h>
|
||
|
#include <sys/kauth.h>
|
||
|
#include <sys/kernel.h>
|
||
|
#include <sys/sysctl.h>
|
||
|
#include <sys/proc.h>
|
||
|
#include <sys/malloc.h>
|
||
|
#include <sys/mbuf.h>
|
||
|
#include <sys/socket.h>
|
||
|
#include <sys/socketvar.h>
|
||
|
#include <sys/domain.h>
|
||
|
#include <sys/protosw.h>
|
||
|
#include <sys/syslog.h>
|
||
|
#include <sys/mcache.h>
|
||
|
#include <kern/locks.h>
|
||
|
#include <sys/codesign.h>
|
||
|
|
||
|
#include <net/if.h>
|
||
|
#include <net/route.h>
|
||
|
#include <net/dlil.h>
|
||
|
#include <net/raw_cb.h>
|
||
|
#include <netinet/in.h>
|
||
|
#include <netinet/in_var.h>
|
||
|
#include <netinet/in_arp.h>
|
||
|
#include <netinet/ip.h>
|
||
|
#include <netinet/ip6.h>
|
||
|
#include <netinet6/nd6.h>
|
||
|
|
||
|
#include <net/sockaddr_utils.h>
|
||
|
|
||
|
#include <IOKit/IOBSD.h>
|
||
|
|
||
|
extern struct rtstat rtstat;
|
||
|
extern struct domain routedomain_s;
|
||
|
static struct domain *routedomain = NULL;
|
||
|
|
||
|
static struct sockaddr route_dst = { .sa_len = 2, .sa_family = PF_ROUTE, .sa_data = { 0, } };
|
||
|
static struct sockaddr route_src = { .sa_len = 2, .sa_family = PF_ROUTE, .sa_data = { 0, } };
|
||
|
static struct sockaddr sa_zero = { .sa_len = sizeof(sa_zero), .sa_family = AF_INET, .sa_data = { 0, } };
|
||
|
|
||
|
struct route_cb {
|
||
|
u_int32_t ip_count; /* attached w/ AF_INET */
|
||
|
u_int32_t ip6_count; /* attached w/ AF_INET6 */
|
||
|
u_int32_t any_count; /* total attached */
|
||
|
};
|
||
|
|
||
|
static struct route_cb route_cb;
|
||
|
|
||
|
struct walkarg {
|
||
|
int w_tmemsize;
|
||
|
int w_op, w_arg;
|
||
|
caddr_t w_tmem;
|
||
|
struct sysctl_req *w_req;
|
||
|
};
|
||
|
|
||
|
static void route_dinit(struct domain *);
|
||
|
static int rts_abort(struct socket *);
|
||
|
static int rts_attach(struct socket *, int, struct proc *);
|
||
|
static int rts_bind(struct socket *, struct sockaddr *, struct proc *);
|
||
|
static int rts_connect(struct socket *, struct sockaddr *, struct proc *);
|
||
|
static int rts_detach(struct socket *);
|
||
|
static int rts_disconnect(struct socket *);
|
||
|
static int rts_peeraddr(struct socket *, struct sockaddr **);
|
||
|
static int rts_send(struct socket *, int, struct mbuf *, struct sockaddr *,
|
||
|
struct mbuf *, struct proc *);
|
||
|
static int rts_shutdown(struct socket *);
|
||
|
static int rts_sockaddr(struct socket *, struct sockaddr **);
|
||
|
|
||
|
static int route_output(struct mbuf *, struct socket *);
|
||
|
static int rt_setmetrics(u_int32_t, struct rt_metrics *, struct rtentry *);
|
||
|
static void rt_getmetrics(struct rtentry *, struct rt_metrics *);
|
||
|
static void rt_setif(struct rtentry *, struct sockaddr *, struct sockaddr *,
|
||
|
struct sockaddr *, unsigned int);
|
||
|
static int rt_xaddrs(caddr_t cp __ended_by(cplim), caddr_t cplim, struct rt_addrinfo *);
|
||
|
static struct mbuf *rt_msg1(u_char, struct rt_addrinfo *);
|
||
|
static int rt_msg2(u_char, struct rt_addrinfo *, caddr_t, struct walkarg *,
|
||
|
kauth_cred_t *);
|
||
|
static int sysctl_dumpentry(struct radix_node *rn, void *vw);
|
||
|
static int sysctl_dumpentry_ext(struct radix_node *rn, void *vw);
|
||
|
static int sysctl_iflist(int af, struct walkarg *w);
|
||
|
static int sysctl_iflist2(int af, struct walkarg *w);
|
||
|
static int sysctl_rtstat(struct sysctl_req *);
|
||
|
static int sysctl_rttrash(struct sysctl_req *);
|
||
|
static int sysctl_rtsock SYSCTL_HANDLER_ARGS;
|
||
|
|
||
|
SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_LOCKED,
|
||
|
sysctl_rtsock, "");
|
||
|
|
||
|
SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "routing");
|
||
|
|
||
|
/* Align x to 1024 (only power of 2) assuming x is positive */
|
||
|
#define ALIGN_BYTES(x) do { \
|
||
|
x = (uint32_t)P2ALIGN(x, 1024); \
|
||
|
} while(0)
|
||
|
|
||
|
#define ROUNDUP32(a) \
|
||
|
((a) > 0 ? (1 + (((a) - 1) | (sizeof (uint32_t) - 1))) : \
|
||
|
sizeof (uint32_t))
|
||
|
|
||
|
#define ADVANCE32(x, n, lim) do { \
|
||
|
(x += ROUNDUP32((n)->sa_len)); \
|
||
|
_Pragma("clang diagnostic push"); \
|
||
|
_Pragma("clang diagnostic ignored \"-Wself-assign\""); \
|
||
|
(lim) = (lim); \
|
||
|
_Pragma("clang diagnostic pop"); \
|
||
|
} while(0)
|
||
|
|
||
|
|
||
|
#define RT_HAS_IFADDR(rt) \
|
||
|
((rt)->rt_ifa != NULL && (rt)->rt_ifa->ifa_addr != NULL)
|
||
|
|
||
|
/*
|
||
|
* It really doesn't make any sense at all for this code to share much
|
||
|
* with raw_usrreq.c, since its functionality is so restricted. XXX
|
||
|
*/
|
||
|
static int
|
||
|
rts_abort(struct socket *so)
|
||
|
{
|
||
|
return raw_usrreqs.pru_abort(so);
|
||
|
}
|
||
|
|
||
|
/* pru_accept is EOPNOTSUPP */
|
||
|
|
||
|
static int
|
||
|
rts_attach(struct socket *so, int proto, struct proc *p)
|
||
|
{
|
||
|
#pragma unused(p)
|
||
|
struct rawcb *rp;
|
||
|
int error;
|
||
|
|
||
|
VERIFY(so->so_pcb == NULL);
|
||
|
|
||
|
rp = kalloc_type(struct rawcb, Z_WAITOK_ZERO_NOFAIL);
|
||
|
so->so_pcb = (caddr_t)rp;
|
||
|
/* don't use raw_usrreqs.pru_attach, it checks for SS_PRIV */
|
||
|
error = raw_attach(so, proto);
|
||
|
rp = sotorawcb(so);
|
||
|
if (error) {
|
||
|
kfree_type(struct rawcb, rp);
|
||
|
so->so_pcb = NULL;
|
||
|
so->so_flags |= SOF_PCBCLEARING;
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
switch (rp->rcb_proto.sp_protocol) {
|
||
|
case AF_INET:
|
||
|
os_atomic_inc(&route_cb.ip_count, relaxed);
|
||
|
break;
|
||
|
case AF_INET6:
|
||
|
os_atomic_inc(&route_cb.ip6_count, relaxed);
|
||
|
break;
|
||
|
}
|
||
|
rp->rcb_faddr = &route_src;
|
||
|
os_atomic_inc(&route_cb.any_count, relaxed);
|
||
|
/* the socket is already locked when we enter rts_attach */
|
||
|
soisconnected(so);
|
||
|
so->so_options |= SO_USELOOPBACK;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
rts_bind(struct socket *so, struct sockaddr *nam, struct proc *p)
|
||
|
{
|
||
|
return raw_usrreqs.pru_bind(so, nam, p); /* xxx just EINVAL */
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
rts_connect(struct socket *so, struct sockaddr *nam, struct proc *p)
|
||
|
{
|
||
|
return raw_usrreqs.pru_connect(so, nam, p); /* XXX just EINVAL */
|
||
|
}
|
||
|
|
||
|
/* pru_connect2 is EOPNOTSUPP */
|
||
|
/* pru_control is EOPNOTSUPP */
|
||
|
|
||
|
static int
|
||
|
rts_detach(struct socket *so)
|
||
|
{
|
||
|
struct rawcb *rp = sotorawcb(so);
|
||
|
|
||
|
VERIFY(rp != NULL);
|
||
|
|
||
|
switch (rp->rcb_proto.sp_protocol) {
|
||
|
case AF_INET:
|
||
|
os_atomic_dec(&route_cb.ip_count, relaxed);
|
||
|
break;
|
||
|
case AF_INET6:
|
||
|
os_atomic_dec(&route_cb.ip6_count, relaxed);
|
||
|
break;
|
||
|
}
|
||
|
os_atomic_dec(&route_cb.any_count, relaxed);
|
||
|
return raw_usrreqs.pru_detach(so);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
rts_disconnect(struct socket *so)
|
||
|
{
|
||
|
return raw_usrreqs.pru_disconnect(so);
|
||
|
}
|
||
|
|
||
|
/* pru_listen is EOPNOTSUPP */
|
||
|
|
||
|
static int
|
||
|
rts_peeraddr(struct socket *so, struct sockaddr **nam)
|
||
|
{
|
||
|
return raw_usrreqs.pru_peeraddr(so, nam);
|
||
|
}
|
||
|
|
||
|
/* pru_rcvd is EOPNOTSUPP */
|
||
|
/* pru_rcvoob is EOPNOTSUPP */
|
||
|
|
||
|
static int
|
||
|
rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
|
||
|
struct mbuf *control, struct proc *p)
|
||
|
{
|
||
|
return raw_usrreqs.pru_send(so, flags, m, nam, control, p);
|
||
|
}
|
||
|
|
||
|
/* pru_sense is null */
|
||
|
|
||
|
static int
|
||
|
rts_shutdown(struct socket *so)
|
||
|
{
|
||
|
return raw_usrreqs.pru_shutdown(so);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
rts_sockaddr(struct socket *so, struct sockaddr **nam)
|
||
|
{
|
||
|
return raw_usrreqs.pru_sockaddr(so, nam);
|
||
|
}
|
||
|
|
||
|
static struct pr_usrreqs route_usrreqs = {
|
||
|
.pru_abort = rts_abort,
|
||
|
.pru_attach = rts_attach,
|
||
|
.pru_bind = rts_bind,
|
||
|
.pru_connect = rts_connect,
|
||
|
.pru_detach = rts_detach,
|
||
|
.pru_disconnect = rts_disconnect,
|
||
|
.pru_peeraddr = rts_peeraddr,
|
||
|
.pru_send = rts_send,
|
||
|
.pru_shutdown = rts_shutdown,
|
||
|
.pru_sockaddr = rts_sockaddr,
|
||
|
.pru_sosend = sosend,
|
||
|
.pru_soreceive = soreceive,
|
||
|
};
|
||
|
|
||
|
/*ARGSUSED*/
|
||
|
static int
|
||
|
route_output(struct mbuf *m, struct socket *so)
|
||
|
{
|
||
|
struct rt_msghdr *rtm = NULL;
|
||
|
size_t rtm_len = 0;
|
||
|
rtentry_ref_t rt = NULL;
|
||
|
rtentry_ref_t saved_nrt = NULL;
|
||
|
struct radix_node_head *rnh;
|
||
|
struct rt_addrinfo info;
|
||
|
int len, error = 0;
|
||
|
sa_family_t dst_sa_family = 0;
|
||
|
struct ifnet *ifp = NULL;
|
||
|
struct sockaddr_in dst_in, gate_in;
|
||
|
int sendonlytoself = 0;
|
||
|
unsigned int ifscope = IFSCOPE_NONE;
|
||
|
struct rawcb *rp = NULL;
|
||
|
boolean_t is_router = FALSE;
|
||
|
#define senderr(e) { error = (e); goto flush; }
|
||
|
if (m == NULL || ((m->m_len < sizeof(intptr_t)) &&
|
||
|
(m = m_pullup(m, sizeof(intptr_t))) == NULL)) {
|
||
|
return ENOBUFS;
|
||
|
}
|
||
|
VERIFY(m->m_flags & M_PKTHDR);
|
||
|
|
||
|
/*
|
||
|
* Unlock the socket (but keep a reference) it won't be
|
||
|
* accessed until raw_input appends to it.
