gems-kernel/source/THIRDPARTY/xnu/bsd/netinet6/in6_mcast.c

3610 lines
94 KiB
C
Raw Normal View History

2024-06-03 16:29:39 +00:00
/*
* Copyright (c) 2010-2022 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* Copyright (c) 2009 Bruce Simpson.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* IPv6 multicast socket, group, and socket option processing module.
* Normative references: RFC 2292, RFC 3492, RFC 3542, RFC 3678, RFC 3810.
*/
#include <sys/cdefs.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/protosw.h>
#include <sys/sysctl.h>
#include <sys/tree.h>
#include <sys/mcache.h>
#include <kern/zalloc.h>
#include <pexpert/pexpert.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/net_api_stats.h>
#include <net/route.h>
#include <net/sockaddr_utils.h>
#include <netinet/in.h>
#include <netinet/in_var.h>
#include <netinet6/in6_var.h>
#include <netinet/ip6.h>
#include <netinet/icmp6.h>
#include <netinet6/ip6_var.h>
#include <netinet/in_pcb.h>
#include <netinet/tcp.h>
#include <netinet/tcp_seq.h>
#include <netinet/tcp_var.h>
#include <netinet6/nd6.h>
#include <netinet6/mld6_var.h>
#include <netinet6/scope6_var.h>
#include <net/sockaddr_utils.h>
static void im6f_commit(struct in6_mfilter *);
static int im6f_get_source(struct in6_mfilter *imf,
const struct sockaddr_in6 *psin,
struct in6_msource **);
static struct in6_msource *
im6f_graft(struct in6_mfilter *, const uint8_t,
const struct sockaddr_in6 *);
static int im6f_prune(struct in6_mfilter *, const struct sockaddr_in6 *);
static void im6f_rollback(struct in6_mfilter *);
static void im6f_reap(struct in6_mfilter *);
static int im6o_grow(struct ip6_moptions *);
static size_t im6o_match_group(const struct ip6_moptions *,
const struct ifnet *, const struct sockaddr_in6 *);
static struct in6_msource *
im6o_match_source(const struct ip6_moptions *,
const size_t, const struct sockaddr_in6 *);
static void im6s_merge(struct ip6_msource *ims,
const struct in6_msource *lims, const int rollback);
static int in6_mc_get(struct ifnet *, const struct in6_addr *,
struct in6_multi **);
static int in6m_get_source(struct in6_multi *inm,
const struct in6_addr *addr, const int noalloc,
struct ip6_msource **pims);
static int in6m_is_ifp_detached(const struct in6_multi *);
static int in6m_merge(struct in6_multi *, /*const*/ struct in6_mfilter *);
static void in6m_reap(struct in6_multi *);
static struct ip6_moptions *
in6p_findmoptions(struct inpcb *);
static int in6p_get_source_filters(struct inpcb *, struct sockopt *);
static int in6p_lookup_v4addr(struct ipv6_mreq *, struct ip_mreq *);
static int in6p_join_group(struct inpcb *, struct sockopt *);
static int in6p_leave_group(struct inpcb *, struct sockopt *);
static struct ifnet *
in6p_lookup_mcast_ifp(const struct inpcb *,
const struct sockaddr_in6 *);
static int in6p_block_unblock_source(struct inpcb *, struct sockopt *);
static int in6p_set_multicast_if(struct inpcb *, struct sockopt *);
static int in6p_set_source_filters(struct inpcb *, struct sockopt *);
static int sysctl_ip6_mcast_filters SYSCTL_HANDLER_ARGS;
static __inline__ int ip6_msource_cmp(const struct ip6_msource *,
const struct ip6_msource *);
SYSCTL_DECL(_net_inet6_ip6); /* XXX Not in any common header. */
SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, mcast, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "IPv6 multicast");
static unsigned long in6_mcast_maxgrpsrc = IPV6_MAX_GROUP_SRC_FILTER;
SYSCTL_LONG(_net_inet6_ip6_mcast, OID_AUTO, maxgrpsrc,
CTLFLAG_RW | CTLFLAG_LOCKED, &in6_mcast_maxgrpsrc,
"Max source filters per group");
static unsigned long in6_mcast_maxsocksrc = IPV6_MAX_SOCK_SRC_FILTER;
SYSCTL_LONG(_net_inet6_ip6_mcast, OID_AUTO, maxsocksrc,
CTLFLAG_RW | CTLFLAG_LOCKED, &in6_mcast_maxsocksrc,
"Max source filters per socket");
int in6_mcast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
SYSCTL_INT(_net_inet6_ip6_mcast, OID_AUTO, loop, CTLFLAG_RW | CTLFLAG_LOCKED,
&in6_mcast_loop, 0, "Loopback multicast datagrams by default");
SYSCTL_NODE(_net_inet6_ip6_mcast, OID_AUTO, filters,
CTLFLAG_RD | CTLFLAG_LOCKED, sysctl_ip6_mcast_filters,
"Per-interface stack-wide source filters");
RB_GENERATE_PREV(ip6_msource_tree, ip6_msource, im6s_link, ip6_msource_cmp);
#define IN6M_TRACE_HIST_SIZE 32 /* size of trace history */
/* For gdb */
__private_extern__ unsigned int in6m_trace_hist_size = IN6M_TRACE_HIST_SIZE;
struct in6_multi_dbg {
struct in6_multi in6m; /* in6_multi */
u_int16_t in6m_refhold_cnt; /* # of ref */
u_int16_t in6m_refrele_cnt; /* # of rele */
/*
* Circular lists of in6m_addref and in6m_remref callers.
