gems-kernel/source/THIRDPARTY/xnu/bsd/net/rtsock.c
2024-06-03 11:29:39 -05:00

2299 lines
60 KiB
C

/*
* Copyright (c) 2000-2021 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* Copyright (c) 1988, 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)rtsock.c 8.5 (Berkeley) 11/2/94
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kauth.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/syslog.h>
#include <sys/mcache.h>
#include <kern/locks.h>
#include <sys/codesign.h>
#include <net/if.h>
#include <net/route.h>
#include <net/dlil.h>
#include <net/raw_cb.h>
#include <netinet/in.h>
#include <netinet/in_var.h>
#include <netinet/in_arp.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet6/nd6.h>
#include <net/sockaddr_utils.h>
#include <IOKit/IOBSD.h>
extern struct rtstat rtstat;
extern struct domain routedomain_s;
static struct domain *routedomain = NULL;
static struct sockaddr route_dst = { .sa_len = 2, .sa_family = PF_ROUTE, .sa_data = { 0, } };
static struct sockaddr route_src = { .sa_len = 2, .sa_family = PF_ROUTE, .sa_data = { 0, } };
static struct sockaddr sa_zero = { .sa_len = sizeof(sa_zero), .sa_family = AF_INET, .sa_data = { 0, } };
struct route_cb {
u_int32_t ip_count; /* attached w/ AF_INET */
u_int32_t ip6_count; /* attached w/ AF_INET6 */
u_int32_t any_count; /* total attached */
};
static struct route_cb route_cb;
struct walkarg {
int w_tmemsize;
int w_op, w_arg;
caddr_t w_tmem;
struct sysctl_req *w_req;
};
static void route_dinit(struct domain *);
static int rts_abort(struct socket *);
static int rts_attach(struct socket *, int, struct proc *);
static int rts_bind(struct socket *, struct sockaddr *, struct proc *);
static int rts_connect(struct socket *, struct sockaddr *, struct proc *);
static int rts_detach(struct socket *);
static int rts_disconnect(struct socket *);
static int rts_peeraddr(struct socket *, struct sockaddr **);
static int rts_send(struct socket *, int, struct mbuf *, struct sockaddr *,
struct mbuf *, struct proc *);
static int rts_shutdown(struct socket *);
static int rts_sockaddr(struct socket *, struct sockaddr **);
static int route_output(struct mbuf *, struct socket *);
static int rt_setmetrics(u_int32_t, struct rt_metrics *, struct rtentry *);
static void rt_getmetrics(struct rtentry *, struct rt_metrics *);
static void rt_setif(struct rtentry *, struct sockaddr *, struct sockaddr *,
struct sockaddr *, unsigned int);
static int rt_xaddrs(caddr_t cp __ended_by(cplim), caddr_t cplim, struct rt_addrinfo *);
static struct mbuf *rt_msg1(u_char, struct rt_addrinfo *);
static int rt_msg2(u_char, struct rt_addrinfo *, caddr_t, struct walkarg *,
kauth_cred_t *);
static int sysctl_dumpentry(struct radix_node *rn, void *vw);
static int sysctl_dumpentry_ext(struct radix_node *rn, void *vw);
static int sysctl_iflist(int af, struct walkarg *w);
static int sysctl_iflist2(int af, struct walkarg *w);
static int sysctl_rtstat(struct sysctl_req *);
static int sysctl_rttrash(struct sysctl_req *);
static int sysctl_rtsock SYSCTL_HANDLER_ARGS;
SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_LOCKED,
sysctl_rtsock, "");
SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "routing");
/* Align x to 1024 (only power of 2) assuming x is positive */
#define ALIGN_BYTES(x) do { \
x = (uint32_t)P2ALIGN(x, 1024); \
} while(0)
#define ROUNDUP32(a) \
((a) > 0 ? (1 + (((a) - 1) | (sizeof (uint32_t) - 1))) : \
sizeof (uint32_t))
#define ADVANCE32(x, n, lim) do { \
(x += ROUNDUP32((n)->sa_len)); \
_Pragma("clang diagnostic push"); \
_Pragma("clang diagnostic ignored \"-Wself-assign\""); \
(lim) = (lim); \
_Pragma("clang diagnostic pop"); \
} while(0)
#define RT_HAS_IFADDR(rt) \
((rt)->rt_ifa != NULL && (rt)->rt_ifa->ifa_addr != NULL)
/*
* It really doesn't make any sense at all for this code to share much
* with raw_usrreq.c, since its functionality is so restricted. XXX
*/
static int
rts_abort(struct socket *so)
{
return raw_usrreqs.pru_abort(so);
}
/* pru_accept is EOPNOTSUPP */
static int
rts_attach(struct socket *so, int proto, struct proc *p)
{
#pragma unused(p)
struct rawcb *rp;
int error;
VERIFY(so->so_pcb == NULL);
rp = kalloc_type(struct rawcb, Z_WAITOK_ZERO_NOFAIL);
so->so_pcb = (caddr_t)rp;
/* don't use raw_usrreqs.pru_attach, it checks for SS_PRIV */
error = raw_attach(so, proto);
rp = sotorawcb(so);
if (error) {
kfree_type(struct rawcb, rp);
so->so_pcb = NULL;
so->so_flags |= SOF_PCBCLEARING;
return error;
}
switch (rp->rcb_proto.sp_protocol) {
case AF_INET:
os_atomic_inc(&route_cb.ip_count, relaxed);
break;
case AF_INET6:
os_atomic_inc(&route_cb.ip6_count, relaxed);
break;
}
rp->rcb_faddr = &route_src;
os_atomic_inc(&route_cb.any_count, relaxed);
/* the socket is already locked when we enter rts_attach */
soisconnected(so);
so->so_options |= SO_USELOOPBACK;
return 0;
}
static int
rts_bind(struct socket *so, struct sockaddr *nam, struct proc *p)
{
return raw_usrreqs.pru_bind(so, nam, p); /* xxx just EINVAL */
}
static int
rts_connect(struct socket *so, struct sockaddr *nam, struct proc *p)
{
return raw_usrreqs.pru_connect(so, nam, p); /* XXX just EINVAL */
}
/* pru_connect2 is EOPNOTSUPP */
/* pru_control is EOPNOTSUPP */
static int
rts_detach(struct socket *so)
{
struct rawcb *rp = sotorawcb(so);
VERIFY(rp != NULL);
switch (rp->rcb_proto.sp_protocol) {
case AF_INET:
os_atomic_dec(&route_cb.ip_count, relaxed);
break;
case AF_INET6:
os_atomic_dec(&route_cb.ip6_count, relaxed);
break;
}
os_atomic_dec(&route_cb.any_count, relaxed);
return raw_usrreqs.pru_detach(so);
}
static int
rts_disconnect(struct socket *so)
{
return raw_usrreqs.pru_disconnect(so);
}
/* pru_listen is EOPNOTSUPP */
static int
rts_peeraddr(struct socket *so, struct sockaddr **nam)
{
return raw_usrreqs.pru_peeraddr(so, nam);
}
/* pru_rcvd is EOPNOTSUPP */
/* pru_rcvoob is EOPNOTSUPP */
static int
rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
struct mbuf *control, struct proc *p)
{
return raw_usrreqs.pru_send(so, flags, m, nam, control, p);
}
/* pru_sense is null */
static int
rts_shutdown(struct socket *so)
{
return raw_usrreqs.pru_shutdown(so);
}
static int
rts_sockaddr(struct socket *so, struct sockaddr **nam)
{
return raw_usrreqs.pru_sockaddr(so, nam);
}
static struct pr_usrreqs route_usrreqs = {
.pru_abort = rts_abort,
.pru_attach = rts_attach,
.pru_bind = rts_bind,
.pru_connect = rts_connect,
.pru_detach = rts_detach,
.pru_disconnect = rts_disconnect,
.pru_peeraddr = rts_peeraddr,
.pru_send = rts_send,
.pru_shutdown = rts_shutdown,
.pru_sockaddr = rts_sockaddr,
.pru_sosend = sosend,
.pru_soreceive = soreceive,
};
/*ARGSUSED*/
static int
route_output(struct mbuf *m, struct socket *so)
{
struct rt_msghdr *rtm = NULL;
size_t rtm_len = 0;
rtentry_ref_t rt = NULL;
rtentry_ref_t saved_nrt = NULL;
struct radix_node_head *rnh;
struct rt_addrinfo info;
int len, error = 0;
sa_family_t dst_sa_family = 0;
struct ifnet *ifp = NULL;
struct sockaddr_in dst_in, gate_in;
int sendonlytoself = 0;
unsigned int ifscope = IFSCOPE_NONE;
struct rawcb *rp = NULL;
boolean_t is_router = FALSE;
#define senderr(e) { error = (e); goto flush; }
if (m == NULL || ((m->m_len < sizeof(intptr_t)) &&
(m = m_pullup(m, sizeof(intptr_t))) == NULL)) {
return ENOBUFS;
}
VERIFY(m->m_flags & M_PKTHDR);
/*
* Unlock the socket (but keep a reference) it won't be
* accessed until raw_input appends to it.