|
||
|
*/
|
||
|
socket_unlock(so, 0);
|
||
|
lck_mtx_lock(rnh_lock);
|
||
|
|
||
|
len = m->m_pkthdr.len;
|
||
|
if (len < sizeof(*rtm) ||
|
||
|
len != mtod(m, struct rt_msghdr *)->rtm_msglen) {
|
||
|
info.rti_info[RTAX_DST] = NULL;
|
||
|
senderr(EINVAL);
|
||
|
}
|
||
|
rtm = kalloc_data(len, Z_WAITOK);
|
||
|
if (rtm == NULL) {
|
||
|
info.rti_info[RTAX_DST] = NULL;
|
||
|
senderr(ENOBUFS);
|
||
|
}
|
||
|
rtm_len = (size_t)len;
|
||
|
m_copydata(m, 0, len, (caddr_t)rtm);
|
||
|
if (rtm->rtm_version != RTM_VERSION) {
|
||
|
info.rti_info[RTAX_DST] = NULL;
|
||
|
senderr(EPROTONOSUPPORT);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Silent version of RTM_GET for Reachabiltiy APIs. We may change
|
||
|
* all RTM_GETs to be silent in the future, so this is private for now.
|
||
|
*/
|
||
|
if (rtm->rtm_type == RTM_GET_SILENT) {
|
||
|
if (!(so->so_options & SO_USELOOPBACK)) {
|
||
|
senderr(EINVAL);
|
||
|
}
|
||
|
sendonlytoself = 1;
|
||
|
rtm->rtm_type = RTM_GET;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Perform permission checking, only privileged sockets
|
||
|
* may perform operations other than RTM_GET
|
||
|
*/
|
||
|
if (rtm->rtm_type != RTM_GET && !(so->so_state & SS_PRIV)) {
|
||
|
info.rti_info[RTAX_DST] = NULL;
|
||
|
senderr(EPERM);
|
||
|
}
|
||
|
|
||
|
rtm->rtm_pid = proc_selfpid();
|
||
|
info.rti_addrs = rtm->rtm_addrs;
|
||
|
if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) {
|
||
|
info.rti_info[RTAX_DST] = NULL;
|
||
|
senderr(EINVAL);
|
||
|
}
|
||
|
if (info.rti_info[RTAX_DST] == NULL ||
|
||
|
info.rti_info[RTAX_DST]->sa_family >= AF_MAX ||
|
||
|
(info.rti_info[RTAX_GATEWAY] != NULL &&
|
||
|
info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) {
|
||
|
senderr(EINVAL);
|
||
|
}
|
||
|
|
||
|
if (info.rti_info[RTAX_DST]->sa_family == AF_INET &&
|
||
|
info.rti_info[RTAX_DST]->sa_len != sizeof(struct sockaddr_in)) {
|
||
|
/* At minimum, we need up to sin_addr */
|
||
|
if (info.rti_info[RTAX_DST]->sa_len <
|
||
|
offsetof(struct sockaddr_in, sin_zero)) {
|
||
|
senderr(EINVAL);
|
||
|
}
|
||
|
SOCKADDR_ZERO(&dst_in, sizeof(dst_in));
|
||
|
dst_in.sin_len = sizeof(dst_in);
|
||
|
dst_in.sin_family = AF_INET;
|
||
|
dst_in.sin_port = SIN(info.rti_info[RTAX_DST])->sin_port;
|
||
|
dst_in.sin_addr = SIN(info.rti_info[RTAX_DST])->sin_addr;
|
||
|
info.rti_info[RTAX_DST] = SA(&dst_in);
|
||
|
dst_sa_family = info.rti_info[RTAX_DST]->sa_family;
|
||
|
} else if (info.rti_info[RTAX_DST]->sa_family == AF_INET6 &&
|
||
|
info.rti_info[RTAX_DST]->sa_len < sizeof(struct sockaddr_in6)) {
|
||
|
senderr(EINVAL);
|
||
|
}
|
||
|
|
||
|
if (info.rti_info[RTAX_GATEWAY] != NULL) {
|
||
|
if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_INET &&
|
||
|
info.rti_info[RTAX_GATEWAY]->sa_len != sizeof(struct sockaddr_in)) {
|
||
|
/* At minimum, we need up to sin_addr */
|
||
|
if (info.rti_info[RTAX_GATEWAY]->sa_len <
|
||
|
offsetof(struct sockaddr_in, sin_zero)) {
|
||
|
senderr(EINVAL);
|
||
|
}
|
||
|
SOCKADDR_ZERO(&gate_in, sizeof(gate_in));
|
||
|
gate_in.sin_len = sizeof(gate_in);
|
||
|
gate_in.sin_family = AF_INET;
|
||
|
gate_in.sin_port = SIN(info.rti_info[RTAX_GATEWAY])->sin_port;
|
||
|
gate_in.sin_addr = SIN(info.rti_info[RTAX_GATEWAY])->sin_addr;
|
||
|
info.rti_info[RTAX_GATEWAY] = SA(&gate_in);
|
||
|
} else if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_INET6 &&
|
||
|
info.rti_info[RTAX_GATEWAY]->sa_len < sizeof(struct sockaddr_in6)) {
|
||
|
senderr(EINVAL);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (info.rti_info[RTAX_GENMASK]) {
|
||
|
struct radix_node *t;
|
||
|
t = rn_addmask((caddr_t)info.rti_info[RTAX_GENMASK], 0, 1);
|
||
|
if (t != NULL && Bcmp(info.rti_info[RTAX_GENMASK],
|
||
|
rn_get_key(t), *(u_char *)info.rti_info[RTAX_GENMASK]) == 0) {
|
||
|
info.rti_info[RTAX_GENMASK] = SA(rn_get_key(t));
|
||
|
} else {
|
||
|
senderr(ENOBUFS);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If RTF_IFSCOPE flag is set, then rtm_index specifies the scope.
|
||
|
*/
|
||
|
if (rtm->rtm_flags & RTF_IFSCOPE) {
|
||
|
if (info.rti_info[RTAX_DST]->sa_family != AF_INET &&
|
||
|
info.rti_info[RTAX_DST]->sa_family != AF_INET6) {
|
||
|
senderr(EINVAL);
|
||
|
}
|
||
|
ifscope = rtm->rtm_index;
|
||
|
}
|
||
|
/*
|
||
|
* Block changes on INTCOPROC interfaces.
|
||
|
*/
|
||
|
if (ifscope != IFSCOPE_NONE) {
|
||
|
unsigned int intcoproc_scope = 0;
|
||
|
ifnet_head_lock_shared();
|
||
|
TAILQ_FOREACH(ifp, &ifnet_head, if_link) {
|
||
|
if (IFNET_IS_INTCOPROC(ifp)) {
|
||
|
intcoproc_scope = ifp->if_index;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
ifnet_head_done();
|
||
|
if (intcoproc_scope == ifscope && proc_getpid(current_proc()) != 0) {
|
||
|
senderr(EINVAL);
|
||
|
}
|
||
|
}
|
||
|
/*
|
||
|
* Require entitlement to change management interfaces
|
||
|
*/
|
||
|
if (management_control_unrestricted == false && if_management_interface_check_needed == true &&
|
||
|
ifscope != IFSCOPE_NONE && proc_getpid(current_proc()) != 0) {
|
||
|
bool is_management = false;
|
||
|
|
||
|
ifnet_head_lock_shared();
|
||
|
if (IF_INDEX_IN_RANGE(ifscope)) {
|
||
|
ifp = ifindex2ifnet[ifscope];
|
||
|
if (ifp != NULL && IFNET_IS_MANAGEMENT(ifp)) {
|
||
|
is_management = true;
|
||
|
}
|
||
|
}
|
||
|
ifnet_head_done();
|
||
|
|
||
|
if (is_management && !IOCurrentTaskHasEntitlement(MANAGEMENT_CONTROL_ENTITLEMENT)) {
|
||
|
senderr(EINVAL);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* RTF_PROXY can only be set internally from within the kernel.
|
||
|
*/
|
||
|
if (rtm->rtm_flags & RTF_PROXY) {
|
||
|
senderr(EINVAL);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* For AF_INET, always zero out the embedded scope ID. If this is
|
||
|
* a scoped request, it must be done explicitly by setting RTF_IFSCOPE
|
||
|
* flag and the corresponding rtm_index value. This is to prevent
|
||
|
* false interpretation of the scope ID because it's using the sin_zero
|
||
|
* field, which might not be properly cleared by the requestor.
|
||
|
*/
|
||
|
if (info.rti_info[RTAX_DST]->sa_family == AF_INET) {
|
||
|
sin_set_ifscope(info.rti_info[RTAX_DST], IFSCOPE_NONE);
|
||
|
}
|
||
|
if (info.rti_info[RTAX_GATEWAY] != NULL &&
|
||
|
info.rti_info[RTAX_GATEWAY]->sa_family == AF_INET) {
|
||
|
sin_set_ifscope(info.rti_info[RTAX_GATEWAY], IFSCOPE_NONE);
|
||
|
}
|
||
|
if (info.rti_info[RTAX_DST]->sa_family == AF_INET6 &&
|
||
|
IN6_IS_SCOPE_EMBED(&SIN6(info.rti_info[RTAX_DST])->sin6_addr) &&
|
||
|
!IN6_IS_ADDR_UNICAST_BASED_MULTICAST(&SIN6(info.rti_info[RTAX_DST])->sin6_addr) &&
|
||
|
SIN6(info.rti_info[RTAX_DST])->sin6_scope_id == 0) {
|
||
|
SIN6(info.rti_info[RTAX_DST])->sin6_scope_id = ntohs(SIN6(info.rti_info[RTAX_DST])->sin6_addr.s6_addr16[1]);
|
||
|
SIN6(info.rti_info[RTAX_DST])->sin6_addr.s6_addr16[1] = 0;
|
||
|
}
|
||
|
|
||
|
switch (rtm->rtm_type) {
|
||
|
case RTM_ADD:
|
||
|
if (info.rti_info[RTAX_GATEWAY] == NULL) {
|
||
|
senderr(EINVAL);
|
||
|
}
|
||
|
|
||
|
error = rtrequest_scoped_locked(RTM_ADD,
|
||
|
info.rti_info[RTAX_DST], info.rti_info[RTAX_GATEWAY],
|
||
|
info.rti_info[RTAX_NETMASK], rtm->rtm_flags, &saved_nrt,
|
||
|
ifscope);
|
||
|
if (error == 0 && saved_nrt != NULL) {
|
||
|
RT_LOCK(saved_nrt);
|
||
|
/*
|
||
|
* If the route request specified an interface with
|
||
|
* IFA and/or IFP, we set the requested interface on
|
||
|
* the route with rt_setif. It would be much better
|
||
|
* to do this inside rtrequest, but that would
|
||
|
* require passing the desired interface, in some
|
||
|
* form, to rtrequest. Since rtrequest is called in
|
||
|
* so many places (roughly 40 in our source), adding
|
||
|
* a parameter is to much for us to swallow; this is
|
||
|
* something for the FreeBSD developers to tackle.
|
||
|
* Instead, we let rtrequest compute whatever
|
||
|
* interface it wants, then come in behind it and
|
||
|
* stick in the interface that we really want. This
|
||
|
* works reasonably well except when rtrequest can't
|
||
|
* figure out what interface to use (with
|
||
|
* ifa_withroute) and returns ENETUNREACH. Ideally
|
||
|
* it shouldn't matter if rtrequest can't figure out
|
||
|
* the interface if we're going to explicitly set it
|
||
|
* ourselves anyway. But practically we can't
|
||
|
* recover here because rtrequest will not do any of
|
||
|
* the work necessary to add the route if it can't
|
||
|
* find an interface. As long as there is a default
|
||
|
* route that leads to some interface, rtrequest will
|
||
|
* find an interface, so this problem should be
|
||
|
* rarely encountered.