*/
ctrace_t in6m_refhold[IN6M_TRACE_HIST_SIZE];
ctrace_t in6m_refrele[IN6M_TRACE_HIST_SIZE];
/*
* Trash list linkage
*/
TAILQ_ENTRY(in6_multi_dbg) in6m_trash_link;
};
/* Lock group and attribute for in6_multihead_lock lock */
static LCK_ATTR_DECLARE(in6_multihead_lock_attr, 0, 0);
static LCK_GRP_DECLARE(in6_multihead_lock_grp, "in6_multihead");
/* List of trash in6_multi entries protected by in6m_trash_lock */
static TAILQ_HEAD(, in6_multi_dbg) in6m_trash_head = TAILQ_HEAD_INITIALIZER(in6m_trash_head);
static LCK_MTX_DECLARE_ATTR(in6m_trash_lock, &in6_multihead_lock_grp,
&in6_multihead_lock_attr);
#if DEBUG
static TUNABLE(bool, in6m_debug, "ifa_debug", true); /* debugging (enabled) */
#else
static TUNABLE(bool, in6m_debug, "ifa_debug", false); /* debugging (disabled) */
#endif /* !DEBUG */
static KALLOC_TYPE_DEFINE(imm_zone, struct in6_multi_mship, NET_KT_DEFAULT);
static KALLOC_TYPE_DEFINE(ip6ms_zone, struct ip6_msource, NET_KT_DEFAULT);
static KALLOC_TYPE_DEFINE(in6ms_zone, struct in6_msource, NET_KT_DEFAULT);
static LCK_RW_DECLARE_ATTR(in6_multihead_lock, &in6_multihead_lock_grp,
&in6_multihead_lock_attr);
struct in6_multihead in6_multihead;
static struct in6_multi *in6_multi_alloc(zalloc_flags_t);
static void in6_multi_free(struct in6_multi *);
static void in6_multi_attach(struct in6_multi *);
static struct in6_multi_mship *in6_multi_mship_alloc(zalloc_flags_t);
static void in6_multi_mship_free(struct in6_multi_mship *);
static void in6m_trace(struct in6_multi *, int);
static struct ip6_msource *ip6ms_alloc(zalloc_flags_t);
static void ip6ms_free(struct ip6_msource *);
static struct in6_msource *in6ms_alloc(zalloc_flags_t);
static void in6ms_free(struct in6_msource *);
/*
* IPv6 source tree comparison function.
*
* An ordered predicate is necessary; bcmp() is not documented to return
* an indication of order, memcmp() is, and is an ISO C99 requirement.
*/
static __inline int
ip6_msource_cmp(const struct ip6_msource *a, const struct ip6_msource *b)
{
return memcmp(&a->im6s_addr, &b->im6s_addr, sizeof(struct in6_addr));
}
/*
* Inline function which wraps assertions for a valid ifp.
*/
static __inline__ int
in6m_is_ifp_detached(const struct in6_multi *inm)
{
VERIFY(inm->in6m_ifma != NULL);
VERIFY(inm->in6m_ifp == inm->in6m_ifma->ifma_ifp);
return !ifnet_is_attached(inm->in6m_ifp, 0);
}
/*
* Initialize an in6_mfilter structure to a known state at t0, t1
* with an empty source filter list.
*/
static __inline__ void
im6f_init(struct in6_mfilter *imf, const uint8_t st0, const uint8_t st1)
{
memset(imf, 0, sizeof(struct in6_mfilter));
RB_INIT(&imf->im6f_sources);
imf->im6f_st[0] = st0;
imf->im6f_st[1] = st1;
}
/*
* Resize the ip6_moptions vector to the next power-of-two minus 1.
*/
static int
im6o_grow(struct ip6_moptions *imo)
{
struct in6_multi **nmships;
struct in6_multi **omships;
struct in6_mfilter *nmfilters;
struct in6_mfilter *omfilters;
int err;
size_t idx;
uint16_t oldmax;
uint16_t newmax;
IM6O_LOCK_ASSERT_HELD(imo);
nmships = NULL;
nmfilters = NULL;
err = 0;
omships = imo->im6o_membership;
omfilters = imo->im6o_mfilters;
oldmax = imo->im6o_max_memberships;
newmax = ((oldmax + 1) * 2) - 1;
if (newmax > IPV6_MAX_MEMBERSHIPS) {
return ETOOMANYREFS;
}
if ((nmships = kalloc_type(struct in6_multi *, newmax,
Z_WAITOK | Z_ZERO)) == NULL) {
err = ENOMEM;
goto cleanup;
}
if ((nmfilters = kalloc_type(struct in6_mfilter, newmax,
Z_WAITOK | Z_ZERO)) == NULL) {
err = ENOMEM;
goto cleanup;
}
/* Copy the existing memberships and release the memory. */
if (omships != NULL) {
VERIFY(oldmax <= newmax);
memcpy(nmships, omships, oldmax * sizeof(struct in6_multi *));
kfree_type(struct in6_multi *, oldmax, omships);
}
/* Copy the existing filters and release the memory. */
if (omfilters != NULL) {
VERIFY(oldmax <= newmax);
memcpy(nmfilters, omfilters, oldmax * sizeof(struct in6_mfilter));
kfree_type(struct in6_mfilter, oldmax, omfilters);
}
/* Initialize newly allocated source filter heads. */
for (idx = oldmax; idx < newmax; idx++) {
im6f_init(&nmfilters[idx], MCAST_UNDEFINED, MCAST_EXCLUDE);
}
imo->im6o_membership = nmships;
nmships = NULL;
imo->im6o_mfilters = nmfilters;
nmfilters = NULL;
imo->im6o_max_memberships = newmax;
return 0;
cleanup:
if (nmfilters != NULL) {
kfree_type(struct in6_mfilter, newmax, nmfilters);
}
if (nmships != NULL) {
kfree_type(struct in6_multi *, newmax, nmships);
}
return err;
}
/*
* Find an IPv6 multicast group entry for this ip6_moptions instance
* which matches the specified group, and optionally an interface.
* Return its index into the array, or -1 if not found.