*/
socket_unlock(so, 0);
lck_mtx_lock(rnh_lock);
len = m->m_pkthdr.len;
if (len < sizeof(*rtm) ||
len != mtod(m, struct rt_msghdr *)->rtm_msglen) {
info.rti_info[RTAX_DST] = NULL;
senderr(EINVAL);
}
rtm = kalloc_data(len, Z_WAITOK);
if (rtm == NULL) {
info.rti_info[RTAX_DST] = NULL;
senderr(ENOBUFS);
}
rtm_len = (size_t)len;
m_copydata(m, 0, len, (caddr_t)rtm);
if (rtm->rtm_version != RTM_VERSION) {
info.rti_info[RTAX_DST] = NULL;
senderr(EPROTONOSUPPORT);
}
/*
* Silent version of RTM_GET for Reachabiltiy APIs. We may change
* all RTM_GETs to be silent in the future, so this is private for now.
*/
if (rtm->rtm_type == RTM_GET_SILENT) {
if (!(so->so_options & SO_USELOOPBACK)) {
senderr(EINVAL);
}
sendonlytoself = 1;
rtm->rtm_type = RTM_GET;
}
/*
* Perform permission checking, only privileged sockets
* may perform operations other than RTM_GET
*/
if (rtm->rtm_type != RTM_GET && !(so->so_state & SS_PRIV)) {
info.rti_info[RTAX_DST] = NULL;
senderr(EPERM);
}
rtm->rtm_pid = proc_selfpid();
info.rti_addrs = rtm->rtm_addrs;
if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) {
info.rti_info[RTAX_DST] = NULL;
senderr(EINVAL);
}
if (info.rti_info[RTAX_DST] == NULL ||
info.rti_info[RTAX_DST]->sa_family >= AF_MAX ||
(info.rti_info[RTAX_GATEWAY] != NULL &&
info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) {
senderr(EINVAL);
}
if (info.rti_info[RTAX_DST]->sa_family == AF_INET &&
info.rti_info[RTAX_DST]->sa_len != sizeof(struct sockaddr_in)) {
/* At minimum, we need up to sin_addr */
if (info.rti_info[RTAX_DST]->sa_len <
offsetof(struct sockaddr_in, sin_zero)) {
senderr(EINVAL);
}
SOCKADDR_ZERO(&dst_in, sizeof(dst_in));
dst_in.sin_len = sizeof(dst_in);
dst_in.sin_family = AF_INET;
dst_in.sin_port = SIN(info.rti_info[RTAX_DST])->sin_port;
dst_in.sin_addr = SIN(info.rti_info[RTAX_DST])->sin_addr;
info.rti_info[RTAX_DST] = SA(&dst_in);
dst_sa_family = info.rti_info[RTAX_DST]->sa_family;
} else if (info.rti_info[RTAX_DST]->sa_family == AF_INET6 &&
info.rti_info[RTAX_DST]->sa_len < sizeof(struct sockaddr_in6)) {
senderr(EINVAL);
}
if (info.rti_info[RTAX_GATEWAY] != NULL) {
if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_INET &&
info.rti_info[RTAX_GATEWAY]->sa_len != sizeof(struct sockaddr_in)) {
/* At minimum, we need up to sin_addr */
if (info.rti_info[RTAX_GATEWAY]->sa_len <
offsetof(struct sockaddr_in, sin_zero)) {
senderr(EINVAL);
}
SOCKADDR_ZERO(&gate_in, sizeof(gate_in));
gate_in.sin_len = sizeof(gate_in);
gate_in.sin_family = AF_INET;
gate_in.sin_port = SIN(info.rti_info[RTAX_GATEWAY])->sin_port;
gate_in.sin_addr = SIN(info.rti_info[RTAX_GATEWAY])->sin_addr;
info.rti_info[RTAX_GATEWAY] = SA(&gate_in);
} else if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_INET6 &&
info.rti_info[RTAX_GATEWAY]->sa_len < sizeof(struct sockaddr_in6)) {
senderr(EINVAL);
}
}
if (info.rti_info[RTAX_GENMASK]) {
struct radix_node *t;
t = rn_addmask((caddr_t)info.rti_info[RTAX_GENMASK], 0, 1);
if (t != NULL && Bcmp(info.rti_info[RTAX_GENMASK],
rn_get_key(t), *(u_char *)info.rti_info[RTAX_GENMASK]) == 0) {
info.rti_info[RTAX_GENMASK] = SA(rn_get_key(t));
} else {
senderr(ENOBUFS);
}
}
/*
* If RTF_IFSCOPE flag is set, then rtm_index specifies the scope.
*/
if (rtm->rtm_flags & RTF_IFSCOPE) {
if (info.rti_info[RTAX_DST]->sa_family != AF_INET &&
info.rti_info[RTAX_DST]->sa_family != AF_INET6) {
senderr(EINVAL);
}
ifscope = rtm->rtm_index;
}
/*
* Block changes on INTCOPROC interfaces.
*/
if (ifscope != IFSCOPE_NONE) {
unsigned int intcoproc_scope = 0;
ifnet_head_lock_shared();
TAILQ_FOREACH(ifp, &ifnet_head, if_link) {
if (IFNET_IS_INTCOPROC(ifp)) {
intcoproc_scope = ifp->if_index;
break;
}
}
ifnet_head_done();
if (intcoproc_scope == ifscope && proc_getpid(current_proc()) != 0) {
senderr(EINVAL);
}
}
/*
* Require entitlement to change management interfaces
*/
if (management_control_unrestricted == false && if_management_interface_check_needed == true &&
ifscope != IFSCOPE_NONE && proc_getpid(current_proc()) != 0) {
bool is_management = false;
ifnet_head_lock_shared();
if (IF_INDEX_IN_RANGE(ifscope)) {
ifp = ifindex2ifnet[ifscope];
if (ifp != NULL && IFNET_IS_MANAGEMENT(ifp)) {
is_management = true;
}
}
ifnet_head_done();
if (is_management && !IOCurrentTaskHasEntitlement(MANAGEMENT_CONTROL_ENTITLEMENT)) {
senderr(EINVAL);
}
}
/*
* RTF_PROXY can only be set internally from within the kernel.
*/
if (rtm->rtm_flags & RTF_PROXY) {
senderr(EINVAL);
}
/*
* For AF_INET, always zero out the embedded scope ID. If this is
* a scoped request, it must be done explicitly by setting RTF_IFSCOPE
* flag and the corresponding rtm_index value. This is to prevent
* false interpretation of the scope ID because it's using the sin_zero
* field, which might not be properly cleared by the requestor.
*/
if (info.rti_info[RTAX_DST]->sa_family == AF_INET) {
sin_set_ifscope(info.rti_info[RTAX_DST], IFSCOPE_NONE);
}
if (info.rti_info[RTAX_GATEWAY] != NULL &&
info.rti_info[RTAX_GATEWAY]->sa_family == AF_INET) {
sin_set_ifscope(info.rti_info[RTAX_GATEWAY], IFSCOPE_NONE);
}
if (info.rti_info[RTAX_DST]->sa_family == AF_INET6 &&
IN6_IS_SCOPE_EMBED(&SIN6(info.rti_info[RTAX_DST])->sin6_addr) &&
!IN6_IS_ADDR_UNICAST_BASED_MULTICAST(&SIN6(info.rti_info[RTAX_DST])->sin6_addr) &&
SIN6(info.rti_info[RTAX_DST])->sin6_scope_id == 0) {
SIN6(info.rti_info[RTAX_DST])->sin6_scope_id = ntohs(SIN6(info.rti_info[RTAX_DST])->sin6_addr.s6_addr16[1]);
SIN6(info.rti_info[RTAX_DST])->sin6_addr.s6_addr16[1] = 0;
}
switch (rtm->rtm_type) {
case RTM_ADD:
if (info.rti_info[RTAX_GATEWAY] == NULL) {
senderr(EINVAL);
}
error = rtrequest_scoped_locked(RTM_ADD,
info.rti_info[RTAX_DST], info.rti_info[RTAX_GATEWAY],
info.rti_info[RTAX_NETMASK], rtm->rtm_flags, &saved_nrt,
ifscope);
if (error == 0 && saved_nrt != NULL) {
RT_LOCK(saved_nrt);
/*
* If the route request specified an interface with
* IFA and/or IFP, we set the requested interface on
* the route with rt_setif. It would be much better
* to do this inside rtrequest, but that would
* require passing the desired interface, in some
* form, to rtrequest. Since rtrequest is called in
* so many places (roughly 40 in our source), adding
* a parameter is to much for us to swallow; this is
* something for the FreeBSD developers to tackle.
* Instead, we let rtrequest compute whatever
* interface it wants, then come in behind it and
* stick in the interface that we really want. This
* works reasonably well except when rtrequest can't
* figure out what interface to use (with
* ifa_withroute) and returns ENETUNREACH. Ideally
* it shouldn't matter if rtrequest can't figure out
* the interface if we're going to explicitly set it
* ourselves anyway. But practically we can't
* recover here because rtrequest will not do any of
* the work necessary to add the route if it can't
* find an interface. As long as there is a default
* route that leads to some interface, rtrequest will
* find an interface, so this problem should be
* rarely encountered.