|
||
|
* dwiggins@bbn.com
|
||
|
*/
|
||
|
rt_setif(saved_nrt,
|
||
|
info.rti_info[RTAX_IFP], info.rti_info[RTAX_IFA],
|
||
|
info.rti_info[RTAX_GATEWAY], ifscope);
|
||
|
(void)rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, saved_nrt);
|
||
|
saved_nrt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
|
||
|
saved_nrt->rt_rmx.rmx_locks |=
|
||
|
(rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
|
||
|
saved_nrt->rt_genmask = info.rti_info[RTAX_GENMASK];
|
||
|
RT_REMREF_LOCKED(saved_nrt);
|
||
|
RT_UNLOCK(saved_nrt);
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case RTM_DELETE:
|
||
|
error = rtrequest_scoped_locked(RTM_DELETE,
|
||
|
info.rti_info[RTAX_DST], info.rti_info[RTAX_GATEWAY],
|
||
|
info.rti_info[RTAX_NETMASK], rtm->rtm_flags, &saved_nrt,
|
||
|
ifscope);
|
||
|
if (error == 0) {
|
||
|
rt = saved_nrt;
|
||
|
RT_LOCK(rt);
|
||
|
goto report;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case RTM_GET:
|
||
|
case RTM_CHANGE:
|
||
|
case RTM_LOCK:
|
||
|
rnh = rt_tables[info.rti_info[RTAX_DST]->sa_family];
|
||
|
if (rnh == NULL) {
|
||
|
senderr(EAFNOSUPPORT);
|
||
|
}
|
||
|
/*
|
||
|
* Lookup the best match based on the key-mask pair;
|
||
|
* callee adds a reference and checks for root node.
|
||
|
*/
|
||
|
rt = rt_lookup(TRUE, info.rti_info[RTAX_DST],
|
||
|
info.rti_info[RTAX_NETMASK], rnh, ifscope);
|
||
|
if (rt == NULL) {
|
||
|
senderr(ESRCH);
|
||
|
}
|
||
|
RT_LOCK(rt);
|
||
|
|
||
|
/*
|
||
|
* Holding rnh_lock here prevents the possibility of
|
||
|
* ifa from changing (e.g. in_ifinit), so it is safe
|
||
|
* to access its ifa_addr (down below) without locking.
|
||
|
*/
|
||
|
switch (rtm->rtm_type) {
|
||
|
case RTM_GET: {
|
||
|
kauth_cred_t cred __single;
|
||
|
kauth_cred_t* credp;
|
||
|
struct ifaddr *ifa2;
|
||
|
report:
|
||
|
cred = current_cached_proc_cred(PROC_NULL);
|
||
|
credp = &cred;
|
||
|
|
||
|
ifa2 = NULL;
|
||
|
RT_LOCK_ASSERT_HELD(rt);
|
||
|
info.rti_info[RTAX_DST] = rt_key(rt);
|
||
|
dst_sa_family = info.rti_info[RTAX_DST]->sa_family;
|
||
|
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
|
||
|
info.rti_info[RTAX_NETMASK] = rt_mask(rt);
|
||
|
info.rti_info[RTAX_GENMASK] = rt->rt_genmask;
|
||
|
if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
|
||
|
ifp = rt->rt_ifp;
|
||
|
if (ifp != NULL) {
|
||
|
ifnet_lock_shared(ifp);
|
||
|
ifa2 = ifp->if_lladdr;
|
||
|
info.rti_info[RTAX_IFP] =
|
||
|
ifa2->ifa_addr;
|
||
|
ifa_addref(ifa2);
|
||
|
ifnet_lock_done(ifp);
|
||
|
info.rti_info[RTAX_IFA] =
|
||
|
rt->rt_ifa->ifa_addr;
|
||
|
rtm->rtm_index = ifp->if_index;
|
||
|
} else {
|
||
|
info.rti_info[RTAX_IFP] = NULL;
|
||
|
info.rti_info[RTAX_IFA] = NULL;
|
||
|
}
|
||
|
} else if ((ifp = rt->rt_ifp) != NULL) {
|
||
|
rtm->rtm_index = ifp->if_index;
|
||
|
}
|
||
|
if (ifa2 != NULL) {
|
||
|
IFA_LOCK(ifa2);
|
||
|
}
|
||
|
len = rt_msg2(rtm->rtm_type, &info, NULL, NULL, credp);
|
||
|
if (ifa2 != NULL) {
|
||
|
IFA_UNLOCK(ifa2);
|
||
|
}
|
||
|
struct rt_msghdr *out_rtm;
|
||
|
out_rtm = kalloc_data(len, Z_WAITOK);
|
||
|
if (out_rtm == NULL) {
|
||
|
RT_UNLOCK(rt);
|
||
|
if (ifa2 != NULL) {
|
||
|
ifa_remref(ifa2);
|
||
|
}
|
||
|
senderr(ENOBUFS);
|
||
|
}
|
||
|
Bcopy(rtm, out_rtm, sizeof(struct rt_msghdr));
|
||
|
if (ifa2 != NULL) {
|
||
|
IFA_LOCK(ifa2);
|
||
|
}
|
||
|
(void) rt_msg2(out_rtm->rtm_type, &info, (caddr_t)out_rtm,
|
||
|
NULL, &cred);
|
||
|
if (ifa2 != NULL) {
|
||
|
IFA_UNLOCK(ifa2);
|
||
|
}
|
||
|
kfree_data(rtm, rtm_len);
|
||
|
rtm = out_rtm;
|
||
|
rtm_len = len;
|
||
|
rtm->rtm_flags = rt->rt_flags;
|
||
|
rt_getmetrics(rt, &rtm->rtm_rmx);
|
||
|
rtm->rtm_addrs = info.rti_addrs;
|
||
|
if (ifa2 != NULL) {
|
||
|
ifa_remref(ifa2);
|
||
|
}
|
||
|
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
case RTM_CHANGE:
|
||
|
is_router = (rt->rt_flags & RTF_ROUTER) ? TRUE : FALSE;
|
||
|
|
||
|
if (info.rti_info[RTAX_GATEWAY] != NULL &&
|
||
|
(error = rt_setgate(rt, rt_key(rt),
|
||
|
info.rti_info[RTAX_GATEWAY]))) {
|
||
|
int tmp = error;
|
||
|
RT_UNLOCK(rt);
|
||
|
senderr(tmp);
|
||
|
}
|
||
|
/*
|
||
|
* If they tried to change things but didn't specify
|
||
|
* the required gateway, then just use the old one.
|
||
|
* This can happen if the user tries to change the
|
||
|
* flags on the default route without changing the
|
||
|
* default gateway. Changing flags still doesn't work.
|
||
|
*/
|
||
|
if ((rt->rt_flags & RTF_GATEWAY) &&
|
||
|
info.rti_info[RTAX_GATEWAY] == NULL) {
|
||
|
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* On Darwin, we call rt_setif which contains the
|
||
|
* equivalent to the code found at this very spot
|
||
|
* in BSD.
|
||
|
*/
|
||
|
rt_setif(rt,
|
||
|
info.rti_info[RTAX_IFP], info.rti_info[RTAX_IFA],
|
||
|
info.rti_info[RTAX_GATEWAY], ifscope);
|
||
|
|
||
|
if ((error = rt_setmetrics(rtm->rtm_inits,
|
||
|
&rtm->rtm_rmx, rt))) {
|
||
|
int tmp = error;
|
||
|
RT_UNLOCK(rt);
|
||
|
senderr(tmp);
|
||
|
}
|
||
|
if (info.rti_info[RTAX_GENMASK]) {
|
||
|
rt->rt_genmask = info.rti_info[RTAX_GENMASK];
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Enqueue work item to invoke callback for this route entry
|
||
|
* This may not be needed always, but for now issue it anytime
|
||
|
* RTM_CHANGE gets called.
|
||
|
*/
|
||
|
route_event_enqueue_nwk_wq_entry(rt, NULL, ROUTE_ENTRY_REFRESH, NULL, TRUE);
|
||
|
/*
|
||
|
* If the route is for a router, walk the tree to send refresh
|
||
|
* event to protocol cloned entries
|
||
|
*/
|
||
|
if (is_router) {
|
||
|
struct route_event rt_ev;
|
||
|
route_event_init(&rt_ev, rt, NULL, ROUTE_ENTRY_REFRESH);
|
||
|
RT_UNLOCK(rt);
|
||
|
(void) rnh->rnh_walktree(rnh, route_event_walktree, (void *)&rt_ev);
|
||
|
RT_LOCK(rt);
|
||
|
}
|
||
|
OS_FALLTHROUGH;
|
||
|
case RTM_LOCK:
|
||
|
rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
|
||
|
rt->rt_rmx.rmx_locks |=
|
||
|
(rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
|
||
|
break;
|
||
|
}
|
||
|
RT_UNLOCK(rt);
|
||
|
break;
|
||
|
default:
|
||
|
senderr(EOPNOTSUPP);
|
||
|
}
|
||
|
flush:
|
||
|
if (rtm != NULL) {
|
||
|
if (error) {
|
||
|
rtm->rtm_errno = error;
|
||
|
} else {
|
||
|
rtm->rtm_flags |= RTF_DONE;
|
||
|
}
|
||
|
}
|
||
|
if (rt != NULL) {
|
||
|
RT_LOCK_ASSERT_NOTHELD(rt);
|
||
|
rtfree_locked(rt);
|
||
|
}
|
||
|
lck_mtx_unlock(rnh_lock);
|
||
|
|
||
|
/* relock the socket now */
|
||
|
socket_lock(so, 0);
|
||
|
/*
|
||
|
* Check to see if we don't want our own messages.
|
||
|
*/
|
||
|
if (!(so->so_options & SO_USELOOPBACK)) {
|
||
|
if (route_cb.any_count <= 1) {
|
||
|
kfree_data(rtm, rtm_len);
|
||
|
m_freem(m);
|
||
|
return error;
|
||
|
}
|
||
|
/* There is another listener, so construct message */
|
||
|
rp = sotorawcb(so);
|
||
|
}
|
||
|
if (rtm != NULL) {
|
||
|
m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
|
||
|
if (m->m_pkthdr.len < rtm->rtm_msglen) {
|
||
|
m_freem(m);
|
||
|
m = NULL;
|
||
|
} else if (m->m_pkthdr.len > rtm->rtm_msglen) {
|
||
|
m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
|
||
|
}
|
||
|
kfree_data(rtm, rtm_len);
|
||
|
}
|
||
|
if (sendonlytoself && m != NULL) {
|
||
|
error = 0;
|
||
|
if (sbappendaddr(&so->so_rcv, &route_src, m,
|
||
|
NULL, &error) != 0) {
|
||
|
sorwakeup(so);
|
||
|
}
|
||
|
if (error) {
|
||
|
return error;
|
||
|
}
|
||
|
} else {
|
||
|
struct sockproto route_proto = { .sp_family = PF_ROUTE, .sp_protocol = 0 };
|
||
|
if (rp != NULL) {
|
||
|
rp->rcb_proto.sp_family = 0; /* Avoid us */
|
||
|
}
|
||
|
if (dst_sa_family != 0) {
|
||
|
route_proto.sp_protocol = dst_sa_family;
|
||
|
}
|
||
|
if (m != NULL) {
|
||
|
socket_unlock(so, 0);
|
||
|
raw_input(m, &route_proto, &route_src, &route_dst);
|
||
|
socket_lock(so, 0);
|
||
|
}
|
||
|
if (rp != NULL) {
|
||
|
rp->rcb_proto.sp_family = PF_ROUTE;
|
||
|
}
|
||
|
}
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
void
|
||
|
rt_setexpire(struct rtentry *rt, uint64_t expiry)
|
||
|
{
|
||
|
/* set both rt_expire and rmx_expire */
|
||
|
rt->rt_expire = expiry;
|
||
|
if (expiry) {
|
||
|
rt->rt_rmx.rmx_expire =
|
||
|
(int32_t)(expiry + rt->base_calendartime -
|
||
|
rt->base_uptime);
|
||
|
} else {
|
||
|
rt->rt_rmx.rmx_expire = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
rt_setmetrics(u_int32_t which, struct rt_metrics *in, struct rtentry *out)
|
||
|
{
|
||
|
if (!(which & RTV_REFRESH_HOST)) {
|
||
|
struct timeval caltime;
|
||
|
getmicrotime(&caltime);
|
||
|
#define metric(f, e) if (which & (f)) out->rt_rmx.e = in->e;
|
||
|
metric(RTV_RPIPE, rmx_recvpipe);
|
||
|
metric(RTV_SPIPE, rmx_sendpipe);
|
||
|
metric(RTV_SSTHRESH, rmx_ssthresh);
|
||
|
metric(RTV_RTT, rmx_rtt);
|
||
|
metric(RTV_RTTVAR, rmx_rttvar);
|
||
|
metric(RTV_HOPCOUNT, rmx_hopcount);
|
||
|
metric(RTV_MTU, rmx_mtu);
|
||
|
metric(RTV_EXPIRE, rmx_expire);
|
||
|
#undef metric
|
||
|
if (out->rt_rmx.rmx_expire > 0) {
|
||
|
/* account for system time change */
|
||
|
getmicrotime(&caltime);
|
||
|
out->base_calendartime +=
|
||
|
NET_CALCULATE_CLOCKSKEW(caltime,
|
||
|
out->base_calendartime,
|
||
|
net_uptime(), out->base_uptime);
|
||
|
rt_setexpire(out,
|
||
|
out->rt_rmx.rmx_expire -
|
||
|
out->base_calendartime +
|
||
|
out->base_uptime);
|
||
|
} else {
|
||
|
rt_setexpire(out, 0);
|
||
|
}
|
||
|
|
||
|
VERIFY(out->rt_expire == 0 || out->rt_rmx.rmx_expire != 0);
|
||
|
VERIFY(out->rt_expire != 0 || out->rt_rmx.rmx_expire == 0);
|
||
|
} else {
|
||
|
/* Only RTV_REFRESH_HOST must be set */
|
||
|
if ((which & ~RTV_REFRESH_HOST) ||
|
||
|
(out->rt_flags & RTF_STATIC) ||
|
||
|
!(out->rt_flags & RTF_LLINFO)) {
|
||
|
return EINVAL;
|
||
|
}
|
||
|
|
||
|
if (out->rt_llinfo_refresh == NULL) {
|
||
|
return ENOTSUP;
|
||
|
}
|
||
|
|
||
|
out->rt_llinfo_refresh(out);
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
rt_getmetrics(struct rtentry *in, struct rt_metrics *out)
|
||
|
{
|
||
|
struct timeval caltime;
|
||
|
|
||
|
VERIFY(in->rt_expire == 0 || in->rt_rmx.rmx_expire != 0);
|
||
|
VERIFY(in->rt_expire != 0 || in->rt_rmx.rmx_expire == 0);
|
||
|
|
||
|
*out = in->rt_rmx;
|
||
|
|
||
|
if (in->rt_expire != 0) {
|
||
|
/* account for system time change */
|
||
|
getmicrotime(&caltime);
|
||
|
|
||
|
in->base_calendartime +=
|
||
|
NET_CALCULATE_CLOCKSKEW(caltime,
|
||
|
in->base_calendartime, net_uptime(), in->base_uptime);
|
||
|
|
||
|
out->rmx_expire = (int32_t)(in->base_calendartime +
|
||
|
in->rt_expire - in->base_uptime);
|
||
|
} else {
|
||
|
out->rmx_expire = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Set route's interface given info.rti_info[RTAX_IFP],
|
||
|
* info.rti_info[RTAX_IFA], and gateway.