*/
static size_t
im6o_match_group(const struct ip6_moptions *imo, const struct ifnet *ifp,
const struct sockaddr_in6 *group)
{
const struct sockaddr_in6 *gsin6;
struct in6_multi *pinm;
int idx;
int nmships;
IM6O_LOCK_ASSERT_HELD(__DECONST(struct ip6_moptions *, imo));
gsin6 = group;
/* The im6o_membership array may be lazy allocated. */
if (imo->im6o_membership == NULL || imo->im6o_num_memberships == 0) {
return -1;
}
nmships = imo->im6o_num_memberships;
for (idx = 0; idx < nmships; idx++) {
pinm = imo->im6o_membership[idx];
if (pinm == NULL) {
continue;
}
IN6M_LOCK(pinm);
if ((ifp == NULL || (pinm->in6m_ifp == ifp)) &&
in6_are_addr_equal_scoped(&pinm->in6m_addr,
&gsin6->sin6_addr, pinm->ifscope, gsin6->sin6_scope_id)) {
IN6M_UNLOCK(pinm);
break;
}
IN6M_UNLOCK(pinm);
}
if (idx >= nmships) {
idx = -1;
}
return idx;
}
/*
* Find an IPv6 multicast source entry for this imo which matches
* the given group index for this socket, and source address.
*
* XXX TODO: The scope ID, if present in src, is stripped before
* any comparison. We SHOULD enforce scope/zone checks where the source
* filter entry has a link scope.
*
* NOTE: This does not check if the entry is in-mode, merely if
* it exists, which may not be the desired behaviour.
*/
static struct in6_msource *
im6o_match_source(const struct ip6_moptions *imo, const size_t gidx,
const struct sockaddr_in6 *src)
{
struct ip6_msource find;
struct in6_mfilter *imf;
struct ip6_msource *ims;
const struct sockaddr_in6 *psa;
IM6O_LOCK_ASSERT_HELD(__DECONST(struct ip6_moptions *, imo));
VERIFY(src->sin6_family == AF_INET6);
VERIFY(gidx != (size_t)-1 && gidx < imo->im6o_num_memberships);
/* The im6o_mfilters array may be lazy allocated. */
if (imo->im6o_mfilters == NULL) {
return NULL;
}
imf = &imo->im6o_mfilters[gidx];
psa = src;
find.im6s_addr = psa->sin6_addr;
in6_clearscope(&find.im6s_addr); /* XXX */
ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find);
return (struct in6_msource *)ims;
}
/*
* Perform filtering for multicast datagrams on a socket by group and source.
*
* Returns 0 if a datagram should be allowed through, or various error codes
* if the socket was not a member of the group, or the source was muted, etc.
*/
int
im6o_mc_filter(const struct ip6_moptions *imo, struct ifnet *ifp,
const struct sockaddr_in6 *group, const struct sockaddr_in6 *src)
{
size_t gidx;
struct in6_msource *ims;
int mode;
IM6O_LOCK_ASSERT_HELD(__DECONST(struct ip6_moptions *, imo));
VERIFY(ifp != NULL);
struct sockaddr_in6 group_tmp = *group;
if (!in6_embedded_scope) {
group_tmp.sin6_scope_id = in6_addr2scopeid(ifp, &group_tmp.sin6_addr);
}
gidx = im6o_match_group(imo, ifp, &group_tmp);
if (gidx == (size_t)-1) {
return MCAST_NOTGMEMBER;
}
/*
* Check if the source was included in an (S,G) join.
* Allow reception on exclusive memberships by default,
* reject reception on inclusive memberships by default.
* Exclude source only if an in-mode exclude filter exists.
* Include source only if an in-mode include filter exists.
* NOTE: We are comparing group state here at MLD t1 (now)
* with socket-layer t0 (since last downcall).
*/
mode = imo->im6o_mfilters[gidx].im6f_st[1];
ims = im6o_match_source(imo, gidx, src);
if ((ims == NULL && mode == MCAST_INCLUDE) ||
(ims != NULL && ims->im6sl_st[0] != mode)) {
return MCAST_NOTSMEMBER;
}
return MCAST_PASS;
}
/*
* Find and return a reference to an in6_multi record for (ifp, group),
* and bump its reference count.
* If one does not exist, try to allocate it, and update link-layer multicast
* filters on ifp to listen for group.
* Assumes the IN6_MULTI lock is held across the call.
* Return 0 if successful, otherwise return an appropriate error code.
*/
static int
in6_mc_get(struct ifnet *ifp, const struct in6_addr *group,
struct in6_multi **pinm)
{
struct sockaddr_in6 gsin6;
struct ifmultiaddr *__single ifma;
struct in6_multi *__single inm;
int error;
*pinm = NULL;
in6_multihead_lock_shared();
IN6_LOOKUP_MULTI(group, ifp, inm);
if (inm != NULL) {
IN6M_LOCK(inm);
VERIFY(inm->in6m_reqcnt >= 1);
inm->in6m_reqcnt++;
VERIFY(inm->in6m_reqcnt != 0);
*pinm = inm;
IN6M_UNLOCK(inm);
in6_multihead_lock_done();
/*
* We already joined this group; return the in6m
* with a refcount held (via lookup) for caller.
*/
return 0;
}
in6_multihead_lock_done();
memset(&gsin6, 0, sizeof(gsin6));
gsin6.sin6_family = AF_INET6;
gsin6.sin6_len = sizeof(struct sockaddr_in6);
gsin6.sin6_addr = *group;
/*
* Check if a link-layer group is already associated
* with this network-layer group on the given ifnet.
*/
error = if_addmulti(ifp, SA(&gsin6), &ifma);
if (error != 0) {
return error;
}
/*
* See comments in in6m_remref() for access to ifma_protospec.