* dwiggins@bbn.com
*/
rt_setif(saved_nrt,
info.rti_info[RTAX_IFP], info.rti_info[RTAX_IFA],
info.rti_info[RTAX_GATEWAY], ifscope);
(void)rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, saved_nrt);
saved_nrt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
saved_nrt->rt_rmx.rmx_locks |=
(rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
saved_nrt->rt_genmask = info.rti_info[RTAX_GENMASK];
RT_REMREF_LOCKED(saved_nrt);
RT_UNLOCK(saved_nrt);
}
break;
case RTM_DELETE:
error = rtrequest_scoped_locked(RTM_DELETE,
info.rti_info[RTAX_DST], info.rti_info[RTAX_GATEWAY],
info.rti_info[RTAX_NETMASK], rtm->rtm_flags, &saved_nrt,
ifscope);
if (error == 0) {
rt = saved_nrt;
RT_LOCK(rt);
goto report;
}
break;
case RTM_GET:
case RTM_CHANGE:
case RTM_LOCK:
rnh = rt_tables[info.rti_info[RTAX_DST]->sa_family];
if (rnh == NULL) {
senderr(EAFNOSUPPORT);
}
/*
* Lookup the best match based on the key-mask pair;
* callee adds a reference and checks for root node.
*/
rt = rt_lookup(TRUE, info.rti_info[RTAX_DST],
info.rti_info[RTAX_NETMASK], rnh, ifscope);
if (rt == NULL) {
senderr(ESRCH);
}
RT_LOCK(rt);
/*
* Holding rnh_lock here prevents the possibility of
* ifa from changing (e.g. in_ifinit), so it is safe
* to access its ifa_addr (down below) without locking.
*/
switch (rtm->rtm_type) {
case RTM_GET: {
kauth_cred_t cred __single;
kauth_cred_t* credp;
struct ifaddr *ifa2;
report:
cred = current_cached_proc_cred(PROC_NULL);
credp = &cred;
ifa2 = NULL;
RT_LOCK_ASSERT_HELD(rt);
info.rti_info[RTAX_DST] = rt_key(rt);
dst_sa_family = info.rti_info[RTAX_DST]->sa_family;
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
info.rti_info[RTAX_NETMASK] = rt_mask(rt);
info.rti_info[RTAX_GENMASK] = rt->rt_genmask;
if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
ifp = rt->rt_ifp;
if (ifp != NULL) {
ifnet_lock_shared(ifp);
ifa2 = ifp->if_lladdr;
info.rti_info[RTAX_IFP] =
ifa2->ifa_addr;
ifa_addref(ifa2);
ifnet_lock_done(ifp);
info.rti_info[RTAX_IFA] =
rt->rt_ifa->ifa_addr;
rtm->rtm_index = ifp->if_index;
} else {
info.rti_info[RTAX_IFP] = NULL;
info.rti_info[RTAX_IFA] = NULL;
}
} else if ((ifp = rt->rt_ifp) != NULL) {
rtm->rtm_index = ifp->if_index;
}
if (ifa2 != NULL) {
IFA_LOCK(ifa2);
}
len = rt_msg2(rtm->rtm_type, &info, NULL, NULL, credp);
if (ifa2 != NULL) {
IFA_UNLOCK(ifa2);
}
struct rt_msghdr *out_rtm;
out_rtm = kalloc_data(len, Z_WAITOK);
if (out_rtm == NULL) {
RT_UNLOCK(rt);
if (ifa2 != NULL) {
ifa_remref(ifa2);
}
senderr(ENOBUFS);
}
Bcopy(rtm, out_rtm, sizeof(struct rt_msghdr));
if (ifa2 != NULL) {
IFA_LOCK(ifa2);
}
(void) rt_msg2(out_rtm->rtm_type, &info, (caddr_t)out_rtm,
NULL, &cred);
if (ifa2 != NULL) {
IFA_UNLOCK(ifa2);
}
kfree_data(rtm, rtm_len);
rtm = out_rtm;
rtm_len = len;
rtm->rtm_flags = rt->rt_flags;
rt_getmetrics(rt, &rtm->rtm_rmx);
rtm->rtm_addrs = info.rti_addrs;
if (ifa2 != NULL) {
ifa_remref(ifa2);
}
break;
}
case RTM_CHANGE:
is_router = (rt->rt_flags & RTF_ROUTER) ? TRUE : FALSE;
if (info.rti_info[RTAX_GATEWAY] != NULL &&
(error = rt_setgate(rt, rt_key(rt),
info.rti_info[RTAX_GATEWAY]))) {
int tmp = error;
RT_UNLOCK(rt);
senderr(tmp);
}
/*
* If they tried to change things but didn't specify
* the required gateway, then just use the old one.
* This can happen if the user tries to change the
* flags on the default route without changing the
* default gateway. Changing flags still doesn't work.
*/
if ((rt->rt_flags & RTF_GATEWAY) &&
info.rti_info[RTAX_GATEWAY] == NULL) {
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
}
/*
* On Darwin, we call rt_setif which contains the
* equivalent to the code found at this very spot
* in BSD.
*/
rt_setif(rt,
info.rti_info[RTAX_IFP], info.rti_info[RTAX_IFA],
info.rti_info[RTAX_GATEWAY], ifscope);
if ((error = rt_setmetrics(rtm->rtm_inits,
&rtm->rtm_rmx, rt))) {
int tmp = error;
RT_UNLOCK(rt);
senderr(tmp);
}
if (info.rti_info[RTAX_GENMASK]) {
rt->rt_genmask = info.rti_info[RTAX_GENMASK];
}
/*
* Enqueue work item to invoke callback for this route entry
* This may not be needed always, but for now issue it anytime
* RTM_CHANGE gets called.
*/
route_event_enqueue_nwk_wq_entry(rt, NULL, ROUTE_ENTRY_REFRESH, NULL, TRUE);
/*
* If the route is for a router, walk the tree to send refresh
* event to protocol cloned entries
*/
if (is_router) {
struct route_event rt_ev;
route_event_init(&rt_ev, rt, NULL, ROUTE_ENTRY_REFRESH);
RT_UNLOCK(rt);
(void) rnh->rnh_walktree(rnh, route_event_walktree, (void *)&rt_ev);
RT_LOCK(rt);
}
OS_FALLTHROUGH;
case RTM_LOCK:
rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
rt->rt_rmx.rmx_locks |=
(rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
break;
}
RT_UNLOCK(rt);
break;
default:
senderr(EOPNOTSUPP);
}
flush:
if (rtm != NULL) {
if (error) {
rtm->rtm_errno = error;
} else {
rtm->rtm_flags |= RTF_DONE;
}
}
if (rt != NULL) {
RT_LOCK_ASSERT_NOTHELD(rt);
rtfree_locked(rt);
}
lck_mtx_unlock(rnh_lock);
/* relock the socket now */
socket_lock(so, 0);
/*
* Check to see if we don't want our own messages.