|
||
|
*/
|
||
|
static void
|
||
|
rt_setif(struct rtentry *rt, struct sockaddr *Ifpaddr, struct sockaddr *Ifaaddr,
|
||
|
struct sockaddr *Gate, unsigned int ifscope)
|
||
|
{
|
||
|
struct ifaddr *ifa = NULL;
|
||
|
struct ifnet *ifp = NULL;
|
||
|
void (*ifa_rtrequest)(int, struct rtentry *, struct sockaddr *);
|
||
|
|
||
|
LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
|
||
|
|
||
|
RT_LOCK_ASSERT_HELD(rt);
|
||
|
|
||
|
/* Don't update a defunct route */
|
||
|
if (rt->rt_flags & RTF_CONDEMNED) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Add an extra ref for ourselves */
|
||
|
RT_ADDREF_LOCKED(rt);
|
||
|
|
||
|
/* Become a regular mutex, just in case */
|
||
|
RT_CONVERT_LOCK(rt);
|
||
|
|
||
|
/*
|
||
|
* New gateway could require new ifaddr, ifp; flags may also
|
||
|
* be different; ifp may be specified by ll sockaddr when
|
||
|
* protocol address is ambiguous.
|
||
|
*/
|
||
|
if (Ifpaddr && (ifa = ifa_ifwithnet_scoped(Ifpaddr, ifscope)) &&
|
||
|
(ifp = ifa->ifa_ifp) && (Ifaaddr || Gate)) {
|
||
|
ifa_remref(ifa);
|
||
|
ifa = ifaof_ifpforaddr(Ifaaddr ? Ifaaddr : Gate, ifp);
|
||
|
} else {
|
||
|
if (ifa != NULL) {
|
||
|
ifa_remref(ifa);
|
||
|
ifa = NULL;
|
||
|
}
|
||
|
if (Ifpaddr && (ifp = if_withname(Ifpaddr))) {
|
||
|
if (Gate) {
|
||
|
ifa = ifaof_ifpforaddr(Gate, ifp);
|
||
|
} else {
|
||
|
ifnet_lock_shared(ifp);
|
||
|
ifa = TAILQ_FIRST(&ifp->if_addrhead);
|
||
|
if (ifa != NULL) {
|
||
|
ifa_addref(ifa);
|
||
|
}
|
||
|
ifnet_lock_done(ifp);
|
||
|
}
|
||
|
} else if (Ifaaddr &&
|
||
|
(ifa = ifa_ifwithaddr_scoped(Ifaaddr, ifscope))) {
|
||
|
ifp = ifa->ifa_ifp;
|
||
|
} else if (Gate != NULL) {
|
||
|
/*
|
||
|
* Safe to drop rt_lock and use rt_key, since holding
|
||
|
* rnh_lock here prevents another thread from calling
|
||
|
* rt_setgate() on this route. We cannot hold the
|
||
|
* lock across ifa_ifwithroute since the lookup done
|
||
|
* by that routine may point to the same route.
|
||
|
*/
|
||
|
RT_UNLOCK(rt);
|
||
|
if ((ifa = ifa_ifwithroute_scoped_locked(rt->rt_flags,
|
||
|
rt_key(rt), Gate, ifscope)) != NULL) {
|
||
|
ifp = ifa->ifa_ifp;
|
||
|
}
|
||
|
RT_LOCK(rt);
|
||
|
/* Don't update a defunct route */
|
||
|
if (rt->rt_flags & RTF_CONDEMNED) {
|
||
|
if (ifa != NULL) {
|
||
|
ifa_remref(ifa);
|
||
|
}
|
||
|
/* Release extra ref */
|
||
|
RT_REMREF_LOCKED(rt);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* trigger route cache reevaluation */
|
||
|
if (rt_key(rt)->sa_family == AF_INET) {
|
||
|
routegenid_inet_update();
|
||
|
} else if (rt_key(rt)->sa_family == AF_INET6) {
|
||
|
routegenid_inet6_update();
|
||
|
}
|
||
|
|
||
|
if (ifa != NULL) {
|
||
|
struct ifaddr *oifa = rt->rt_ifa;
|
||
|
if (oifa != ifa) {
|
||
|
if (oifa != NULL) {
|
||
|
IFA_LOCK_SPIN(oifa);
|
||
|
ifa_rtrequest = oifa->ifa_rtrequest;
|
||
|
IFA_UNLOCK(oifa);
|
||
|
if (ifa_rtrequest != NULL) {
|
||
|
ifa_rtrequest(RTM_DELETE, rt, Gate);
|
||
|
}
|
||
|
}
|
||
|
rtsetifa(rt, ifa);
|
||
|
|
||
|
if (rt->rt_ifp != ifp) {
|
||
|
/*
|
||
|
* Purge any link-layer info caching.
|
||
|
*/
|
||
|
if (rt->rt_llinfo_purge != NULL) {
|
||
|
rt->rt_llinfo_purge(rt);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Adjust route ref count for the interfaces.
|
||
|
*/
|
||
|
if (rt->rt_if_ref_fn != NULL) {
|
||
|
rt->rt_if_ref_fn(ifp, 1);
|
||
|
rt->rt_if_ref_fn(rt->rt_ifp, -1);
|
||
|
}
|
||
|
}
|
||
|
rt->rt_ifp = ifp;
|
||
|
/*
|
||
|
* If this is the (non-scoped) default route, record
|
||
|
* the interface index used for the primary ifscope.
|
||
|
*/
|
||
|
if (rt_primary_default(rt, rt_key(rt))) {
|
||
|
set_primary_ifscope(rt_key(rt)->sa_family,
|
||
|
rt->rt_ifp->if_index);
|
||
|
}
|
||
|
/*
|
||
|
* If rmx_mtu is not locked, update it
|
||
|
* to the MTU used by the new interface.
|
||
|
*/
|
||
|
if (!(rt->rt_rmx.rmx_locks & RTV_MTU)) {
|
||
|
rt->rt_rmx.rmx_mtu = rt->rt_ifp->if_mtu;
|
||
|
if (rt_key(rt)->sa_family == AF_INET &&
|
||
|
INTF_ADJUST_MTU_FOR_CLAT46(ifp)) {
|
||
|
rt->rt_rmx.rmx_mtu = IN6_LINKMTU(rt->rt_ifp);
|
||
|
/* Further adjust the size for CLAT46 expansion */
|
||
|
rt->rt_rmx.rmx_mtu -= CLAT46_HDR_EXPANSION_OVERHD;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (rt->rt_ifa != NULL) {
|
||
|
IFA_LOCK_SPIN(rt->rt_ifa);
|
||
|
ifa_rtrequest = rt->rt_ifa->ifa_rtrequest;
|
||
|
IFA_UNLOCK(rt->rt_ifa);
|
||
|
if (ifa_rtrequest != NULL) {
|
||
|
ifa_rtrequest(RTM_ADD, rt, Gate);
|
||
|
}
|
||
|
}
|
||
|
ifa_remref(ifa);
|
||
|
/* Release extra ref */
|
||
|
RT_REMREF_LOCKED(rt);
|
||
|
return;
|
||
|
}
|
||
|
ifa_remref(ifa);
|
||
|
ifa = NULL;
|
||
|
}
|
||
|
|
||
|
/* XXX: to reset gateway to correct value, at RTM_CHANGE */
|
||
|
if (rt->rt_ifa != NULL) {
|
||
|
IFA_LOCK_SPIN(rt->rt_ifa);
|
||
|
ifa_rtrequest = rt->rt_ifa->ifa_rtrequest;
|
||
|
IFA_UNLOCK(rt->rt_ifa);
|
||
|
if (ifa_rtrequest != NULL) {
|
||
|
ifa_rtrequest(RTM_ADD, rt, Gate);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Workaround for local address routes pointing to the loopback
|
||
|
* interface added by configd, until <rdar://problem/12970142>.
|
||
|
*/
|
||
|
if ((rt->rt_ifp->if_flags & IFF_LOOPBACK) &&
|
||
|
(rt->rt_flags & RTF_HOST) && rt->rt_ifa->ifa_ifp == rt->rt_ifp) {
|
||
|
ifa = ifa_ifwithaddr(rt_key(rt));
|
||
|
if (ifa != NULL) {
|
||
|
if (ifa != rt->rt_ifa) {
|
||
|
rtsetifa(rt, ifa);
|
||
|
}
|
||
|
ifa_remref(ifa);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Release extra ref */
|
||
|
RT_REMREF_LOCKED(rt);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Extract the addresses of the passed sockaddrs.
|
||
|
* Do a little sanity checking so as to avoid bad memory references.
|
||
|
* This data is derived straight from userland.
|
||
|
*/
|
||
|
static int
|
||
|
rt_xaddrs(caddr_t cp __ended_by(cplim), caddr_t cplim, struct rt_addrinfo *rtinfo)
|
||
|
{
|
||
|
struct sockaddr *sa;
|
||
|
int i;
|
||
|
|
||
|
bzero(rtinfo->rti_info, sizeof(rtinfo->rti_info));
|
||
|
for (i = 0; (i < RTAX_MAX) && (cp < cplim); i++) {
|
||
|
if ((rtinfo->rti_addrs & (1 << i)) == 0) {
|
||
|
continue;
|
||
|
}
|
||
|
sa = SA(cp);
|
||
|
/*
|
||
|
* It won't fit.
|
||
|
*/
|
||
|
if ((cp + sa->sa_len) > cplim) {
|
||
|
return EINVAL;
|
||
|
}
|
||
|
if (sa->sa_len > sizeof(struct sockaddr_storage)) {
|
||
|
return EINVAL;
|
||
|
}
|
||
|
/*
|
||
|
* there are no more.. quit now
|
||
|
* If there are more bits, they are in error.
|
||
|
* I've seen this. route(1) can evidently generate these.