*/
in6_multihead_lock_exclusive();
IFMA_LOCK(ifma);
if ((inm = ifma->ifma_protospec) != NULL) {
VERIFY(ifma->ifma_addr != NULL);
VERIFY(ifma->ifma_addr->sa_family == AF_INET6);
IN6M_ADDREF(inm); /* for caller */
IFMA_UNLOCK(ifma);
IN6M_LOCK(inm);
VERIFY(inm->in6m_ifma == ifma);
VERIFY(inm->in6m_ifp == ifp);
VERIFY(in6_are_addr_equal_scoped(&inm->in6m_addr, group, inm->ifscope, ifp->if_index));
if (inm->in6m_debug & IFD_ATTACHED) {
VERIFY(inm->in6m_reqcnt >= 1);
inm->in6m_reqcnt++;
VERIFY(inm->in6m_reqcnt != 0);
*pinm = inm;
IN6M_UNLOCK(inm);
in6_multihead_lock_done();
IFMA_REMREF(ifma);
/*
* We lost the race with another thread doing
* in6_mc_get(); since this group has already
* been joined; return the inm with a refcount
* held for caller.
*/
return 0;
}
/*
* We lost the race with another thread doing in6_delmulti();
* the inm referring to the ifma has been detached, thus we
* reattach it back to the in6_multihead list, and return the
* inm with a refcount held for the caller.
*/
in6_multi_attach(inm);
VERIFY((inm->in6m_debug &
(IFD_ATTACHED | IFD_TRASHED)) == IFD_ATTACHED);
*pinm = inm;
IN6M_UNLOCK(inm);
in6_multihead_lock_done();
IFMA_REMREF(ifma);
return 0;
}
IFMA_UNLOCK(ifma);
/*
* A new in6_multi record is needed; allocate and initialize it.
* We DO NOT perform an MLD join as the in6_ layer may need to
* push an initial source list down to MLD to support SSM.
*
* The initial source filter state is INCLUDE, {} as per the RFC.
* Pending state-changes per group are subject to a bounds check.
*/
inm = in6_multi_alloc(Z_WAITOK);
IN6M_LOCK(inm);
inm->in6m_addr = *group;
inm->ifscope = in6_addr2scopeid(ifp, &inm->in6m_addr);
inm->in6m_ifp = ifp;
inm->in6m_mli = MLD_IFINFO(ifp);
VERIFY(inm->in6m_mli != NULL);
MLI_ADDREF(inm->in6m_mli);
inm->in6m_ifma = ifma; /* keep refcount from if_addmulti() */
inm->in6m_state = MLD_NOT_MEMBER;
/*
* Pending state-changes per group are subject to a bounds check.
*/
inm->in6m_scq.ifq_maxlen = MLD_MAX_STATE_CHANGES;
inm->in6m_st[0].iss_fmode = MCAST_UNDEFINED;
inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED;
RB_INIT(&inm->in6m_srcs);
*pinm = inm;
in6_multi_attach(inm);
VERIFY((inm->in6m_debug &
(IFD_ATTACHED | IFD_TRASHED)) == IFD_ATTACHED);
IN6M_ADDREF_LOCKED(inm); /* for caller */
IN6M_UNLOCK(inm);
IFMA_LOCK(ifma);
VERIFY(ifma->ifma_protospec == NULL);
ifma->ifma_protospec = inm;
IFMA_UNLOCK(ifma);
in6_multihead_lock_done();
return 0;
}
/*
* Clear recorded source entries for a group.
* Used by the MLD code. Caller must hold the IN6_MULTI lock.
* FIXME: Should reap.
*/
void
in6m_clear_recorded(struct in6_multi *inm)
{
struct ip6_msource *ims;
IN6M_LOCK_ASSERT_HELD(inm);
RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) {
if (ims->im6s_stp) {
ims->im6s_stp = 0;
--inm->in6m_st[1].iss_rec;
}
}
VERIFY(inm->in6m_st[1].iss_rec == 0);
}
/*
* Record a source as pending for a Source-Group MLDv2 query.
* This lives here as it modifies the shared tree.
*
* inm is the group descriptor.
* naddr is the address of the source to record in network-byte order.
*
* If the net.inet6.mld.sgalloc sysctl is non-zero, we will
* lazy-allocate a source node in response to an SG query.
* Otherwise, no allocation is performed. This saves some memory
* with the trade-off that the source will not be reported to the
* router if joined in the window between the query response and
* the group actually being joined on the local host.
*
* VIMAGE: XXX: Currently the mld_sgalloc feature has been removed.
* This turns off the allocation of a recorded source entry if
* the group has not been joined.
*
* Return 0 if the source didn't exist or was already marked as recorded.
* Return 1 if the source was marked as recorded by this function.
* Return <0 if any error occured (negated errno code).
*/
int
in6m_record_source(struct in6_multi *inm, const struct in6_addr *addr)
{
struct ip6_msource find;
struct ip6_msource *ims, *nims;
IN6M_LOCK_ASSERT_HELD(inm);
find.im6s_addr = *addr;
ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find);
if (ims && ims->im6s_stp) {
return 0;
}
if (ims == NULL) {
if (inm->in6m_nsrc == in6_mcast_maxgrpsrc) {
return -ENOSPC;
}
nims = ip6ms_alloc(Z_WAITOK);
nims->im6s_addr = find.im6s_addr;
RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims);
++inm->in6m_nsrc;
ims = nims;
}
/*
* Mark the source as recorded and update the recorded
* source count.
*/
++ims->im6s_stp;
++inm->in6m_st[1].iss_rec;
return 1;
}
/*
* Return a pointer to an in6_msource owned by an in6_mfilter,
* given its source address.
* Lazy-allocate if needed. If this is a new entry its filter state is
* undefined at t0.
*
* imf is the filter set being modified.
* addr is the source address.
*
* Caller is expected to be holding im6o_lock.
*/
static int
im6f_get_source(struct in6_mfilter *imf, const struct sockaddr_in6 *psin,
struct in6_msource **plims)
{
struct ip6_msource find;
struct ip6_msource *ims;
struct in6_msource *lims;
int error;
error = 0;
ims = NULL;
lims = NULL;
find.im6s_addr = psin->sin6_addr;
ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find);
lims = (struct in6_msource *)ims;
if (lims == NULL) {
if (imf->im6f_nsrc == in6_mcast_maxsocksrc) {
return ENOSPC;
}
lims = in6ms_alloc(Z_WAITOK);
lims->im6s_addr = find.im6s_addr;
lims->im6sl_st[0] = MCAST_UNDEFINED;
RB_INSERT(ip6_msource_tree, &imf->im6f_sources,
(struct ip6_msource *)lims);
++imf->im6f_nsrc;
}
*plims = lims;
return error;
}
/*
* Graft a source entry into an existing socket-layer filter set,
* maintaining any required invariants and checking allocations.