*/
if (!(so->so_options & SO_USELOOPBACK)) {
if (route_cb.any_count <= 1) {
kfree_data(rtm, rtm_len);
m_freem(m);
return error;
}
/* There is another listener, so construct message */
rp = sotorawcb(so);
}
if (rtm != NULL) {
m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
if (m->m_pkthdr.len < rtm->rtm_msglen) {
m_freem(m);
m = NULL;
} else if (m->m_pkthdr.len > rtm->rtm_msglen) {
m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
}
kfree_data(rtm, rtm_len);
}
if (sendonlytoself && m != NULL) {
error = 0;
if (sbappendaddr(&so->so_rcv, &route_src, m,
NULL, &error) != 0) {
sorwakeup(so);
}
if (error) {
return error;
}
} else {
struct sockproto route_proto = { .sp_family = PF_ROUTE, .sp_protocol = 0 };
if (rp != NULL) {
rp->rcb_proto.sp_family = 0; /* Avoid us */
}
if (dst_sa_family != 0) {
route_proto.sp_protocol = dst_sa_family;
}
if (m != NULL) {
socket_unlock(so, 0);
raw_input(m, &route_proto, &route_src, &route_dst);
socket_lock(so, 0);
}
if (rp != NULL) {
rp->rcb_proto.sp_family = PF_ROUTE;
}
}
return error;
}
void
rt_setexpire(struct rtentry *rt, uint64_t expiry)
{
/* set both rt_expire and rmx_expire */
rt->rt_expire = expiry;
if (expiry) {
rt->rt_rmx.rmx_expire =
(int32_t)(expiry + rt->base_calendartime -
rt->base_uptime);
} else {
rt->rt_rmx.rmx_expire = 0;
}
}
static int
rt_setmetrics(u_int32_t which, struct rt_metrics *in, struct rtentry *out)
{
if (!(which & RTV_REFRESH_HOST)) {
struct timeval caltime;
getmicrotime(&caltime);
#define metric(f, e) if (which & (f)) out->rt_rmx.e = in->e;
metric(RTV_RPIPE, rmx_recvpipe);
metric(RTV_SPIPE, rmx_sendpipe);
metric(RTV_SSTHRESH, rmx_ssthresh);
metric(RTV_RTT, rmx_rtt);
metric(RTV_RTTVAR, rmx_rttvar);
metric(RTV_HOPCOUNT, rmx_hopcount);
metric(RTV_MTU, rmx_mtu);
metric(RTV_EXPIRE, rmx_expire);
#undef metric
if (out->rt_rmx.rmx_expire > 0) {
/* account for system time change */
getmicrotime(&caltime);
out->base_calendartime +=
NET_CALCULATE_CLOCKSKEW(caltime,
out->base_calendartime,
net_uptime(), out->base_uptime);
rt_setexpire(out,
out->rt_rmx.rmx_expire -
out->base_calendartime +
out->base_uptime);
} else {
rt_setexpire(out, 0);
}
VERIFY(out->rt_expire == 0 || out->rt_rmx.rmx_expire != 0);
VERIFY(out->rt_expire != 0 || out->rt_rmx.rmx_expire == 0);
} else {
/* Only RTV_REFRESH_HOST must be set */
if ((which & ~RTV_REFRESH_HOST) ||
(out->rt_flags & RTF_STATIC) ||
!(out->rt_flags & RTF_LLINFO)) {
return EINVAL;
}
if (out->rt_llinfo_refresh == NULL) {
return ENOTSUP;
}
out->rt_llinfo_refresh(out);
}
return 0;
}
static void
rt_getmetrics(struct rtentry *in, struct rt_metrics *out)
{
struct timeval caltime;
VERIFY(in->rt_expire == 0 || in->rt_rmx.rmx_expire != 0);
VERIFY(in->rt_expire != 0 || in->rt_rmx.rmx_expire == 0);
*out = in->rt_rmx;
if (in->rt_expire != 0) {
/* account for system time change */
getmicrotime(&caltime);
in->base_calendartime +=
NET_CALCULATE_CLOCKSKEW(caltime,
in->base_calendartime, net_uptime(), in->base_uptime);
out->rmx_expire = (int32_t)(in->base_calendartime +
in->rt_expire - in->base_uptime);
} else {
out->rmx_expire = 0;
}
}
/*
* Set route's interface given info.rti_info[RTAX_IFP],
* info.rti_info[RTAX_IFA], and gateway.
*/
static void
rt_setif(struct rtentry *rt, struct sockaddr *Ifpaddr, struct sockaddr *Ifaaddr,
struct sockaddr *Gate, unsigned int ifscope)
{
struct ifaddr *ifa = NULL;
struct ifnet *ifp = NULL;
void (*ifa_rtrequest)(int, struct rtentry *, struct sockaddr *);
LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
RT_LOCK_ASSERT_HELD(rt);
/* Don't update a defunct route */
if (rt->rt_flags & RTF_CONDEMNED) {
return;
}
/* Add an extra ref for ourselves */
RT_ADDREF_LOCKED(rt);
/* Become a regular mutex, just in case */
RT_CONVERT_LOCK(rt);
/*
* New gateway could require new ifaddr, ifp; flags may also
* be different; ifp may be specified by ll sockaddr when
* protocol address is ambiguous.
*/
if (Ifpaddr && (ifa = ifa_ifwithnet_scoped(Ifpaddr, ifscope)) &&
(ifp = ifa->ifa_ifp) && (Ifaaddr || Gate)) {
ifa_remref(ifa);
ifa = ifaof_ifpforaddr(Ifaaddr ? Ifaaddr : Gate, ifp);
} else {
if (ifa != NULL) {
ifa_remref(ifa);
ifa = NULL;
}
if (Ifpaddr && (ifp = if_withname(Ifpaddr))) {
if (Gate) {
ifa = ifaof_ifpforaddr(Gate, ifp);
} else {
ifnet_lock_shared(ifp);
ifa = TAILQ_FIRST(&ifp->if_addrhead);
if (ifa != NULL) {
ifa_addref(ifa);
}
ifnet_lock_done(ifp);
}
} else if (Ifaaddr &&
(ifa = ifa_ifwithaddr_scoped(Ifaaddr, ifscope))) {
ifp = ifa->ifa_ifp;
} else if (Gate != NULL) {
/*
* Safe to drop rt_lock and use rt_key, since holding
* rnh_lock here prevents another thread from calling
* rt_setgate() on this route. We cannot hold the
* lock across ifa_ifwithroute since the lookup done
* by that routine may point to the same route.
*/
RT_UNLOCK(rt);
if ((ifa = ifa_ifwithroute_scoped_locked(rt->rt_flags,
rt_key(rt), Gate, ifscope)) != NULL) {
ifp = ifa->ifa_ifp;
}
RT_LOCK(rt);
/* Don't update a defunct route */
if (rt->rt_flags & RTF_CONDEMNED) {
if (ifa != NULL) {
ifa_remref(ifa);
}
/* Release extra ref */
RT_REMREF_LOCKED(rt);
return;
}
}
}
/* trigger route cache reevaluation */
if (rt_key(rt)->sa_family == AF_INET) {
routegenid_inet_update();
} else if (rt_key(rt)->sa_family == AF_INET6) {
routegenid_inet6_update();
}
if (ifa != NULL) {
struct ifaddr *oifa = rt->rt_ifa;
if (oifa != ifa) {
if (oifa != NULL) {
IFA_LOCK_SPIN(oifa);
ifa_rtrequest = oifa->ifa_rtrequest;
IFA_UNLOCK(oifa);
if (ifa_rtrequest != NULL) {
ifa_rtrequest(RTM_DELETE, rt, Gate);
}
}
rtsetifa(rt, ifa);
if (rt->rt_ifp != ifp) {
/*
* Purge any link-layer info caching.
*/
if (rt->rt_llinfo_purge != NULL) {
rt->rt_llinfo_purge(rt);
}
/*
* Adjust route ref count for the interfaces.
*/
if (rt->rt_if_ref_fn != NULL) {
rt->rt_if_ref_fn(ifp, 1);
rt->rt_if_ref_fn(rt->rt_ifp, -1);
}
}
rt->rt_ifp = ifp;
/*
* If this is the (non-scoped) default route, record
* the interface index used for the primary ifscope.
*/
if (rt_primary_default(rt, rt_key(rt))) {
set_primary_ifscope(rt_key(rt)->sa_family,
rt->rt_ifp->if_index);
}
/*
* If rmx_mtu is not locked, update it
* to the MTU used by the new interface.
*/
if (!(rt->rt_rmx.rmx_locks & RTV_MTU)) {
rt->rt_rmx.rmx_mtu = rt->rt_ifp->if_mtu;
if (rt_key(rt)->sa_family == AF_INET &&
INTF_ADJUST_MTU_FOR_CLAT46(ifp)) {
rt->rt_rmx.rmx_mtu = IN6_LINKMTU(rt->rt_ifp);
/* Further adjust the size for CLAT46 expansion */
rt->rt_rmx.rmx_mtu -= CLAT46_HDR_EXPANSION_OVERHD;
}
}
if (rt->rt_ifa != NULL) {
IFA_LOCK_SPIN(rt->rt_ifa);
ifa_rtrequest = rt->rt_ifa->ifa_rtrequest;
IFA_UNLOCK(rt->rt_ifa);
if (ifa_rtrequest != NULL) {
ifa_rtrequest(RTM_ADD, rt, Gate);
}
}
ifa_remref(ifa);
/* Release extra ref */
RT_REMREF_LOCKED(rt);
return;
}
ifa_remref(ifa);
ifa = NULL;
}
/* XXX: to reset gateway to correct value, at RTM_CHANGE */
if (rt->rt_ifa != NULL) {
IFA_LOCK_SPIN(rt->rt_ifa);
ifa_rtrequest = rt->rt_ifa->ifa_rtrequest;
IFA_UNLOCK(rt->rt_ifa);
if (ifa_rtrequest != NULL) {
ifa_rtrequest(RTM_ADD, rt, Gate);
}
}
/*
* Workaround for local address routes pointing to the loopback
* interface added by configd, until <rdar://problem/12970142>.
*/
if ((rt->rt_ifp->if_flags & IFF_LOOPBACK) &&
(rt->rt_flags & RTF_HOST) && rt->rt_ifa->ifa_ifp == rt->rt_ifp) {
ifa = ifa_ifwithaddr(rt_key(rt));
if (ifa != NULL) {
if (ifa != rt->rt_ifa) {
rtsetifa(rt, ifa);
}
ifa_remref(ifa);
}
}
/* Release extra ref */
RT_REMREF_LOCKED(rt);
}
/*
* Extract the addresses of the passed sockaddrs.
* Do a little sanity checking so as to avoid bad memory references.
* This data is derived straight from userland.
*/
static int
rt_xaddrs(caddr_t cp __ended_by(cplim), caddr_t cplim, struct rt_addrinfo *rtinfo)
{
struct sockaddr *sa;
int i;
bzero(rtinfo->rti_info, sizeof(rtinfo->rti_info));
for (i = 0; (i < RTAX_MAX) && (cp < cplim); i++) {
if ((rtinfo->rti_addrs & (1 << i)) == 0) {
continue;
}
sa = SA(cp);
/*
* It won't fit.