|
||
|
* This causes kernel to core dump.
|
||
|
* for compatibility, If we see this, point to a safe address.
|
||
|
*/
|
||
|
if (sa->sa_len == 0) {
|
||
|
rtinfo->rti_info[i] = &sa_zero;
|
||
|
return 0; /* should be EINVAL but for compat */
|
||
|
}
|
||
|
if (sa->sa_len < offsetof(struct sockaddr, sa_data)) {
|
||
|
return EINVAL;
|
||
|
}
|
||
|
/* accept it */
|
||
|
rtinfo->rti_info[i] = sa;
|
||
|
ADVANCE32(cp, sa, cplim);
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static struct mbuf *
|
||
|
rt_msg1(u_char type, struct rt_addrinfo *rtinfo)
|
||
|
{
|
||
|
struct rt_msghdr *rtm;
|
||
|
struct mbuf *m;
|
||
|
int i;
|
||
|
int len, dlen, off;
|
||
|
|
||
|
switch (type) {
|
||
|
case RTM_DELADDR:
|
||
|
case RTM_NEWADDR:
|
||
|
len = sizeof(struct ifa_msghdr);
|
||
|
break;
|
||
|
|
||
|
case RTM_DELMADDR:
|
||
|
case RTM_NEWMADDR:
|
||
|
len = sizeof(struct ifma_msghdr);
|
||
|
break;
|
||
|
|
||
|
case RTM_IFINFO:
|
||
|
len = sizeof(struct if_msghdr);
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
len = sizeof(struct rt_msghdr);
|
||
|
}
|
||
|
m = m_gethdr(M_DONTWAIT, MT_DATA);
|
||
|
if (m && len > MHLEN) {
|
||
|
MCLGET(m, M_DONTWAIT);
|
||
|
if (!(m->m_flags & M_EXT)) {
|
||
|
m_free(m);
|
||
|
m = NULL;
|
||
|
}
|
||
|
}
|
||
|
if (m == NULL) {
|
||
|
return NULL;
|
||
|
}
|
||
|
m->m_pkthdr.len = m->m_len = len;
|
||
|
m->m_pkthdr.rcvif = NULL;
|
||
|
rtm = mtod(m, struct rt_msghdr *);
|
||
|
bzero((caddr_t)rtm, len);
|
||
|
off = len;
|
||
|
for (i = 0; i < RTAX_MAX; i++) {
|
||
|
struct sockaddr *sa, *hint;
|
||
|
uint8_t ssbuf[SOCK_MAXADDRLEN + 1];
|
||
|
|
||
|
/*
|
||
|
* Make sure to accomodate the largest possible size of sa_len.
|
||
|
*/
|
||
|
_CASSERT(sizeof(ssbuf) == (SOCK_MAXADDRLEN + 1));
|
||
|
|
||
|
if ((sa = rtinfo->rti_info[i]) == NULL) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
switch (i) {
|
||
|
case RTAX_DST:
|
||
|
case RTAX_NETMASK:
|
||
|
if ((hint = rtinfo->rti_info[RTAX_DST]) == NULL) {
|
||
|
hint = rtinfo->rti_info[RTAX_IFA];
|
||
|
}
|
||
|
|
||
|
/* Scrub away any trace of embedded interface scope */
|
||
|
sa = rtm_scrub(type, i, hint, sa, &ssbuf,
|
||
|
sizeof(ssbuf), NULL);
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
rtinfo->rti_addrs |= (1 << i);
|
||
|
dlen = sa->sa_len;
|
||
|
m_copyback(m, off, dlen, (caddr_t)sa);
|
||
|
len = off + dlen;
|
||
|
off += ROUNDUP32(dlen);
|
||
|
}
|
||
|
if (m->m_pkthdr.len != len) {
|
||
|
m_freem(m);
|
||
|
return NULL;
|
||
|
}
|
||
|
rtm->rtm_msglen = (u_short)len;
|
||
|
rtm->rtm_version = RTM_VERSION;
|
||
|
rtm->rtm_type = type;
|
||
|
return m;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
rt_msg2(u_char type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w,
|
||
|
kauth_cred_t* credp)
|
||
|
{
|
||
|
int i;
|
||
|
int len, dlen, rlen, second_time = 0;
|
||
|
caddr_t cp0;
|
||
|
|
||
|
rtinfo->rti_addrs = 0;
|
||
|
again:
|
||
|
switch (type) {
|
||
|
case RTM_DELADDR:
|
||
|
case RTM_NEWADDR:
|
||
|
len = sizeof(struct ifa_msghdr);
|
||
|
break;
|
||
|
|
||
|
case RTM_DELMADDR:
|
||
|
case RTM_NEWMADDR:
|
||
|
len = sizeof(struct ifma_msghdr);
|
||
|
break;
|
||
|
|
||
|
case RTM_IFINFO:
|
||
|
len = sizeof(struct if_msghdr);
|
||
|
break;
|
||
|
|
||
|
case RTM_IFINFO2:
|
||
|
len = sizeof(struct if_msghdr2);
|
||
|
break;
|
||
|
|
||
|
case RTM_NEWMADDR2:
|
||
|
len = sizeof(struct ifma_msghdr2);
|
||
|
break;
|
||
|
|
||
|
case RTM_GET_EXT:
|
||
|
len = sizeof(struct rt_msghdr_ext);
|
||
|
break;
|
||
|
|
||
|
case RTM_GET2:
|
||
|
len = sizeof(struct rt_msghdr2);
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
len = sizeof(struct rt_msghdr);
|
||
|
}
|
||
|
cp0 = cp;
|
||
|
if (cp0) {
|
||
|
cp += len;
|
||
|
}
|
||
|
for (i = 0; i < RTAX_MAX; i++) {
|
||
|
struct sockaddr *sa, *hint;
|
||
|
uint8_t ssbuf[SOCK_MAXADDRLEN + 1];
|
||
|
|
||
|
/*
|
||
|
* Make sure to accomodate the largest possible size of sa_len.
|
||
|
*/
|
||
|
_CASSERT(sizeof(ssbuf) == (SOCK_MAXADDRLEN + 1));
|
||
|
|
||
|
if ((sa = rtinfo->rti_info[i]) == NULL) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
switch (i) {
|
||
|
case RTAX_DST:
|
||
|
case RTAX_NETMASK:
|
||
|
if ((hint = rtinfo->rti_info[RTAX_DST]) == NULL) {
|
||
|
hint = rtinfo->rti_info[RTAX_IFA];
|
||
|
}
|
||
|
|
||
|
/* Scrub away any trace of embedded interface scope */
|
||
|
sa = rtm_scrub(type, i, hint, sa, &ssbuf,
|
||
|
sizeof(ssbuf), NULL);
|
||
|
break;
|
||
|
case RTAX_GATEWAY:
|
||
|
case RTAX_IFP:
|
||
|
sa = rtm_scrub(type, i, NULL, sa, &ssbuf,
|
||
|
sizeof(ssbuf), credp);
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
rtinfo->rti_addrs |= (1 << i);
|
||
|
dlen = sa->sa_len;
|
||
|
rlen = ROUNDUP32(dlen);
|
||
|
if (cp) {
|
||
|
bcopy((caddr_t)sa, cp, (size_t)dlen);
|
||
|
if (dlen != rlen) {
|
||
|
bzero(cp + dlen, rlen - dlen);
|
||
|
}
|
||
|
cp += rlen;
|
||
|
}
|
||
|
len += rlen;
|
||
|
}
|
||
|
if (cp == NULL && w != NULL && !second_time) {
|
||
|
struct walkarg *rw = w;
|
||
|
|
||
|
if (rw->w_req != NULL) {
|
||
|
if (rw->w_tmemsize < len) {
|
||
|
if (rw->w_tmem != NULL) {
|
||
|
kfree_data(rw->w_tmem, rw->w_tmemsize);
|
||
|
}
|
||
|
rw->w_tmem = (caddr_t) kalloc_data(len, Z_ZERO | Z_WAITOK);
|
||
|
if (rw->w_tmem != NULL) {
|
||
|
rw->w_tmemsize = len;
|
||
|
}
|
||
|
}
|
||
|
if (rw->w_tmem != NULL) {
|
||
|
cp = rw->w_tmem;
|
||
|
second_time = 1;
|
||
|
goto again;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (cp) {
|
||
|
struct rt_msghdr *rtm = (struct rt_msghdr *)(void *)cp0;
|
||
|
|
||
|
rtm->rtm_version = RTM_VERSION;
|
||
|
rtm->rtm_type = type;
|
||
|
rtm->rtm_msglen = (u_short)len;
|
||
|
}
|
||
|
return len;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This routine is called to generate a message from the routing
|
||
|
* socket indicating that a redirect has occurred, a routing lookup
|
||
|
* has failed, or that a protocol has detected timeouts to a particular
|
||
|
* destination.
|
||
|
*/
|
||
|
void
|
||
|
rt_missmsg(u_char type, struct rt_addrinfo *rtinfo, int flags, int error)
|
||
|
{
|
||
|
struct rt_msghdr *rtm;
|
||
|
struct mbuf *m;
|
||
|
struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
|
||
|
struct sockproto route_proto = { .sp_family = PF_ROUTE, .sp_protocol = 0 };
|
||
|
|
||
|
if (route_cb.any_count == 0) {
|
||
|
return;
|
||
|
}
|
||
|
m = rt_msg1(type, rtinfo);
|
||
|
if (m == NULL) {
|
||
|
return;
|
||
|
}
|
||
|
rtm = mtod(m, struct rt_msghdr *);
|
||
|
rtm->rtm_flags = RTF_DONE | flags;
|
||
|
rtm->rtm_errno = error;
|
||
|
rtm->rtm_addrs = rtinfo->rti_addrs;
|
||
|
route_proto.sp_family = sa ? sa->sa_family : 0;
|
||
|
raw_input(m, &route_proto, &route_src, &route_dst);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This routine is called to generate a message from the routing
|
||
|
* socket indicating that the status of a network interface has changed.
|
||
|
*/
|
||
|
void
|
||
|
rt_ifmsg(struct ifnet *ifp)
|
||
|
{
|
||
|
struct if_msghdr *ifm;
|
||
|
struct mbuf *m;
|
||
|
struct rt_addrinfo info;
|
||
|
struct sockproto route_proto = { .sp_family = PF_ROUTE, .sp_protocol = 0 };
|
||
|
|
||
|
if (route_cb.any_count == 0) {
|
||
|
return;
|
||
|
}
|
||
|
bzero((caddr_t)&info, sizeof(info));
|
||
|
m = rt_msg1(RTM_IFINFO, &info);
|
||
|
if (m == NULL) {
|
||
|
return;
|
||
|
}
|
||
|
ifm = mtod(m, struct if_msghdr *);
|
||
|
ifm->ifm_index = ifp->if_index;
|
||
|
ifm->ifm_flags = (u_short)ifp->if_flags;
|
||
|
if_data_internal_to_if_data(ifp, &ifp->if_data, &ifm->ifm_data);
|
||
|
ifm->ifm_addrs = 0;
|
||
|
raw_input(m, &route_proto, &route_src, &route_dst);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This is called to generate messages from the routing socket
|
||
|
* indicating a network interface has had addresses associated with it.
|
||
|
* if we ever reverse the logic and replace messages TO the routing
|
||
|
* socket indicate a request to configure interfaces, then it will
|
||
|
* be unnecessary as the routing socket will automatically generate
|
||
|
* copies of it.
|
||
|
*
|
||
|
* Since this is coming from the interface, it is expected that the
|
||
|
* interface will be locked. Caller must hold rnh_lock and rt_lock.
|
||
|
*/
|
||
|
void
|
||
|
rt_newaddrmsg(u_char cmd, struct ifaddr *ifa, int error, struct rtentry *rt)
|
||
|
{
|
||
|
struct rt_addrinfo info;
|
||
|
struct sockaddr *sa = 0;
|
||
|
int pass;
|
||
|
struct mbuf *m = 0;
|
||
|
struct ifnet *ifp = ifa->ifa_ifp;
|
||
|
struct sockproto route_proto = { .sp_family = PF_ROUTE, .sp_protocol = 0 };
|
||
|
|
||
|
LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
|
||
|
RT_LOCK_ASSERT_HELD(rt);
|
||
|
|
||
|
if (route_cb.any_count == 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Become a regular mutex, just in case */
|
||
|
RT_CONVERT_LOCK(rt);
|
||
|
for (pass = 1; pass < 3; pass++) {
|
||
|
bzero((caddr_t)&info, sizeof(info));
|
||
|
if ((cmd == RTM_ADD && pass == 1) ||
|
||
|
(cmd == RTM_DELETE && pass == 2)) {
|
||
|
struct ifa_msghdr *ifam;
|
||
|
u_char ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
|
||
|
|
||
|
/* Lock ifp for if_lladdr */
|
||
|
ifnet_lock_shared(ifp);
|
||
|
IFA_LOCK(ifa);
|
||
|
info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
|
||
|
/*
|
||
|
* Holding ifnet lock here prevents the link address
|
||
|
* from changing contents, so no need to hold its
|
||
|
* lock. The link address is always present; it's
|
||
|
* never freed.