*
* The source is marked as being in the new filter mode at t1.
*
* Return the pointer to the new node, otherwise return NULL.
*
* Caller is expected to be holding im6o_lock.
*/
static struct in6_msource *
im6f_graft(struct in6_mfilter *imf, const uint8_t st1,
const struct sockaddr_in6 *psin)
{
struct in6_msource *lims;
lims = in6ms_alloc(Z_WAITOK);
lims->im6s_addr = psin->sin6_addr;
lims->im6sl_st[0] = MCAST_UNDEFINED;
lims->im6sl_st[1] = st1;
RB_INSERT(ip6_msource_tree, &imf->im6f_sources,
(struct ip6_msource *)lims);
++imf->im6f_nsrc;
return lims;
}
/*
* Prune a source entry from an existing socket-layer filter set,
* maintaining any required invariants and checking allocations.
*
* The source is marked as being left at t1, it is not freed.
*
* Return 0 if no error occurred, otherwise return an errno value.
*
* Caller is expected to be holding im6o_lock.
*/
static int
im6f_prune(struct in6_mfilter *imf, const struct sockaddr_in6 *psin)
{
struct ip6_msource find;
struct ip6_msource *ims;
struct in6_msource *lims;
find.im6s_addr = psin->sin6_addr;
ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find);
if (ims == NULL) {
return ENOENT;
}
lims = (struct in6_msource *)ims;
lims->im6sl_st[1] = MCAST_UNDEFINED;
return 0;
}
/*
* Revert socket-layer filter set deltas at t1 to t0 state.
*
* Caller is expected to be holding im6o_lock.
*/
static void
im6f_rollback(struct in6_mfilter *imf)
{
struct ip6_msource *ims, *tims;
struct in6_msource *lims;
RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) {
lims = (struct in6_msource *)ims;
if (lims->im6sl_st[0] == lims->im6sl_st[1]) {
/* no change at t1 */
continue;
} else if (lims->im6sl_st[0] != MCAST_UNDEFINED) {
/* revert change to existing source at t1 */
lims->im6sl_st[1] = lims->im6sl_st[0];
} else {
/* revert source added t1 */
MLD_PRINTF(("%s: free in6ms 0x%llx\n", __func__,
(uint64_t)VM_KERNEL_ADDRPERM(lims)));
RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims);
in6ms_free(lims);
imf->im6f_nsrc--;
}
}
imf->im6f_st[1] = imf->im6f_st[0];
}
/*
* Mark socket-layer filter set as INCLUDE {} at t1.
*
* Caller is expected to be holding im6o_lock.
*/
void
im6f_leave(struct in6_mfilter *imf)
{
struct ip6_msource *ims;
struct in6_msource *lims;
RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) {
lims = (struct in6_msource *)ims;
lims->im6sl_st[1] = MCAST_UNDEFINED;
}
imf->im6f_st[1] = MCAST_INCLUDE;
}
/*
* Mark socket-layer filter set deltas as committed.
*
* Caller is expected to be holding im6o_lock.
*/
static void
im6f_commit(struct in6_mfilter *imf)
{
struct ip6_msource *ims;
struct in6_msource *lims;
RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) {
lims = (struct in6_msource *)ims;
lims->im6sl_st[0] = lims->im6sl_st[1];
}
imf->im6f_st[0] = imf->im6f_st[1];
}
/*
* Reap unreferenced sources from socket-layer filter set.
*
* Caller is expected to be holding im6o_lock.
*/
static void
im6f_reap(struct in6_mfilter *imf)
{
struct ip6_msource *ims, *tims;
struct in6_msource *lims;
RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) {
lims = (struct in6_msource *)ims;
if ((lims->im6sl_st[0] == MCAST_UNDEFINED) &&
(lims->im6sl_st[1] == MCAST_UNDEFINED)) {
MLD_PRINTF(("%s: free in6ms 0x%llx\n", __func__,
(uint64_t)VM_KERNEL_ADDRPERM(lims)));
RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims);
in6ms_free(lims);
imf->im6f_nsrc--;
}
}
}
/*
* Purge socket-layer filter set.
*
* Caller is expected to be holding im6o_lock.
*/
void
im6f_purge(struct in6_mfilter *imf)
{
struct ip6_msource *ims, *tims;
struct in6_msource *lims;
RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) {
lims = (struct in6_msource *)ims;
MLD_PRINTF(("%s: free in6ms 0x%llx\n", __func__,
(uint64_t)VM_KERNEL_ADDRPERM(lims)));
RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims);
in6ms_free(lims);
imf->im6f_nsrc--;
}
imf->im6f_st[0] = imf->im6f_st[1] = MCAST_UNDEFINED;
VERIFY(RB_EMPTY(&imf->im6f_sources));
}
/*
* Look up a source filter entry for a multicast group.
*
* inm is the group descriptor to work with.
* addr is the IPv6 address to look up.
* noalloc may be non-zero to suppress allocation of sources.
* *pims will be set to the address of the retrieved or allocated source.
*
* Return 0 if successful, otherwise return a non-zero error code.