*/
if ((cp + sa->sa_len) > cplim) {
return EINVAL;
}
if (sa->sa_len > sizeof(struct sockaddr_storage)) {
return EINVAL;
}
/*
* there are no more.. quit now
* If there are more bits, they are in error.
* I've seen this. route(1) can evidently generate these.
* This causes kernel to core dump.
* for compatibility, If we see this, point to a safe address.
*/
if (sa->sa_len == 0) {
rtinfo->rti_info[i] = &sa_zero;
return 0; /* should be EINVAL but for compat */
}
if (sa->sa_len < offsetof(struct sockaddr, sa_data)) {
return EINVAL;
}
/* accept it */
rtinfo->rti_info[i] = sa;
ADVANCE32(cp, sa, cplim);
}
return 0;
}
static struct mbuf *
rt_msg1(u_char type, struct rt_addrinfo *rtinfo)
{
struct rt_msghdr *rtm;
struct mbuf *m;
int i;
int len, dlen, off;
switch (type) {
case RTM_DELADDR:
case RTM_NEWADDR:
len = sizeof(struct ifa_msghdr);
break;
case RTM_DELMADDR:
case RTM_NEWMADDR:
len = sizeof(struct ifma_msghdr);
break;
case RTM_IFINFO:
len = sizeof(struct if_msghdr);
break;
default:
len = sizeof(struct rt_msghdr);
}
m = m_gethdr(M_DONTWAIT, MT_DATA);
if (m && len > MHLEN) {
MCLGET(m, M_DONTWAIT);
if (!(m->m_flags & M_EXT)) {
m_free(m);
m = NULL;
}
}
if (m == NULL) {
return NULL;
}
m->m_pkthdr.len = m->m_len = len;
m->m_pkthdr.rcvif = NULL;
rtm = mtod(m, struct rt_msghdr *);
bzero((caddr_t)rtm, len);
off = len;
for (i = 0; i < RTAX_MAX; i++) {
struct sockaddr *sa, *hint;
uint8_t ssbuf[SOCK_MAXADDRLEN + 1];
/*
* Make sure to accomodate the largest possible size of sa_len.
*/
_CASSERT(sizeof(ssbuf) == (SOCK_MAXADDRLEN + 1));
if ((sa = rtinfo->rti_info[i]) == NULL) {
continue;
}
switch (i) {
case RTAX_DST:
case RTAX_NETMASK:
if ((hint = rtinfo->rti_info[RTAX_DST]) == NULL) {
hint = rtinfo->rti_info[RTAX_IFA];
}
/* Scrub away any trace of embedded interface scope */
sa = rtm_scrub(type, i, hint, sa, &ssbuf,
sizeof(ssbuf), NULL);
break;
default:
break;
}
rtinfo->rti_addrs |= (1 << i);
dlen = sa->sa_len;
m_copyback(m, off, dlen, (caddr_t)sa);
len = off + dlen;
off += ROUNDUP32(dlen);
}
if (m->m_pkthdr.len != len) {
m_freem(m);
return NULL;
}
rtm->rtm_msglen = (u_short)len;
rtm->rtm_version = RTM_VERSION;
rtm->rtm_type = type;
return m;
}
static int
rt_msg2(u_char type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w,
kauth_cred_t* credp)
{
int i;
int len, dlen, rlen, second_time = 0;
caddr_t cp0;
rtinfo->rti_addrs = 0;
again:
switch (type) {
case RTM_DELADDR:
case RTM_NEWADDR:
len = sizeof(struct ifa_msghdr);
break;
case RTM_DELMADDR:
case RTM_NEWMADDR:
len = sizeof(struct ifma_msghdr);
break;
case RTM_IFINFO:
len = sizeof(struct if_msghdr);
break;
case RTM_IFINFO2:
len = sizeof(struct if_msghdr2);
break;
case RTM_NEWMADDR2:
len = sizeof(struct ifma_msghdr2);
break;
case RTM_GET_EXT:
len = sizeof(struct rt_msghdr_ext);
break;
case RTM_GET2:
len = sizeof(struct rt_msghdr2);
break;
default:
len = sizeof(struct rt_msghdr);
}
cp0 = cp;
if (cp0) {
cp += len;
}
for (i = 0; i < RTAX_MAX; i++) {
struct sockaddr *sa, *hint;
uint8_t ssbuf[SOCK_MAXADDRLEN + 1];
/*
* Make sure to accomodate the largest possible size of sa_len.
*/
_CASSERT(sizeof(ssbuf) == (SOCK_MAXADDRLEN + 1));
if ((sa = rtinfo->rti_info[i]) == NULL) {
continue;
}
switch (i) {
case RTAX_DST:
case RTAX_NETMASK:
if ((hint = rtinfo->rti_info[RTAX_DST]) == NULL) {
hint = rtinfo->rti_info[RTAX_IFA];
}
/* Scrub away any trace of embedded interface scope */
sa = rtm_scrub(type, i, hint, sa, &ssbuf,
sizeof(ssbuf), NULL);
break;
case RTAX_GATEWAY:
case RTAX_IFP:
sa = rtm_scrub(type, i, NULL, sa, &ssbuf,
sizeof(ssbuf), credp);
break;
default:
break;
}
rtinfo->rti_addrs |= (1 << i);
dlen = sa->sa_len;
rlen = ROUNDUP32(dlen);
if (cp) {
bcopy((caddr_t)sa, cp, (size_t)dlen);
if (dlen != rlen) {
bzero(cp + dlen, rlen - dlen);
}
cp += rlen;
}
len += rlen;
}
if (cp == NULL && w != NULL && !second_time) {
struct walkarg *rw = w;
if (rw->w_req != NULL) {
if (rw->w_tmemsize < len) {
if (rw->w_tmem != NULL) {
kfree_data(rw->w_tmem, rw->w_tmemsize);
}
rw->w_tmem = (caddr_t) kalloc_data(len, Z_ZERO | Z_WAITOK);
if (rw->w_tmem != NULL) {
rw->w_tmemsize = len;
}
}
if (rw->w_tmem != NULL) {
cp = rw->w_tmem;
second_time = 1;
goto again;
}
}
}
if (cp) {
struct rt_msghdr *rtm = (struct rt_msghdr *)(void *)cp0;
rtm->rtm_version = RTM_VERSION;
rtm->rtm_type = type;
rtm->rtm_msglen = (u_short)len;
}
return len;
}
/*
* This routine is called to generate a message from the routing
* socket indicating that a redirect has occurred, a routing lookup
* has failed, or that a protocol has detected timeouts to a particular
* destination.
*/
void
rt_missmsg(u_char type, struct rt_addrinfo *rtinfo, int flags, int error)
{
struct rt_msghdr *rtm;
struct mbuf *m;
struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
struct sockproto route_proto = { .sp_family = PF_ROUTE, .sp_protocol = 0 };
if (route_cb.any_count == 0) {
return;
}
m = rt_msg1(type, rtinfo);
if (m == NULL) {
return;
}
rtm = mtod(m, struct rt_msghdr *);
rtm->rtm_flags = RTF_DONE | flags;
rtm->rtm_errno = error;
rtm->rtm_addrs = rtinfo->rti_addrs;
route_proto.sp_family = sa ? sa->sa_family : 0;
raw_input(m, &route_proto, &route_src, &route_dst);
}
/*
* This routine is called to generate a message from the routing
* socket indicating that the status of a network interface has changed.
*/
void
rt_ifmsg(struct ifnet *ifp)
{
struct if_msghdr *ifm;
struct mbuf *m;
struct rt_addrinfo info;
struct sockproto route_proto = { .sp_family = PF_ROUTE, .sp_protocol = 0 };
if (route_cb.any_count == 0) {
return;
}
bzero((caddr_t)&info, sizeof(info));
m = rt_msg1(RTM_IFINFO, &info);
if (m == NULL) {
return;
}
ifm = mtod(m, struct if_msghdr *);
ifm->ifm_index = ifp->if_index;
ifm->ifm_flags = (u_short)ifp->if_flags;
if_data_internal_to_if_data(ifp, &ifp->if_data, &ifm->ifm_data);
ifm->ifm_addrs = 0;
raw_input(m, &route_proto, &route_src, &route_dst);
}
/*
* This is called to generate messages from the routing socket
* indicating a network interface has had addresses associated with it.
* if we ever reverse the logic and replace messages TO the routing
* socket indicate a request to configure interfaces, then it will
* be unnecessary as the routing socket will automatically generate
* copies of it.
*
* Since this is coming from the interface, it is expected that the
* interface will be locked. Caller must hold rnh_lock and rt_lock.