|
||
|
*/
|
||
|
info.rti_info[RTAX_IFP] = ifp->if_lladdr->ifa_addr;
|
||
|
info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
|
||
|
info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
|
||
|
if ((m = rt_msg1(ncmd, &info)) == NULL) {
|
||
|
IFA_UNLOCK(ifa);
|
||
|
ifnet_lock_done(ifp);
|
||
|
continue;
|
||
|
}
|
||
|
IFA_UNLOCK(ifa);
|
||
|
ifnet_lock_done(ifp);
|
||
|
ifam = mtod(m, struct ifa_msghdr *);
|
||
|
ifam->ifam_index = ifp->if_index;
|
||
|
IFA_LOCK_SPIN(ifa);
|
||
|
ifam->ifam_metric = ifa->ifa_metric;
|
||
|
ifam->ifam_flags = ifa->ifa_flags;
|
||
|
IFA_UNLOCK(ifa);
|
||
|
ifam->ifam_addrs = info.rti_addrs;
|
||
|
}
|
||
|
if ((cmd == RTM_ADD && pass == 2) ||
|
||
|
(cmd == RTM_DELETE && pass == 1)) {
|
||
|
struct rt_msghdr *rtm;
|
||
|
|
||
|
if (rt == NULL) {
|
||
|
continue;
|
||
|
}
|
||
|
info.rti_info[RTAX_NETMASK] = rt_mask(rt);
|
||
|
info.rti_info[RTAX_DST] = sa = rt_key(rt);
|
||
|
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
|
||
|
if ((m = rt_msg1(cmd, &info)) == NULL) {
|
||
|
continue;
|
||
|
}
|
||
|
rtm = mtod(m, struct rt_msghdr *);
|
||
|
rtm->rtm_index = ifp->if_index;
|
||
|
rtm->rtm_flags |= rt->rt_flags;
|
||
|
rtm->rtm_errno = error;
|
||
|
rtm->rtm_addrs = info.rti_addrs;
|
||
|
}
|
||
|
route_proto.sp_protocol = sa ? sa->sa_family : 0;
|
||
|
raw_input(m, &route_proto, &route_src, &route_dst);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This is the analogue to the rt_newaddrmsg which performs the same
|
||
|
* function but for multicast group memberhips. This is easier since
|
||
|
* there is no route state to worry about.
|
||
|
*/
|
||
|
void
|
||
|
rt_newmaddrmsg(u_char cmd, struct ifmultiaddr *ifma)
|
||
|
{
|
||
|
struct rt_addrinfo info;
|
||
|
struct mbuf *m = 0;
|
||
|
struct ifnet *ifp = ifma->ifma_ifp;
|
||
|
struct ifma_msghdr *ifmam;
|
||
|
struct sockproto route_proto = { .sp_family = PF_ROUTE, .sp_protocol = 0 };
|
||
|
|
||
|
if (route_cb.any_count == 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Lock ifp for if_lladdr */
|
||
|
ifnet_lock_shared(ifp);
|
||
|
bzero((caddr_t)&info, sizeof(info));
|
||
|
IFMA_LOCK(ifma);
|
||
|
info.rti_info[RTAX_IFA] = ifma->ifma_addr;
|
||
|
/* lladdr doesn't need lock */
|
||
|
info.rti_info[RTAX_IFP] = ifp->if_lladdr->ifa_addr;
|
||
|
|
||
|
/*
|
||
|
* If a link-layer address is present, present it as a ``gateway''
|
||
|
* (similarly to how ARP entries, e.g., are presented).
|
||
|
*/
|
||
|
info.rti_info[RTAX_GATEWAY] = (ifma->ifma_ll != NULL) ?
|
||
|
ifma->ifma_ll->ifma_addr : NULL;
|
||
|
if ((m = rt_msg1(cmd, &info)) == NULL) {
|
||
|
IFMA_UNLOCK(ifma);
|
||
|
ifnet_lock_done(ifp);
|
||
|
return;
|
||
|
}
|
||
|
ifmam = mtod(m, struct ifma_msghdr *);
|
||
|
ifmam->ifmam_index = ifp->if_index;
|
||
|
ifmam->ifmam_addrs = info.rti_addrs;
|
||
|
route_proto.sp_protocol = ifma->ifma_addr->sa_family;
|
||
|
IFMA_UNLOCK(ifma);
|
||
|
ifnet_lock_done(ifp);
|
||
|
raw_input(m, &route_proto, &route_src, &route_dst);
|
||
|
}
|
||
|
|
||
|
const char *
|
||
|
rtm2str(int cmd)
|
||
|
{
|
||
|
const char *c = "RTM_?";
|
||
|
|
||
|
switch (cmd) {
|
||
|
case RTM_ADD:
|
||
|
c = "RTM_ADD";
|
||
|
break;
|
||
|
case RTM_DELETE:
|
||
|
c = "RTM_DELETE";
|
||
|
break;
|
||
|
case RTM_CHANGE:
|
||
|
c = "RTM_CHANGE";
|
||
|
break;
|
||
|
case RTM_GET:
|
||
|
c = "RTM_GET";
|
||
|
break;
|
||
|
case RTM_LOSING:
|
||
|
c = "RTM_LOSING";
|
||
|
break;
|
||
|
case RTM_REDIRECT:
|
||
|
c = "RTM_REDIRECT";
|
||
|
break;
|
||
|
case RTM_MISS:
|
||
|
c = "RTM_MISS";
|
||
|
break;
|
||
|
case RTM_LOCK:
|
||
|
c = "RTM_LOCK";
|
||
|
break;
|
||
|
case RTM_OLDADD:
|
||
|
c = "RTM_OLDADD";
|
||
|
break;
|
||
|
case RTM_OLDDEL:
|
||
|
c = "RTM_OLDDEL";
|
||
|
break;
|
||
|
case RTM_RESOLVE:
|
||
|
c = "RTM_RESOLVE";
|
||
|
break;
|
||
|
case RTM_NEWADDR:
|
||
|
c = "RTM_NEWADDR";
|
||
|
break;
|
||
|
case RTM_DELADDR:
|
||
|
c = "RTM_DELADDR";
|
||
|
break;
|
||
|
case RTM_IFINFO:
|
||
|
c = "RTM_IFINFO";
|
||
|
break;
|
||
|
case RTM_NEWMADDR:
|
||
|
c = "RTM_NEWMADDR";
|
||
|
break;
|
||
|
case RTM_DELMADDR:
|
||
|
c = "RTM_DELMADDR";
|
||
|
break;
|
||
|
case RTM_GET_SILENT:
|
||
|
c = "RTM_GET_SILENT";
|
||
|
break;
|
||
|
case RTM_IFINFO2:
|
||
|
c = "RTM_IFINFO2";
|
||
|
break;
|
||
|
case RTM_NEWMADDR2:
|
||
|
c = "RTM_NEWMADDR2";
|
||
|
break;
|
||
|
case RTM_GET2:
|
||
|
c = "RTM_GET2";
|
||
|
break;
|
||
|
case RTM_GET_EXT:
|
||
|
c = "RTM_GET_EXT";
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return c;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This is used in dumping the kernel table via sysctl().
|
||
|
*/
|
||
|
static int
|
||
|
sysctl_dumpentry(struct radix_node *rn, void *vw)
|
||
|
{
|
||
|
struct walkarg *w = vw;
|
||
|
rtentry_ref_t rt = (rtentry_ref_t)rn;
|
||
|
int error = 0, size;
|
||
|
struct rt_addrinfo info;
|
||
|
kauth_cred_t cred __single;
|
||
|
kauth_cred_t *credp;
|
||
|
|
||
|
cred = current_cached_proc_cred(PROC_NULL);
|
||
|
credp = &cred;
|
||
|
|
||
|
RT_LOCK(rt);
|
||
|
if ((w->w_op == NET_RT_FLAGS || w->w_op == NET_RT_FLAGS_PRIV) &&
|
||
|
!(rt->rt_flags & w->w_arg)) {
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If the matching route has RTF_LLINFO set, then we can skip scrubbing the MAC
|
||
|
* only if the outgoing interface is not loopback and the process has entitlement
|
||
|
* for neighbor cache read.
|
||
|
*/
|
||
|
if (w->w_op == NET_RT_FLAGS_PRIV && (rt->rt_flags & RTF_LLINFO)) {
|
||
|
if (rt->rt_ifp != lo_ifp &&
|
||
|
(route_op_entitlement_check(NULL, cred, ROUTE_OP_READ, TRUE) == 0)) {
|
||
|
credp = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bzero((caddr_t)&info, sizeof(info));
|
||
|
info.rti_info[RTAX_DST] = rt_key(rt);
|
||
|
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
|
||
|
info.rti_info[RTAX_NETMASK] = rt_mask(rt);
|
||
|
info.rti_info[RTAX_GENMASK] = rt->rt_genmask;
|
||
|
if (RT_HAS_IFADDR(rt)) {
|
||
|
info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
|
||
|
}
|
||
|
|
||
|
if (w->w_op != NET_RT_DUMP2) {
|
||
|
size = rt_msg2(RTM_GET, &info, NULL, w, credp);
|
||
|
if (w->w_req != NULL && w->w_tmem != NULL) {
|
||
|
struct rt_msghdr *rtm =
|
||
|
(struct rt_msghdr *)(void *)w->w_tmem;
|
||
|
|
||
|
rtm->rtm_flags = rt->rt_flags;
|
||
|
rtm->rtm_use = rt->rt_use;
|
||
|
rt_getmetrics(rt, &rtm->rtm_rmx);
|
||
|
rtm->rtm_index = rt->rt_ifp->if_index;
|
||
|
rtm->rtm_pid = 0;
|
||
|
rtm->rtm_seq = 0;
|
||
|
rtm->rtm_errno = 0;
|
||
|
rtm->rtm_addrs = info.rti_addrs;
|
||
|
error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
|
||
|
}
|
||
|
} else {
|
||
|
size = rt_msg2(RTM_GET2, &info, NULL, w, credp);
|
||
|
if (w->w_req != NULL && w->w_tmem != NULL) {
|
||
|
struct rt_msghdr2 *rtm =
|
||
|
(struct rt_msghdr2 *)(void *)w->w_tmem;
|
||
|
|
||
|
rtm->rtm_flags = rt->rt_flags;
|
||
|
rtm->rtm_use = rt->rt_use;
|
||
|
rt_getmetrics(rt, &rtm->rtm_rmx);
|
||
|
rtm->rtm_index = rt->rt_ifp->if_index;
|
||
|
rtm->rtm_refcnt = rt->rt_refcnt;
|
||
|
if (rt->rt_parent) {
|
||
|
rtm->rtm_parentflags = rt->rt_parent->rt_flags;
|
||
|
} else {
|
||
|
rtm->rtm_parentflags = 0;
|
||
|
}
|
||
|
rtm->rtm_reserved = 0;
|
||
|
rtm->rtm_addrs = info.rti_addrs;
|
||
|
error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
done:
|
||
|
RT_UNLOCK(rt);
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This is used for dumping extended information from route entries.