*/
static int
in6m_get_source(struct in6_multi *inm, const struct in6_addr *addr,
const int noalloc, struct ip6_msource **pims)
{
struct ip6_msource find;
struct ip6_msource *ims, *nims;
IN6M_LOCK_ASSERT_HELD(inm);
find.im6s_addr = *addr;
ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find);
if (ims == NULL && !noalloc) {
if (inm->in6m_nsrc == in6_mcast_maxgrpsrc) {
return ENOSPC;
}
nims = ip6ms_alloc(Z_WAITOK);
nims->im6s_addr = *addr;
RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims);
++inm->in6m_nsrc;
ims = nims;
MLD_PRINTF(("%s: allocated %s as 0x%llx\n", __func__,
ip6_sprintf(addr), (uint64_t)VM_KERNEL_ADDRPERM(ims)));
}
*pims = ims;
return 0;
}
/*
* Helper function to derive the filter mode on a source entry
* from its internal counters. Predicates are:
* A source is only excluded if all listeners exclude it.
* A source is only included if no listeners exclude it,
* and at least one listener includes it.
* May be used by ifmcstat(8).
*/
uint8_t
im6s_get_mode(const struct in6_multi *inm, const struct ip6_msource *ims,
uint8_t t)
{
IN6M_LOCK_ASSERT_HELD(__DECONST(struct in6_multi *, inm));
t = !!t;
if (inm->in6m_st[t].iss_ex > 0 &&
inm->in6m_st[t].iss_ex == ims->im6s_st[t].ex) {
return MCAST_EXCLUDE;
} else if (ims->im6s_st[t].in > 0 && ims->im6s_st[t].ex == 0) {
return MCAST_INCLUDE;
}
return MCAST_UNDEFINED;
}
/*
* Merge socket-layer source into MLD-layer source.
* If rollback is non-zero, perform the inverse of the merge.
*/
static void
im6s_merge(struct ip6_msource *ims, const struct in6_msource *lims,
const int rollback)
{
int n = rollback ? -1 : 1;
if (lims->im6sl_st[0] == MCAST_EXCLUDE) {
MLD_PRINTF(("%s: t1 ex -= %d on %s\n", __func__, n,
ip6_sprintf(&lims->im6s_addr)));
ims->im6s_st[1].ex -= n;
} else if (lims->im6sl_st[0] == MCAST_INCLUDE) {
MLD_PRINTF(("%s: t1 in -= %d on %s\n", __func__, n,
ip6_sprintf(&lims->im6s_addr)));
ims->im6s_st[1].in -= n;
}
if (lims->im6sl_st[1] == MCAST_EXCLUDE) {
MLD_PRINTF(("%s: t1 ex += %d on %s\n", __func__, n,
ip6_sprintf(&lims->im6s_addr)));
ims->im6s_st[1].ex += n;
} else if (lims->im6sl_st[1] == MCAST_INCLUDE) {
MLD_PRINTF(("%s: t1 in += %d on %s\n", __func__, n,
ip6_sprintf(&lims->im6s_addr)));
ims->im6s_st[1].in += n;
}
}
/*
* Atomically update the global in6_multi state, when a membership's
* filter list is being updated in any way.
*
* imf is the per-inpcb-membership group filter pointer.
* A fake imf may be passed for in-kernel consumers.
*
* XXX This is a candidate for a set-symmetric-difference style loop
* which would eliminate the repeated lookup from root of ims nodes,
* as they share the same key space.
*
* If any error occurred this function will back out of refcounts
* and return a non-zero value.
*/
static int
in6m_merge(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf)
{
struct ip6_msource *ims, *__single nims = NULL;
struct in6_msource *lims;
int schanged, error;
int nsrc0, nsrc1;
IN6M_LOCK_ASSERT_HELD(inm);
schanged = 0;
error = 0;
nsrc1 = nsrc0 = 0;
/*
* Update the source filters first, as this may fail.
* Maintain count of in-mode filters at t0, t1. These are
* used to work out if we transition into ASM mode or not.
* Maintain a count of source filters whose state was
* actually modified by this operation.
*/
RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) {
lims = (struct in6_msource *)ims;
if (lims->im6sl_st[0] == imf->im6f_st[0]) {
nsrc0++;
}
if (lims->im6sl_st[1] == imf->im6f_st[1]) {
nsrc1++;
}
if (lims->im6sl_st[0] == lims->im6sl_st[1]) {
continue;
}
error = in6m_get_source(inm, &lims->im6s_addr, 0, &nims);
++schanged;
if (error) {
break;
}
im6s_merge(nims, lims, 0);
}
if (error) {
struct ip6_msource *__single bims;
RB_FOREACH_REVERSE_FROM(ims, ip6_msource_tree, nims) {
lims = (struct in6_msource *)ims;
if (lims->im6sl_st[0] == lims->im6sl_st[1]) {
continue;
}
(void) in6m_get_source(inm, &lims->im6s_addr, 1, &bims);
if (bims == NULL) {
continue;
}
im6s_merge(bims, lims, 1);
}
goto out_reap;
}
MLD_PRINTF(("%s: imf filters in-mode: %d at t0, %d at t1\n",
__func__, nsrc0, nsrc1));
/* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */
if (imf->im6f_st[0] == imf->im6f_st[1] &&
imf->im6f_st[1] == MCAST_INCLUDE) {
if (nsrc1 == 0) {
MLD_PRINTF(("%s: --in on inm at t1\n", __func__));
--inm->in6m_st[1].iss_in;
}
}
/* Handle filter mode transition on socket. */
if (imf->im6f_st[0] != imf->im6f_st[1]) {
MLD_PRINTF(("%s: imf transition %d to %d\n",
__func__, imf->im6f_st[0], imf->im6f_st[1]));
if (imf->im6f_st[0] == MCAST_EXCLUDE) {
MLD_PRINTF(("%s: --ex on inm at t1\n", __func__));
--inm->in6m_st[1].iss_ex;
} else if (imf->im6f_st[0] == MCAST_INCLUDE) {
MLD_PRINTF(("%s: --in on inm at t1\n", __func__));
--inm->in6m_st[1].iss_in;
}
if (imf->im6f_st[1] == MCAST_EXCLUDE) {
MLD_PRINTF(("%s: ex++ on inm at t1\n", __func__));
inm->in6m_st[1].iss_ex++;
} else if (imf->im6f_st[1] == MCAST_INCLUDE && nsrc1 > 0) {
MLD_PRINTF(("%s: in++ on inm at t1\n", __func__));
inm->in6m_st[1].iss_in++;
}
}
/*
* Track inm filter state in terms of listener counts.