*/
void
rt_newaddrmsg(u_char cmd, struct ifaddr *ifa, int error, struct rtentry *rt)
{
struct rt_addrinfo info;
struct sockaddr *sa = 0;
int pass;
struct mbuf *m = 0;
struct ifnet *ifp = ifa->ifa_ifp;
struct sockproto route_proto = { .sp_family = PF_ROUTE, .sp_protocol = 0 };
LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
RT_LOCK_ASSERT_HELD(rt);
if (route_cb.any_count == 0) {
return;
}
/* Become a regular mutex, just in case */
RT_CONVERT_LOCK(rt);
for (pass = 1; pass < 3; pass++) {
bzero((caddr_t)&info, sizeof(info));
if ((cmd == RTM_ADD && pass == 1) ||
(cmd == RTM_DELETE && pass == 2)) {
struct ifa_msghdr *ifam;
u_char ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
/* Lock ifp for if_lladdr */
ifnet_lock_shared(ifp);
IFA_LOCK(ifa);
info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
/*
* Holding ifnet lock here prevents the link address
* from changing contents, so no need to hold its
* lock. The link address is always present; it's
* never freed.
*/
info.rti_info[RTAX_IFP] = ifp->if_lladdr->ifa_addr;
info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
if ((m = rt_msg1(ncmd, &info)) == NULL) {
IFA_UNLOCK(ifa);
ifnet_lock_done(ifp);
continue;
}
IFA_UNLOCK(ifa);
ifnet_lock_done(ifp);
ifam = mtod(m, struct ifa_msghdr *);
ifam->ifam_index = ifp->if_index;
IFA_LOCK_SPIN(ifa);
ifam->ifam_metric = ifa->ifa_metric;
ifam->ifam_flags = ifa->ifa_flags;
IFA_UNLOCK(ifa);
ifam->ifam_addrs = info.rti_addrs;
}
if ((cmd == RTM_ADD && pass == 2) ||
(cmd == RTM_DELETE && pass == 1)) {
struct rt_msghdr *rtm;
if (rt == NULL) {
continue;
}
info.rti_info[RTAX_NETMASK] = rt_mask(rt);
info.rti_info[RTAX_DST] = sa = rt_key(rt);
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
if ((m = rt_msg1(cmd, &info)) == NULL) {
continue;
}
rtm = mtod(m, struct rt_msghdr *);
rtm->rtm_index = ifp->if_index;
rtm->rtm_flags |= rt->rt_flags;
rtm->rtm_errno = error;
rtm->rtm_addrs = info.rti_addrs;
}
route_proto.sp_protocol = sa ? sa->sa_family : 0;
raw_input(m, &route_proto, &route_src, &route_dst);
}
}
/*
* This is the analogue to the rt_newaddrmsg which performs the same
* function but for multicast group memberhips. This is easier since
* there is no route state to worry about.
*/
void
rt_newmaddrmsg(u_char cmd, struct ifmultiaddr *ifma)
{
struct rt_addrinfo info;
struct mbuf *m = 0;
struct ifnet *ifp = ifma->ifma_ifp;
struct ifma_msghdr *ifmam;
struct sockproto route_proto = { .sp_family = PF_ROUTE, .sp_protocol = 0 };
if (route_cb.any_count == 0) {
return;
}
/* Lock ifp for if_lladdr */
ifnet_lock_shared(ifp);
bzero((caddr_t)&info, sizeof(info));
IFMA_LOCK(ifma);
info.rti_info[RTAX_IFA] = ifma->ifma_addr;
/* lladdr doesn't need lock */
info.rti_info[RTAX_IFP] = ifp->if_lladdr->ifa_addr;
/*
* If a link-layer address is present, present it as a ``gateway''
* (similarly to how ARP entries, e.g., are presented).
*/
info.rti_info[RTAX_GATEWAY] = (ifma->ifma_ll != NULL) ?
ifma->ifma_ll->ifma_addr : NULL;
if ((m = rt_msg1(cmd, &info)) == NULL) {
IFMA_UNLOCK(ifma);
ifnet_lock_done(ifp);
return;
}
ifmam = mtod(m, struct ifma_msghdr *);
ifmam->ifmam_index = ifp->if_index;
ifmam->ifmam_addrs = info.rti_addrs;
route_proto.sp_protocol = ifma->ifma_addr->sa_family;
IFMA_UNLOCK(ifma);
ifnet_lock_done(ifp);
raw_input(m, &route_proto, &route_src, &route_dst);
}
const char *
rtm2str(int cmd)
{
const char *c = "RTM_?";
switch (cmd) {
case RTM_ADD:
c = "RTM_ADD";
break;
case RTM_DELETE:
c = "RTM_DELETE";
break;
case RTM_CHANGE:
c = "RTM_CHANGE";
break;
case RTM_GET:
c = "RTM_GET";
break;
case RTM_LOSING:
c = "RTM_LOSING";
break;
case RTM_REDIRECT:
c = "RTM_REDIRECT";
break;
case RTM_MISS:
c = "RTM_MISS";
break;
case RTM_LOCK:
c = "RTM_LOCK";
break;
case RTM_OLDADD:
c = "RTM_OLDADD";
break;
case RTM_OLDDEL:
c = "RTM_OLDDEL";
break;
case RTM_RESOLVE:
c = "RTM_RESOLVE";
break;
case RTM_NEWADDR:
c = "RTM_NEWADDR";
break;
case RTM_DELADDR:
c = "RTM_DELADDR";
break;
case RTM_IFINFO:
c = "RTM_IFINFO";
break;
case RTM_NEWMADDR:
c = "RTM_NEWMADDR";
break;
case RTM_DELMADDR:
c = "RTM_DELMADDR";
break;
case RTM_GET_SILENT:
c = "RTM_GET_SILENT";
break;
case RTM_IFINFO2:
c = "RTM_IFINFO2";
break;
case RTM_NEWMADDR2:
c = "RTM_NEWMADDR2";
break;
case RTM_GET2:
c = "RTM_GET2";
break;
case RTM_GET_EXT:
c = "RTM_GET_EXT";
break;
}
return c;
}
/*
* This is used in dumping the kernel table via sysctl().
*/
static int
sysctl_dumpentry(struct radix_node *rn, void *vw)
{
struct walkarg *w = vw;
rtentry_ref_t rt = (rtentry_ref_t)rn;
int error = 0, size;
struct rt_addrinfo info;
kauth_cred_t cred __single;
kauth_cred_t *credp;
cred = current_cached_proc_cred(PROC_NULL);
credp = &cred;
RT_LOCK(rt);
if ((w->w_op == NET_RT_FLAGS || w->w_op == NET_RT_FLAGS_PRIV) &&
!(rt->rt_flags & w->w_arg)) {
goto done;
}
/*
* If the matching route has RTF_LLINFO set, then we can skip scrubbing the MAC
* only if the outgoing interface is not loopback and the process has entitlement
* for neighbor cache read.
*/
if (w->w_op == NET_RT_FLAGS_PRIV && (rt->rt_flags & RTF_LLINFO)) {
if (rt->rt_ifp != lo_ifp &&
(route_op_entitlement_check(NULL, cred, ROUTE_OP_READ, TRUE) == 0)) {
credp = NULL;
}
}
bzero((caddr_t)&info, sizeof(info));
info.rti_info[RTAX_DST] = rt_key(rt);
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
info.rti_info[RTAX_NETMASK] = rt_mask(rt);
info.rti_info[RTAX_GENMASK] = rt->rt_genmask;
if (RT_HAS_IFADDR(rt)) {
info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
}
if (w->w_op != NET_RT_DUMP2) {
size = rt_msg2(RTM_GET, &info, NULL, w, credp);
if (w->w_req != NULL && w->w_tmem != NULL) {
struct rt_msghdr *rtm =
(struct rt_msghdr *)(void *)w->w_tmem;
rtm->rtm_flags = rt->rt_flags;
rtm->rtm_use = rt->rt_use;
rt_getmetrics(rt, &rtm->rtm_rmx);
rtm->rtm_index = rt->rt_ifp->if_index;
rtm->rtm_pid = 0;
rtm->rtm_seq = 0;
rtm->rtm_errno = 0;
rtm->rtm_addrs = info.rti_addrs;
error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
}
} else {
size = rt_msg2(RTM_GET2, &info, NULL, w, credp);
if (w->w_req != NULL && w->w_tmem != NULL) {
struct rt_msghdr2 *rtm =
(struct rt_msghdr2 *)(void *)w->w_tmem;
rtm->rtm_flags = rt->rt_flags;
rtm->rtm_use = rt->rt_use;
rt_getmetrics(rt, &rtm->rtm_rmx);
rtm->rtm_index = rt->rt_ifp->if_index;
rtm->rtm_refcnt = rt->rt_refcnt;
if (rt->rt_parent) {
rtm->rtm_parentflags = rt->rt_parent->rt_flags;
} else {
rtm->rtm_parentflags = 0;
}
rtm->rtm_reserved = 0;
rtm->rtm_addrs = info.rti_addrs;
error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
}
}
done:
RT_UNLOCK(rt);
return error;
}
/*
* This is used for dumping extended information from route entries.