|
||
|
*/
|
||
|
static int
|
||
|
sysctl_dumpentry_ext(struct radix_node *rn, void *vw)
|
||
|
{
|
||
|
struct walkarg *w = vw;
|
||
|
rtentry_ref_t rt = (rtentry_ref_t)rn;
|
||
|
int error = 0, size;
|
||
|
struct rt_addrinfo info;
|
||
|
kauth_cred_t cred __single;
|
||
|
|
||
|
cred = current_cached_proc_cred(PROC_NULL);
|
||
|
|
||
|
RT_LOCK(rt);
|
||
|
if (w->w_op == NET_RT_DUMPX_FLAGS && !(rt->rt_flags & w->w_arg)) {
|
||
|
goto done;
|
||
|
}
|
||
|
bzero(&info, sizeof(info));
|
||
|
info.rti_info[RTAX_DST] = rt_key(rt);
|
||
|
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
|
||
|
info.rti_info[RTAX_NETMASK] = rt_mask(rt);
|
||
|
info.rti_info[RTAX_GENMASK] = rt->rt_genmask;
|
||
|
|
||
|
size = rt_msg2(RTM_GET_EXT, &info, NULL, w, &cred);
|
||
|
if (w->w_req != NULL && w->w_tmem != NULL) {
|
||
|
struct rt_msghdr_ext *ertm =
|
||
|
(struct rt_msghdr_ext *)(void *)w->w_tmem;
|
||
|
|
||
|
ertm->rtm_flags = rt->rt_flags;
|
||
|
ertm->rtm_use = rt->rt_use;
|
||
|
rt_getmetrics(rt, &ertm->rtm_rmx);
|
||
|
ertm->rtm_index = rt->rt_ifp->if_index;
|
||
|
ertm->rtm_pid = 0;
|
||
|
ertm->rtm_seq = 0;
|
||
|
ertm->rtm_errno = 0;
|
||
|
ertm->rtm_addrs = info.rti_addrs;
|
||
|
if (rt->rt_llinfo_get_ri == NULL) {
|
||
|
bzero(&ertm->rtm_ri, sizeof(ertm->rtm_ri));
|
||
|
ertm->rtm_ri.ri_rssi = IFNET_RSSI_UNKNOWN;
|
||
|
ertm->rtm_ri.ri_lqm = IFNET_LQM_THRESH_OFF;
|
||
|
ertm->rtm_ri.ri_npm = IFNET_NPM_THRESH_UNKNOWN;
|
||
|
} else {
|
||
|
rt->rt_llinfo_get_ri(rt, &ertm->rtm_ri);
|
||
|
}
|
||
|
error = SYSCTL_OUT(w->w_req, (caddr_t)ertm, size);
|
||
|
}
|
||
|
|
||
|
done:
|
||
|
RT_UNLOCK(rt);
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* rdar://9307819
|
||
|
* To avoid to call copyout() while holding locks and to cause problems
|
||
|
* in the paging path, sysctl_iflist() and sysctl_iflist2() contstruct
|
||
|
* the list in two passes. In the first pass we compute the total
|
||
|
* length of the data we are going to copyout, then we release
|
||
|
* all locks to allocate a temporary buffer that gets filled
|
||
|
* in the second pass.
|
||
|
*
|
||
|
* Note that we are verifying the assumption that kalloc() returns a buffer
|
||
|
* that is at least 32 bits aligned and that the messages and addresses are
|
||
|
* 32 bits aligned.
|
||
|
*/
|
||
|
static int
|
||
|
sysctl_iflist(int af, struct walkarg *w)
|
||
|
{
|
||
|
struct ifnet *ifp;
|
||
|
struct ifaddr *ifa;
|
||
|
struct rt_addrinfo info;
|
||
|
int error = 0;
|
||
|
int pass = 0;
|
||
|
size_t len = 0, total_len = 0, total_buffer_len = 0, current_len = 0;
|
||
|
char *total_buffer = NULL, *cp = NULL;
|
||
|
kauth_cred_t cred __single;
|
||
|
|
||
|
cred = current_cached_proc_cred(PROC_NULL);
|
||
|
|
||
|
bzero((caddr_t)&info, sizeof(info));
|
||
|
|
||
|
for (pass = 0; pass < 2; pass++) {
|
||
|
ifnet_head_lock_shared();
|
||
|
|
||
|
TAILQ_FOREACH(ifp, &ifnet_head, if_link) {
|
||
|
if (error) {
|
||
|
break;
|
||
|
}
|
||
|
if (w->w_arg && w->w_arg != ifp->if_index) {
|
||
|
continue;
|
||
|
}
|
||
|
ifnet_lock_shared(ifp);
|
||
|
/*
|
||
|
* Holding ifnet lock here prevents the link address
|
||
|
* from changing contents, so no need to hold the ifa
|
||
|
* lock. The link address is always present; it's
|
||
|
* never freed.
|
||
|
*/
|
||
|
ifa = ifp->if_lladdr;
|
||
|
info.rti_info[RTAX_IFP] = ifa->ifa_addr;
|
||
|
len = rt_msg2(RTM_IFINFO, &info, NULL, NULL, &cred);
|
||
|
if (pass == 0) {
|
||
|
if (os_add_overflow(total_len, len, &total_len)) {
|
||
|
ifnet_lock_done(ifp);
|
||
|
error = ENOBUFS;
|
||
|
break;
|
||
|
}
|
||
|
} else {
|
||
|
struct if_msghdr *ifm;
|
||
|
|
||
|
if (current_len + len > total_len) {
|
||
|
ifnet_lock_done(ifp);
|
||
|
error = ENOBUFS;
|
||
|
break;
|
||
|
}
|
||
|
info.rti_info[RTAX_IFP] = ifa->ifa_addr;
|
||
|
len = rt_msg2(RTM_IFINFO, &info,
|
||
|
(caddr_t)cp, NULL, &cred);
|
||
|
info.rti_info[RTAX_IFP] = NULL;
|
||
|
|
||
|
ifm = (struct if_msghdr *)(void *)cp;
|
||
|
ifm->ifm_index = ifp->if_index;
|
||
|
ifm->ifm_flags = (u_short)ifp->if_flags;
|
||
|
if_data_internal_to_if_data(ifp, &ifp->if_data,
|
||
|
&ifm->ifm_data);
|
||
|
ifm->ifm_addrs = info.rti_addrs;
|
||
|
/*
|
||
|
* <rdar://problem/32940901>
|
||
|
* Round bytes only for non-platform
|
||
|
*/
|
||
|
if (!csproc_get_platform_binary(w->w_req->p)) {
|
||
|
ALIGN_BYTES(ifm->ifm_data.ifi_ibytes);
|
||
|
ALIGN_BYTES(ifm->ifm_data.ifi_obytes);
|
||
|
}
|
||
|
|
||
|
cp += len;
|
||
|
VERIFY(IS_P2ALIGNED(cp, sizeof(u_int32_t)));
|
||
|
current_len += len;
|
||
|
VERIFY(current_len <= total_len);
|
||
|
}
|
||
|
while ((ifa = ifa->ifa_link.tqe_next) != NULL) {
|
||
|
IFA_LOCK(ifa);
|
||
|
if (af && af != ifa->ifa_addr->sa_family) {
|
||
|
IFA_UNLOCK(ifa);
|
||
|
continue;
|
||
|
}
|
||
|
if (ifa->ifa_addr->sa_family == AF_INET6 &&
|
||
|
(((struct in6_ifaddr *)ifa)->ia6_flags &
|
||
|
IN6_IFF_CLAT46) != 0) {
|
||
|
IFA_UNLOCK(ifa);
|
||
|
continue;
|
||
|
}
|
||
|
info.rti_info[RTAX_IFA] = ifa->ifa_addr;
|
||
|
info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
|
||
|
info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
|
||
|
len = rt_msg2(RTM_NEWADDR, &info, NULL, NULL,
|
||
|
&cred);
|
||
|
if (pass == 0) {
|
||
|
if (os_add_overflow(total_len, len, &total_len)) {
|
||
|
IFA_UNLOCK(ifa);
|
||
|
error = ENOBUFS;
|
||
|
break;
|
||
|
}
|
||
|
} else {
|
||
|
struct ifa_msghdr *ifam;
|
||
|
|
||
|
if (current_len + len > total_len) {
|
||
|
IFA_UNLOCK(ifa);
|
||
|
error = ENOBUFS;
|
||
|
break;
|
||
|
}
|
||
|
len = rt_msg2(RTM_NEWADDR, &info,
|
||
|
(caddr_t)cp, NULL, &cred);
|
||
|
|
||
|
ifam = (struct ifa_msghdr *)(void *)cp;
|
||
|
ifam->ifam_index =
|
||
|
ifa->ifa_ifp->if_index;
|
||
|
ifam->ifam_flags = ifa->ifa_flags;
|
||
|
ifam->ifam_metric = ifa->ifa_metric;
|
||
|
ifam->ifam_addrs = info.rti_addrs;
|
||
|
|
||
|
cp += len;
|
||
|
VERIFY(IS_P2ALIGNED(cp,
|
||
|
sizeof(u_int32_t)));
|
||
|
current_len += len;
|
||
|
VERIFY(current_len <= total_len);
|
||
|
}
|
||
|
IFA_UNLOCK(ifa);
|
||
|
}
|
||
|
ifnet_lock_done(ifp);
|
||
|
info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] =
|
||
|
info.rti_info[RTAX_BRD] = NULL;
|
||
|
}
|
||
|
|
||
|
ifnet_head_done();
|
||
|
|
||
|
if (error != 0) {
|
||
|
if (error == ENOBUFS) {
|
||
|
printf("%s: current_len (%lu) + len (%lu) > "
|
||
|
"total_len (%lu)\n", __func__, current_len,
|
||
|
len, total_len);
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (pass == 0) {
|
||
|
/* Better to return zero length buffer than ENOBUFS */
|
||
|
if (total_len == 0) {
|
||
|
total_len = 1;
|
||
|
}
|
||
|
total_len += total_len >> 3;
|
||
|
total_buffer_len = total_len;
|
||
|
total_buffer = (char *) kalloc_data(total_len, Z_ZERO | Z_WAITOK);
|
||
|
if (total_buffer == NULL) {
|
||
|
printf("%s: kalloc_data(%lu) failed\n", __func__,
|
||
|
total_len);
|
||
|
error = ENOBUFS;
|
||
|
break;
|
||
|
}
|
||
|
cp = total_buffer;
|
||
|
VERIFY(IS_P2ALIGNED(cp, sizeof(u_int32_t)));
|
||
|
} else {
|
||
|
error = SYSCTL_OUT(w->w_req, total_buffer, current_len);
|
||
|
if (error) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (total_buffer != NULL) {
|
||
|
kfree_data(total_buffer, total_buffer_len);
|
||
|
}
|
||
|
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
sysctl_iflist2(int af, struct walkarg *w)
|
||
|
{
|
||
|
struct ifnet *ifp;
|
||
|
struct ifaddr *ifa;
|
||
|
struct rt_addrinfo info;
|
||
|
int error = 0;
|
||
|
int pass = 0;
|
||
|
size_t len = 0, total_len = 0, total_buffer_len = 0, current_len = 0;
|
||
|
char *total_buffer = NULL, *cp = NULL;
|
||
|
kauth_cred_t cred __single;
|
||
|
|
||
|
cred = current_cached_proc_cred(PROC_NULL);
|
||
|
|
||
|
bzero((caddr_t)&info, sizeof(info));
|
||
|
|
||
|
for (pass = 0; pass < 2; pass++) {
|
||
|
struct ifmultiaddr *ifma;
|
||
|
|
||
|
ifnet_head_lock_shared();
|
||
|
|
||
|
TAILQ_FOREACH(ifp, &ifnet_head, if_link) {
|
||
|
if (error) {
|
||
|
break;
|
||
|
}
|
||
|
if (w->w_arg && w->w_arg != ifp->if_index) {
|
||
|
continue;
|
||
|
}
|
||
|
ifnet_lock_shared(ifp);
|
||
|
/*
|
||
|
* Holding ifnet lock here prevents the link address
|
||
|
* from changing contents, so no need to hold the ifa
|
||
|
* lock. The link address is always present; it's
|
||
|
* never freed.