* If there are any exclusive listeners, stack-wide
* membership is exclusive.
* Otherwise, if only inclusive listeners, stack-wide is inclusive.
* If no listeners remain, state is undefined at t1,
* and the MLD lifecycle for this group should finish.
*/
if (inm->in6m_st[1].iss_ex > 0) {
MLD_PRINTF(("%s: transition to EX\n", __func__));
inm->in6m_st[1].iss_fmode = MCAST_EXCLUDE;
} else if (inm->in6m_st[1].iss_in > 0) {
MLD_PRINTF(("%s: transition to IN\n", __func__));
inm->in6m_st[1].iss_fmode = MCAST_INCLUDE;
} else {
MLD_PRINTF(("%s: transition to UNDEF\n", __func__));
inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED;
}
/* Decrement ASM listener count on transition out of ASM mode. */
if (imf->im6f_st[0] == MCAST_EXCLUDE && nsrc0 == 0) {
if ((imf->im6f_st[1] != MCAST_EXCLUDE) ||
(imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) {
MLD_PRINTF(("%s: --asm on inm at t1\n", __func__));
--inm->in6m_st[1].iss_asm;
}
}
/* Increment ASM listener count on transition to ASM mode. */
if (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 == 0) {
MLD_PRINTF(("%s: asm++ on inm at t1\n", __func__));
inm->in6m_st[1].iss_asm++;
}
MLD_PRINTF(("%s: merged imf 0x%llx to inm 0x%llx\n", __func__,
(uint64_t)VM_KERNEL_ADDRPERM(imf),
(uint64_t)VM_KERNEL_ADDRPERM(inm)));
in6m_print(inm);
out_reap:
if (schanged > 0) {
MLD_PRINTF(("%s: sources changed; reaping\n", __func__));
in6m_reap(inm);
}
return error;
}
/*
* Mark an in6_multi's filter set deltas as committed.
* Called by MLD after a state change has been enqueued.
*/
void
in6m_commit(struct in6_multi *inm)
{
struct ip6_msource *ims;
IN6M_LOCK_ASSERT_HELD(inm);
MLD_PRINTF(("%s: commit inm 0x%llx\n", __func__,
(uint64_t)VM_KERNEL_ADDRPERM(inm)));
MLD_PRINTF(("%s: pre commit:\n", __func__));
in6m_print(inm);
RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) {
ims->im6s_st[0] = ims->im6s_st[1];
}
inm->in6m_st[0] = inm->in6m_st[1];
}
/*
* Reap unreferenced nodes from an in6_multi's filter set.
*/
static void
in6m_reap(struct in6_multi *inm)
{
struct ip6_msource *ims, *tims;
IN6M_LOCK_ASSERT_HELD(inm);
RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) {
if (ims->im6s_st[0].ex > 0 || ims->im6s_st[0].in > 0 ||
ims->im6s_st[1].ex > 0 || ims->im6s_st[1].in > 0 ||
ims->im6s_stp != 0) {
continue;
}
MLD_PRINTF(("%s: free ims 0x%llx\n", __func__,
(uint64_t)VM_KERNEL_ADDRPERM(ims)));
RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims);
ip6ms_free(ims);
inm->in6m_nsrc--;
}
}
/*
* Purge all source nodes from an in6_multi's filter set.
*/
void
in6m_purge(struct in6_multi *inm)
{
struct ip6_msource *ims, *tims;
IN6M_LOCK_ASSERT_HELD(inm);
RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) {
MLD_PRINTF(("%s: free ims 0x%llx\n", __func__,
(uint64_t)VM_KERNEL_ADDRPERM(ims)));
RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims);
ip6ms_free(ims);
inm->in6m_nsrc--;
}
}
/*
* Join a multicast address w/o sources.
* KAME compatibility entry point.
*
*/
struct in6_multi_mship *
in6_joingroup(struct ifnet *ifp, struct in6_addr *mcaddr,
int *errorp, int delay)
{
struct in6_multi_mship *imm;
int error;
*errorp = 0;
imm = in6_multi_mship_alloc(Z_WAITOK);
error = in6_mc_join(ifp, mcaddr, NULL, &imm->i6mm_maddr, delay);
if (error) {
*errorp = error;
in6_multi_mship_free(imm);
return NULL;
}
return imm;
}
/*
* Leave a multicast address w/o sources.
* KAME compatibility entry point.
*/
int
in6_leavegroup(struct in6_multi_mship *imm)
{
if (imm->i6mm_maddr != NULL) {
in6_mc_leave(imm->i6mm_maddr, NULL);
IN6M_REMREF(imm->i6mm_maddr);
imm->i6mm_maddr = NULL;
}
in6_multi_mship_free(imm);
return 0;
}
/*
* Join a multicast group; real entry point.
*
* Only preserves atomicity at inm level.
* NOTE: imf argument cannot be const due to sys/tree.h limitations.
*
* If the MLD downcall fails, the group is not joined, and an error
* code is returned.
*/
int
in6_mc_join(struct ifnet *ifp, const struct in6_addr *mcaddr,
/*const*/ struct in6_mfilter *imf, struct in6_multi **pinm,
const int delay)
{
struct in6_mfilter timf;
struct in6_multi *__single inm = NULL;
int error = 0;
struct mld_tparams mtp;
/*
* Sanity: Check scope zone ID was set for ifp, if and
* only if group is scoped to an interface.