*/
static int
sysctl_dumpentry_ext(struct radix_node *rn, void *vw)
{
struct walkarg *w = vw;
rtentry_ref_t rt = (rtentry_ref_t)rn;
int error = 0, size;
struct rt_addrinfo info;
kauth_cred_t cred __single;
cred = current_cached_proc_cred(PROC_NULL);
RT_LOCK(rt);
if (w->w_op == NET_RT_DUMPX_FLAGS && !(rt->rt_flags & w->w_arg)) {
goto done;
}
bzero(&info, sizeof(info));
info.rti_info[RTAX_DST] = rt_key(rt);
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
info.rti_info[RTAX_NETMASK] = rt_mask(rt);
info.rti_info[RTAX_GENMASK] = rt->rt_genmask;
size = rt_msg2(RTM_GET_EXT, &info, NULL, w, &cred);
if (w->w_req != NULL && w->w_tmem != NULL) {
struct rt_msghdr_ext *ertm =
(struct rt_msghdr_ext *)(void *)w->w_tmem;
ertm->rtm_flags = rt->rt_flags;
ertm->rtm_use = rt->rt_use;
rt_getmetrics(rt, &ertm->rtm_rmx);
ertm->rtm_index = rt->rt_ifp->if_index;
ertm->rtm_pid = 0;
ertm->rtm_seq = 0;
ertm->rtm_errno = 0;
ertm->rtm_addrs = info.rti_addrs;
if (rt->rt_llinfo_get_ri == NULL) {
bzero(&ertm->rtm_ri, sizeof(ertm->rtm_ri));
ertm->rtm_ri.ri_rssi = IFNET_RSSI_UNKNOWN;
ertm->rtm_ri.ri_lqm = IFNET_LQM_THRESH_OFF;
ertm->rtm_ri.ri_npm = IFNET_NPM_THRESH_UNKNOWN;
} else {
rt->rt_llinfo_get_ri(rt, &ertm->rtm_ri);
}
error = SYSCTL_OUT(w->w_req, (caddr_t)ertm, size);
}
done:
RT_UNLOCK(rt);
return error;
}
/*
* rdar://9307819
* To avoid to call copyout() while holding locks and to cause problems
* in the paging path, sysctl_iflist() and sysctl_iflist2() contstruct
* the list in two passes. In the first pass we compute the total
* length of the data we are going to copyout, then we release
* all locks to allocate a temporary buffer that gets filled
* in the second pass.
*
* Note that we are verifying the assumption that kalloc() returns a buffer
* that is at least 32 bits aligned and that the messages and addresses are
* 32 bits aligned.
*/
static int
sysctl_iflist(int af, struct walkarg *w)
{
struct ifnet *ifp;
struct ifaddr *ifa;
struct rt_addrinfo info;
int error = 0;
int pass = 0;
size_t len = 0, total_len = 0, total_buffer_len = 0, current_len = 0;
char *total_buffer = NULL, *cp = NULL;
kauth_cred_t cred __single;
cred = current_cached_proc_cred(PROC_NULL);
bzero((caddr_t)&info, sizeof(info));
for (pass = 0; pass < 2; pass++) {
ifnet_head_lock_shared();
TAILQ_FOREACH(ifp, &ifnet_head, if_link) {
if (error) {
break;
}
if (w->w_arg && w->w_arg != ifp->if_index) {
continue;
}
ifnet_lock_shared(ifp);
/*
* Holding ifnet lock here prevents the link address
* from changing contents, so no need to hold the ifa
* lock. The link address is always present; it's
* never freed.
*/
ifa = ifp->if_lladdr;
info.rti_info[RTAX_IFP] = ifa->ifa_addr;
len = rt_msg2(RTM_IFINFO, &info, NULL, NULL, &cred);
if (pass == 0) {
if (os_add_overflow(total_len, len, &total_len)) {
ifnet_lock_done(ifp);
error = ENOBUFS;
break;
}
} else {
struct if_msghdr *ifm;
if (current_len + len > total_len) {
ifnet_lock_done(ifp);
error = ENOBUFS;
break;
}
info.rti_info[RTAX_IFP] = ifa->ifa_addr;
len = rt_msg2(RTM_IFINFO, &info,
(caddr_t)cp, NULL, &cred);
info.rti_info[RTAX_IFP] = NULL;
ifm = (struct if_msghdr *)(void *)cp;
ifm->ifm_index = ifp->if_index;
ifm->ifm_flags = (u_short)ifp->if_flags;
if_data_internal_to_if_data(ifp, &ifp->if_data,
&ifm->ifm_data);
ifm->ifm_addrs = info.rti_addrs;
/*
* <rdar://problem/32940901>
* Round bytes only for non-platform
*/
if (!csproc_get_platform_binary(w->w_req->p)) {
ALIGN_BYTES(ifm->ifm_data.ifi_ibytes);
ALIGN_BYTES(ifm->ifm_data.ifi_obytes);
}
cp += len;
VERIFY(IS_P2ALIGNED(cp, sizeof(u_int32_t)));
current_len += len;
VERIFY(current_len <= total_len);
}
while ((ifa = ifa->ifa_link.tqe_next) != NULL) {
IFA_LOCK(ifa);
if (af && af != ifa->ifa_addr->sa_family) {
IFA_UNLOCK(ifa);
continue;
}
if (ifa->ifa_addr->sa_family == AF_INET6 &&
(((struct in6_ifaddr *)ifa)->ia6_flags &
IN6_IFF_CLAT46) != 0) {
IFA_UNLOCK(ifa);
continue;
}
info.rti_info[RTAX_IFA] = ifa->ifa_addr;
info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
len = rt_msg2(RTM_NEWADDR, &info, NULL, NULL,
&cred);
if (pass == 0) {
if (os_add_overflow(total_len, len, &total_len)) {
IFA_UNLOCK(ifa);
error = ENOBUFS;
break;
}
} else {
struct ifa_msghdr *ifam;
if (current_len + len > total_len) {
IFA_UNLOCK(ifa);
error = ENOBUFS;
break;
}
len = rt_msg2(RTM_NEWADDR, &info,
(caddr_t)cp, NULL, &cred);
ifam = (struct ifa_msghdr *)(void *)cp;
ifam->ifam_index =
ifa->ifa_ifp->if_index;
ifam->ifam_flags = ifa->ifa_flags;
ifam->ifam_metric = ifa->ifa_metric;
ifam->ifam_addrs = info.rti_addrs;
cp += len;
VERIFY(IS_P2ALIGNED(cp,
sizeof(u_int32_t)));
current_len += len;
VERIFY(current_len <= total_len);
}
IFA_UNLOCK(ifa);
}
ifnet_lock_done(ifp);
info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] =
info.rti_info[RTAX_BRD] = NULL;
}
ifnet_head_done();
if (error != 0) {
if (error == ENOBUFS) {
printf("%s: current_len (%lu) + len (%lu) > "
"total_len (%lu)\n", __func__, current_len,
len, total_len);
}
break;
}
if (pass == 0) {
/* Better to return zero length buffer than ENOBUFS */
if (total_len == 0) {
total_len = 1;
}
total_len += total_len >> 3;
total_buffer_len = total_len;
total_buffer = (char *) kalloc_data(total_len, Z_ZERO | Z_WAITOK);
if (total_buffer == NULL) {
printf("%s: kalloc_data(%lu) failed\n", __func__,
total_len);
error = ENOBUFS;
break;
}
cp = total_buffer;
VERIFY(IS_P2ALIGNED(cp, sizeof(u_int32_t)));
} else {
error = SYSCTL_OUT(w->w_req, total_buffer, current_len);
if (error) {
break;
}
}
}
if (total_buffer != NULL) {
kfree_data(total_buffer, total_buffer_len);
}
return error;
}
static int
sysctl_iflist2(int af, struct walkarg *w)
{
struct ifnet *ifp;
struct ifaddr *ifa;
struct rt_addrinfo info;
int error = 0;
int pass = 0;
size_t len = 0, total_len = 0, total_buffer_len = 0, current_len = 0;
char *total_buffer = NULL, *cp = NULL;
kauth_cred_t cred __single;
cred = current_cached_proc_cred(PROC_NULL);
bzero((caddr_t)&info, sizeof(info));
for (pass = 0; pass < 2; pass++) {
struct ifmultiaddr *ifma;
ifnet_head_lock_shared();
TAILQ_FOREACH(ifp, &ifnet_head, if_link) {
if (error) {
break;
}
if (w->w_arg && w->w_arg != ifp->if_index) {
continue;
}
ifnet_lock_shared(ifp);
/*
* Holding ifnet lock here prevents the link address
* from changing contents, so no need to hold the ifa
* lock. The link address is always present; it's
* never freed.