|
||
|
*/
|
||
|
ifa = ifp->if_lladdr;
|
||
|
info.rti_info[RTAX_IFP] = ifa->ifa_addr;
|
||
|
len = rt_msg2(RTM_IFINFO2, &info, NULL, NULL, &cred);
|
||
|
if (pass == 0) {
|
||
|
if (os_add_overflow(total_len, len, &total_len)) {
|
||
|
ifnet_lock_done(ifp);
|
||
|
error = ENOBUFS;
|
||
|
break;
|
||
|
}
|
||
|
} else {
|
||
|
struct if_msghdr2 *ifm;
|
||
|
|
||
|
if (current_len + len > total_len) {
|
||
|
ifnet_lock_done(ifp);
|
||
|
error = ENOBUFS;
|
||
|
break;
|
||
|
}
|
||
|
info.rti_info[RTAX_IFP] = ifa->ifa_addr;
|
||
|
len = rt_msg2(RTM_IFINFO2, &info,
|
||
|
(caddr_t)cp, NULL, &cred);
|
||
|
info.rti_info[RTAX_IFP] = NULL;
|
||
|
|
||
|
ifm = (struct if_msghdr2 *)(void *)cp;
|
||
|
ifm->ifm_addrs = info.rti_addrs;
|
||
|
ifm->ifm_flags = (u_short)ifp->if_flags;
|
||
|
ifm->ifm_index = ifp->if_index;
|
||
|
ifm->ifm_snd_len = IFCQ_LEN(ifp->if_snd);
|
||
|
ifm->ifm_snd_maxlen = IFCQ_MAXLEN(ifp->if_snd);
|
||
|
ifm->ifm_snd_drops =
|
||
|
(int)ifp->if_snd->ifcq_dropcnt.packets;
|
||
|
ifm->ifm_timer = ifp->if_timer;
|
||
|
if_data_internal_to_if_data64(ifp,
|
||
|
&ifp->if_data, &ifm->ifm_data);
|
||
|
/*
|
||
|
* <rdar://problem/32940901>
|
||
|
* Round bytes only for non-platform
|
||
|
*/
|
||
|
if (!csproc_get_platform_binary(w->w_req->p)) {
|
||
|
ALIGN_BYTES(ifm->ifm_data.ifi_ibytes);
|
||
|
ALIGN_BYTES(ifm->ifm_data.ifi_obytes);
|
||
|
}
|
||
|
|
||
|
cp += len;
|
||
|
VERIFY(IS_P2ALIGNED(cp, sizeof(u_int32_t)));
|
||
|
current_len += len;
|
||
|
VERIFY(current_len <= total_len);
|
||
|
}
|
||
|
while ((ifa = ifa->ifa_link.tqe_next) != NULL) {
|
||
|
IFA_LOCK(ifa);
|
||
|
if (af && af != ifa->ifa_addr->sa_family) {
|
||
|
IFA_UNLOCK(ifa);
|
||
|
continue;
|
||
|
}
|
||
|
if (ifa->ifa_addr->sa_family == AF_INET6 &&
|
||
|
(((struct in6_ifaddr *)ifa)->ia6_flags &
|
||
|
IN6_IFF_CLAT46) != 0) {
|
||
|
IFA_UNLOCK(ifa);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
info.rti_info[RTAX_IFA] = ifa->ifa_addr;
|
||
|
info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
|
||
|
info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
|
||
|
len = rt_msg2(RTM_NEWADDR, &info, NULL, NULL,
|
||
|
&cred);
|
||
|
if (pass == 0) {
|
||
|
if (os_add_overflow(total_len, len, &total_len)) {
|
||
|
IFA_UNLOCK(ifa);
|
||
|
error = ENOBUFS;
|
||
|
break;
|
||
|
}
|
||
|
} else {
|
||
|
struct ifa_msghdr *ifam;
|
||
|
|
||
|
if (current_len + len > total_len) {
|
||
|
IFA_UNLOCK(ifa);
|
||
|
error = ENOBUFS;
|
||
|
break;
|
||
|
}
|
||
|
len = rt_msg2(RTM_NEWADDR, &info,
|
||
|
(caddr_t)cp, NULL, &cred);
|
||
|
|
||
|
ifam = (struct ifa_msghdr *)(void *)cp;
|
||
|
ifam->ifam_index =
|
||
|
ifa->ifa_ifp->if_index;
|
||
|
ifam->ifam_flags = ifa->ifa_flags;
|
||
|
ifam->ifam_metric = ifa->ifa_metric;
|
||
|
ifam->ifam_addrs = info.rti_addrs;
|
||
|
|
||
|
cp += len;
|
||
|
VERIFY(IS_P2ALIGNED(cp,
|
||
|
sizeof(u_int32_t)));
|
||
|
current_len += len;
|
||
|
VERIFY(current_len <= total_len);
|
||
|
}
|
||
|
IFA_UNLOCK(ifa);
|
||
|
}
|
||
|
if (error) {
|
||
|
ifnet_lock_done(ifp);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
for (ifma = LIST_FIRST(&ifp->if_multiaddrs);
|
||
|
ifma != NULL; ifma = LIST_NEXT(ifma, ifma_link)) {
|
||
|
struct ifaddr *ifa0;
|
||
|
|
||
|
IFMA_LOCK(ifma);
|
||
|
if (af && af != ifma->ifma_addr->sa_family) {
|
||
|
IFMA_UNLOCK(ifma);
|
||
|
continue;
|
||
|
}
|
||
|
bzero((caddr_t)&info, sizeof(info));
|
||
|
info.rti_info[RTAX_IFA] = ifma->ifma_addr;
|
||
|
/*
|
||
|
* Holding ifnet lock here prevents the link
|
||
|
* address from changing contents, so no need
|
||
|
* to hold the ifa0 lock. The link address is
|
||
|
* always present; it's never freed.
|
||
|
*/
|
||
|
ifa0 = ifp->if_lladdr;
|
||
|
info.rti_info[RTAX_IFP] = ifa0->ifa_addr;
|
||
|
if (ifma->ifma_ll != NULL) {
|
||
|
info.rti_info[RTAX_GATEWAY] =
|
||
|
ifma->ifma_ll->ifma_addr;
|
||
|
}
|
||
|
len = rt_msg2(RTM_NEWMADDR2, &info, NULL, NULL,
|
||
|
&cred);
|
||
|
if (pass == 0) {
|
||
|
total_len += len;
|
||
|
} else {
|
||
|
struct ifma_msghdr2 *ifmam;
|
||
|
|
||
|
if (current_len + len > total_len) {
|
||
|
IFMA_UNLOCK(ifma);
|
||
|
error = ENOBUFS;
|
||
|
break;
|
||
|
}
|
||
|
len = rt_msg2(RTM_NEWMADDR2, &info,
|
||
|
(caddr_t)cp, NULL, &cred);
|
||
|
|
||
|
ifmam =
|
||
|
(struct ifma_msghdr2 *)(void *)cp;
|
||
|
ifmam->ifmam_addrs = info.rti_addrs;
|
||
|
ifmam->ifmam_flags = 0;
|
||
|
ifmam->ifmam_index =
|
||
|
ifma->ifma_ifp->if_index;
|
||
|
ifmam->ifmam_refcount =
|
||
|
ifma->ifma_reqcnt;
|
||
|
|
||
|
cp += len;
|
||
|
VERIFY(IS_P2ALIGNED(cp,
|
||
|
sizeof(u_int32_t)));
|
||
|
current_len += len;
|
||
|
}
|
||
|
IFMA_UNLOCK(ifma);
|
||
|
}
|
||
|
ifnet_lock_done(ifp);
|
||
|
info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] =
|
||
|
info.rti_info[RTAX_BRD] = NULL;
|
||
|
}
|
||
|
ifnet_head_done();
|
||
|
|
||
|
if (error) {
|
||
|
if (error == ENOBUFS) {
|
||
|
printf("%s: current_len (%lu) + len (%lu) > "
|
||
|
"total_len (%lu)\n", __func__, current_len,
|
||
|
len, total_len);
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (pass == 0) {
|
||
|
/* Better to return zero length buffer than ENOBUFS */
|
||
|
if (total_len == 0) {
|
||
|
total_len = 1;
|
||
|
}
|
||
|
total_len += total_len >> 3;
|
||
|
total_buffer_len = total_len;
|
||
|
total_buffer = (char *) kalloc_data(total_len, Z_ZERO | Z_WAITOK);
|
||
|
if (total_buffer == NULL) {
|
||
|
printf("%s: kalloc_data(%lu) failed\n", __func__,
|
||
|
total_len);
|
||
|
error = ENOBUFS;
|
||
|
break;
|
||
|
}
|
||
|
cp = total_buffer;
|
||
|
VERIFY(IS_P2ALIGNED(cp, sizeof(u_int32_t)));
|
||
|
} else {
|
||
|
error = SYSCTL_OUT(w->w_req, total_buffer, current_len);
|
||
|
if (error) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (total_buffer != NULL) {
|
||
|
kfree_data(total_buffer, total_buffer_len);
|
||
|
}
|
||
|
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
|
||
|
static int
|
||
|
sysctl_rtstat(struct sysctl_req *req)
|
||
|
{
|
||
|
return SYSCTL_OUT(req, &rtstat, sizeof(struct rtstat));
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
sysctl_rttrash(struct sysctl_req *req)
|
||
|
{
|
||
|
return SYSCTL_OUT(req, &rttrash, sizeof(rttrash));
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
sysctl_rtsock SYSCTL_HANDLER_ARGS
|
||
|
{
|
||
|
#pragma unused(oidp)
|
||
|
int *name = (int *)arg1;
|
||
|
u_int namelen = arg2;
|
||
|
struct radix_node_head *rnh;
|
||
|
int i, error = EINVAL;
|
||
|
u_char af;
|
||
|
struct walkarg w;
|
||
|
|
||
|
name++;
|
||
|
namelen--;
|
||
|
if (req->newptr) {
|
||
|
return EPERM;
|
||
|
}
|
||
|
if (namelen != 3) {
|
||
|
return EINVAL;
|
||
|
}
|
||
|
af = (u_char)name[0];
|
||
|
Bzero(&w, sizeof(w));
|
||
|
w.w_op = name[1];
|
||
|
w.w_arg = name[2];
|
||
|
w.w_req = req;
|
||
|
|
||
|
switch (w.w_op) {
|
||
|
case NET_RT_DUMP:
|
||
|
case NET_RT_DUMP2:
|
||
|
case NET_RT_FLAGS:
|
||
|
case NET_RT_FLAGS_PRIV:
|
||
|
lck_mtx_lock(rnh_lock);
|
||
|
for (i = 1; i <= AF_MAX; i++) {
|
||
|
if ((rnh = rt_tables[i]) && (af == 0 || af == i) &&
|
||
|
(error = rnh->rnh_walktree(rnh,
|
||
|
sysctl_dumpentry, &w))) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
lck_mtx_unlock(rnh_lock);
|
||
|
break;
|
||
|
case NET_RT_DUMPX:
|
||
|
case NET_RT_DUMPX_FLAGS:
|
||
|
lck_mtx_lock(rnh_lock);
|
||
|
for (i = 1; i <= AF_MAX; i++) {
|
||
|
if ((rnh = rt_tables[i]) && (af == 0 || af == i) &&
|
||
|
(error = rnh->rnh_walktree(rnh,
|
||
|
sysctl_dumpentry_ext, &w))) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
lck_mtx_unlock(rnh_lock);
|
||
|
break;
|
||
|
case NET_RT_IFLIST:
|
||
|
error = sysctl_iflist(af, &w);
|
||
|
break;
|
||
|
case NET_RT_IFLIST2:
|
||
|
error = sysctl_iflist2(af, &w);
|
||
|
break;
|
||
|
case NET_RT_STAT:
|
||
|
error = sysctl_rtstat(req);
|
||
|
break;
|
||
|
case NET_RT_TRASH:
|
||
|
error = sysctl_rttrash(req);
|
||
|
break;
|
||
|
}
|
||
|
if (w.w_tmem != NULL) {
|
||
|
kfree_data(w.w_tmem, w.w_tmemsize);
|
||
|
}
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Definitions of protocols supported in the ROUTE domain.
|
||
|
*/
|
||
|
static struct protosw routesw[] = {
|
||
|
{
|
||
|
.pr_type = SOCK_RAW,
|
||
|
.pr_protocol = 0,
|
||
|
.pr_flags = PR_ATOMIC | PR_ADDR,
|
||
|
.pr_output = route_output,
|
||
|
.pr_ctlinput = raw_ctlinput,
|
||
|
.pr_usrreqs = &route_usrreqs,
|
||
|
}
|
||
|
};
|
||
|
|
||
|
static int route_proto_count = (sizeof(routesw) / sizeof(struct protosw));
|
||
|
|
||
|
struct domain routedomain_s = {
|
||
|
.dom_family = PF_ROUTE,
|
||
|
.dom_name = "route",
|
||
|
.dom_init = route_dinit,
|
||
|
};
|
||
|
|
||
|
static void
|
||
|
route_dinit(struct domain *dp)
|
||
|
{
|
||
|
struct protosw *pr;
|
||
|
int i;
|
||
|
|
||
|
VERIFY(!(dp->dom_flags & DOM_INITIALIZED));
|
||
|
VERIFY(routedomain == NULL);
|
||
|
|
||
|
routedomain = dp;
|
||
|
|
||
|
for (i = 0, pr = &routesw[0]; i < route_proto_count; i++, pr++) {
|
||
|
net_add_proto(pr, dp, 1);
|
||
|
}
|
||
|
|
||
|
route_init();
|
||
|
}
|