*/
ifa = ifp->if_lladdr;
info.rti_info[RTAX_IFP] = ifa->ifa_addr;
len = rt_msg2(RTM_IFINFO2, &info, NULL, NULL, &cred);
if (pass == 0) {
if (os_add_overflow(total_len, len, &total_len)) {
ifnet_lock_done(ifp);
error = ENOBUFS;
break;
}
} else {
struct if_msghdr2 *ifm;
if (current_len + len > total_len) {
ifnet_lock_done(ifp);
error = ENOBUFS;
break;
}
info.rti_info[RTAX_IFP] = ifa->ifa_addr;
len = rt_msg2(RTM_IFINFO2, &info,
(caddr_t)cp, NULL, &cred);
info.rti_info[RTAX_IFP] = NULL;
ifm = (struct if_msghdr2 *)(void *)cp;
ifm->ifm_addrs = info.rti_addrs;
ifm->ifm_flags = (u_short)ifp->if_flags;
ifm->ifm_index = ifp->if_index;
ifm->ifm_snd_len = IFCQ_LEN(ifp->if_snd);
ifm->ifm_snd_maxlen = IFCQ_MAXLEN(ifp->if_snd);
ifm->ifm_snd_drops =
(int)ifp->if_snd->ifcq_dropcnt.packets;
ifm->ifm_timer = ifp->if_timer;
if_data_internal_to_if_data64(ifp,
&ifp->if_data, &ifm->ifm_data);
/*
* <rdar://problem/32940901>
* Round bytes only for non-platform
*/
if (!csproc_get_platform_binary(w->w_req->p)) {
ALIGN_BYTES(ifm->ifm_data.ifi_ibytes);
ALIGN_BYTES(ifm->ifm_data.ifi_obytes);
}
cp += len;
VERIFY(IS_P2ALIGNED(cp, sizeof(u_int32_t)));
current_len += len;
VERIFY(current_len <= total_len);
}
while ((ifa = ifa->ifa_link.tqe_next) != NULL) {
IFA_LOCK(ifa);
if (af && af != ifa->ifa_addr->sa_family) {
IFA_UNLOCK(ifa);
continue;
}
if (ifa->ifa_addr->sa_family == AF_INET6 &&
(((struct in6_ifaddr *)ifa)->ia6_flags &
IN6_IFF_CLAT46) != 0) {
IFA_UNLOCK(ifa);
continue;
}
info.rti_info[RTAX_IFA] = ifa->ifa_addr;
info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
len = rt_msg2(RTM_NEWADDR, &info, NULL, NULL,
&cred);
if (pass == 0) {
if (os_add_overflow(total_len, len, &total_len)) {
IFA_UNLOCK(ifa);
error = ENOBUFS;
break;
}
} else {
struct ifa_msghdr *ifam;
if (current_len + len > total_len) {
IFA_UNLOCK(ifa);
error = ENOBUFS;
break;
}
len = rt_msg2(RTM_NEWADDR, &info,
(caddr_t)cp, NULL, &cred);
ifam = (struct ifa_msghdr *)(void *)cp;
ifam->ifam_index =
ifa->ifa_ifp->if_index;
ifam->ifam_flags = ifa->ifa_flags;
ifam->ifam_metric = ifa->ifa_metric;
ifam->ifam_addrs = info.rti_addrs;
cp += len;
VERIFY(IS_P2ALIGNED(cp,
sizeof(u_int32_t)));
current_len += len;
VERIFY(current_len <= total_len);
}
IFA_UNLOCK(ifa);
}
if (error) {
ifnet_lock_done(ifp);
break;
}
for (ifma = LIST_FIRST(&ifp->if_multiaddrs);
ifma != NULL; ifma = LIST_NEXT(ifma, ifma_link)) {
struct ifaddr *ifa0;
IFMA_LOCK(ifma);
if (af && af != ifma->ifma_addr->sa_family) {
IFMA_UNLOCK(ifma);
continue;
}
bzero((caddr_t)&info, sizeof(info));
info.rti_info[RTAX_IFA] = ifma->ifma_addr;
/*
* Holding ifnet lock here prevents the link
* address from changing contents, so no need
* to hold the ifa0 lock. The link address is
* always present; it's never freed.
*/
ifa0 = ifp->if_lladdr;
info.rti_info[RTAX_IFP] = ifa0->ifa_addr;
if (ifma->ifma_ll != NULL) {
info.rti_info[RTAX_GATEWAY] =
ifma->ifma_ll->ifma_addr;
}
len = rt_msg2(RTM_NEWMADDR2, &info, NULL, NULL,
&cred);
if (pass == 0) {
total_len += len;
} else {
struct ifma_msghdr2 *ifmam;
if (current_len + len > total_len) {
IFMA_UNLOCK(ifma);
error = ENOBUFS;
break;
}
len = rt_msg2(RTM_NEWMADDR2, &info,
(caddr_t)cp, NULL, &cred);
ifmam =
(struct ifma_msghdr2 *)(void *)cp;
ifmam->ifmam_addrs = info.rti_addrs;
ifmam->ifmam_flags = 0;
ifmam->ifmam_index =
ifma->ifma_ifp->if_index;
ifmam->ifmam_refcount =
ifma->ifma_reqcnt;
cp += len;
VERIFY(IS_P2ALIGNED(cp,
sizeof(u_int32_t)));
current_len += len;
}
IFMA_UNLOCK(ifma);
}
ifnet_lock_done(ifp);
info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] =
info.rti_info[RTAX_BRD] = NULL;
}
ifnet_head_done();
if (error) {
if (error == ENOBUFS) {
printf("%s: current_len (%lu) + len (%lu) > "
"total_len (%lu)\n", __func__, current_len,
len, total_len);
}
break;
}
if (pass == 0) {
/* Better to return zero length buffer than ENOBUFS */
if (total_len == 0) {
total_len = 1;
}
total_len += total_len >> 3;
total_buffer_len = total_len;
total_buffer = (char *) kalloc_data(total_len, Z_ZERO | Z_WAITOK);
if (total_buffer == NULL) {
printf("%s: kalloc_data(%lu) failed\n", __func__,
total_len);
error = ENOBUFS;
break;
}
cp = total_buffer;
VERIFY(IS_P2ALIGNED(cp, sizeof(u_int32_t)));
} else {
error = SYSCTL_OUT(w->w_req, total_buffer, current_len);
if (error) {
break;
}
}
}
if (total_buffer != NULL) {
kfree_data(total_buffer, total_buffer_len);
}
return error;
}
static int
sysctl_rtstat(struct sysctl_req *req)
{
return SYSCTL_OUT(req, &rtstat, sizeof(struct rtstat));
}
static int
sysctl_rttrash(struct sysctl_req *req)
{
return SYSCTL_OUT(req, &rttrash, sizeof(rttrash));
}
static int
sysctl_rtsock SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp)
int *name = (int *)arg1;
u_int namelen = arg2;
struct radix_node_head *rnh;
int i, error = EINVAL;
u_char af;
struct walkarg w;
name++;
namelen--;
if (req->newptr) {
return EPERM;
}
if (namelen != 3) {
return EINVAL;
}
af = (u_char)name[0];
Bzero(&w, sizeof(w));
w.w_op = name[1];
w.w_arg = name[2];
w.w_req = req;
switch (w.w_op) {
case NET_RT_DUMP:
case NET_RT_DUMP2:
case NET_RT_FLAGS:
case NET_RT_FLAGS_PRIV:
lck_mtx_lock(rnh_lock);
for (i = 1; i <= AF_MAX; i++) {
if ((rnh = rt_tables[i]) && (af == 0 || af == i) &&
(error = rnh->rnh_walktree(rnh,
sysctl_dumpentry, &w))) {
break;
}
}
lck_mtx_unlock(rnh_lock);
break;
case NET_RT_DUMPX:
case NET_RT_DUMPX_FLAGS:
lck_mtx_lock(rnh_lock);
for (i = 1; i <= AF_MAX; i++) {
if ((rnh = rt_tables[i]) && (af == 0 || af == i) &&
(error = rnh->rnh_walktree(rnh,
sysctl_dumpentry_ext, &w))) {
break;
}
}
lck_mtx_unlock(rnh_lock);
break;
case NET_RT_IFLIST:
error = sysctl_iflist(af, &w);
break;
case NET_RT_IFLIST2:
error = sysctl_iflist2(af, &w);
break;
case NET_RT_STAT:
error = sysctl_rtstat(req);
break;
case NET_RT_TRASH:
error = sysctl_rttrash(req);
break;
}
if (w.w_tmem != NULL) {
kfree_data(w.w_tmem, w.w_tmemsize);
}
return error;
}
/*
* Definitions of protocols supported in the ROUTE domain.
*/
static struct protosw routesw[] = {
{
.pr_type = SOCK_RAW,
.pr_protocol = 0,
.pr_flags = PR_ATOMIC | PR_ADDR,
.pr_output = route_output,
.pr_ctlinput = raw_ctlinput,
.pr_usrreqs = &route_usrreqs,
}
};
static int route_proto_count = (sizeof(routesw) / sizeof(struct protosw));
struct domain routedomain_s = {
.dom_family = PF_ROUTE,
.dom_name = "route",
.dom_init = route_dinit,
};
static void
route_dinit(struct domain *dp)
{
struct protosw *pr;
int i;
VERIFY(!(dp->dom_flags & DOM_INITIALIZED));
VERIFY(routedomain == NULL);
routedomain = dp;
for (i = 0, pr = &routesw[0]; i < route_proto_count; i++, pr++) {
net_add_proto(pr, dp, 1);
}
route_init();
}