*/
VERIFY(IN6_IS_ADDR_MULTICAST(mcaddr));
if (in6_embedded_scope && (IN6_IS_ADDR_MC_LINKLOCAL(mcaddr) ||
IN6_IS_ADDR_MC_INTFACELOCAL(mcaddr))) {
VERIFY(mcaddr->s6_addr16[1] != 0);
}
MLD_PRINTF(("%s: join %s on 0x%llx(%s))\n", __func__,
ip6_sprintf(mcaddr), (uint64_t)VM_KERNEL_ADDRPERM(ifp),
if_name(ifp)));
bzero(&mtp, sizeof(mtp));
*pinm = NULL;
/*
* If no imf was specified (i.e. kernel consumer),
* fake one up and assume it is an ASM join.
*/
if (imf == NULL) {
im6f_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE);
imf = &timf;
}
error = in6_mc_get(ifp, mcaddr, &inm);
if (error) {
MLD_PRINTF(("%s: in6_mc_get() failure\n", __func__));
return error;
}
MLD_PRINTF(("%s: merge inm state\n", __func__));
IN6M_LOCK(inm);
error = in6m_merge(inm, imf);
if (error) {
MLD_PRINTF(("%s: failed to merge inm state\n", __func__));
goto out_in6m_release;
}
MLD_PRINTF(("%s: doing mld downcall\n", __func__));
error = mld_change_state(inm, &mtp, delay);
if (error) {
MLD_PRINTF(("%s: failed to update source\n", __func__));
im6f_rollback(imf);
goto out_in6m_release;
}
out_in6m_release:
if (error) {
MLD_PRINTF(("%s: dropping ref on 0x%llx\n", __func__,
(uint64_t)VM_KERNEL_ADDRPERM(inm)));
IN6M_UNLOCK(inm);
IN6M_REMREF(inm);
} else {
IN6M_UNLOCK(inm);
*pinm = inm; /* keep refcount from in6_mc_get() */
}
/* schedule timer now that we've dropped the lock(s) */
mld_set_fast_timeout(&mtp);
return error;
}
/*
* Leave a multicast group; real entry point.
* All source filters will be expunged.
*
* Only preserves atomicity at inm level.
*
* Holding the write lock for the INP which contains imf
* is highly advisable. We can't assert for it as imf does not
* contain a back-pointer to the owning inp.
*
* Note: This is not the same as in6m_release(*) as this function also
* makes a state change downcall into MLD.
*/
int
in6_mc_leave(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf)
{
struct in6_mfilter timf;
int error, lastref;
struct mld_tparams mtp;
bzero(&mtp, sizeof(mtp));
error = 0;
IN6M_LOCK_ASSERT_NOTHELD(inm);
in6_multihead_lock_exclusive();
IN6M_LOCK(inm);
MLD_PRINTF(("%s: leave inm 0x%llx, %s/%s%d, imf 0x%llx\n", __func__,
(uint64_t)VM_KERNEL_ADDRPERM(inm), ip6_sprintf(&inm->in6m_addr),
(in6m_is_ifp_detached(inm) ? "null" : inm->in6m_ifp->if_name),
inm->in6m_ifp->if_unit, (uint64_t)VM_KERNEL_ADDRPERM(imf)));
/*
* If no imf was specified (i.e. kernel consumer),
* fake one up and assume it is an ASM join.
*/
if (imf == NULL) {
im6f_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED);
imf = &timf;
}
/*
* Begin state merge transaction at MLD layer.
*
* As this particular invocation should not cause any memory
* to be allocated, and there is no opportunity to roll back
* the transaction, it MUST NOT fail.
*/
MLD_PRINTF(("%s: merge inm state\n", __func__));
error = in6m_merge(inm, imf);
KASSERT(error == 0, ("%s: failed to merge inm state\n", __func__));
MLD_PRINTF(("%s: doing mld downcall\n", __func__));
error = mld_change_state(inm, &mtp, 0);
#if MLD_DEBUG
if (error) {
MLD_PRINTF(("%s: failed mld downcall\n", __func__));
}
#endif
lastref = in6_multi_detach(inm);
VERIFY(!lastref || (!(inm->in6m_debug & IFD_ATTACHED) &&
inm->in6m_reqcnt == 0));
IN6M_UNLOCK(inm);
in6_multihead_lock_done();
if (lastref) {
IN6M_REMREF(inm); /* for in6_multihead list */
}
/* schedule timer now that we've dropped the lock(s) */
mld_set_fast_timeout(&mtp);
return error;
}
/*
* Block or unblock an ASM multicast source on an inpcb.
* This implements the delta-based API described in RFC 3678.
*
* The delta-based API applies only to exclusive-mode memberships.
* An MLD downcall will be performed.
*
* Return 0 if successful, otherwise return an appropriate error code.
*/
static int
in6p_block_unblock_source(struct inpcb *inp, struct sockopt *sopt)
{
struct group_source_req gsr;
struct sockaddr_in6 *gsa, *ssa;
struct ifnet *ifp;
struct in6_mfilter *imf;
struct ip6_moptions *imo;
struct in6_msource *ims;
struct in6_multi *inm;
size_t idx;
uint8_t fmode;
int error, doblock;
struct mld_tparams mtp;
bzero(&mtp, sizeof(mtp));
ifp = NULL;
error = 0;
doblock = 0;
memset(&gsr, 0, sizeof(struct group_source_req));
gsa = SIN6(&gsr.gsr_group);
ssa = SIN6(&gsr.gsr_source);
switch (sopt->sopt_name) {
case MCAST_BLOCK_SOURCE:
case MCAST_UNBLOCK_SOURCE:
error = sooptcopyin(sopt, &gsr,
sizeof(struct group_source_req),
sizeof(struct group_source_req));
if (error) {
return error;
}
if (gsa->sin6_family != AF_INET6 ||
gsa->sin6_len != sizeof(struct sockaddr_in6)) {
return EINVAL;
}
if (ssa->sin6_family != AF_INET6 ||
ssa->sin6_len != sizeof(struct sockaddr_in6)) {
return EINVAL;
}
ifnet_head_lock_shared();
if (gsr.gsr_interface == 0 || !IF_INDEX_IN_RANGE(gsr.gsr_interface)) {
ifnet_head_done();
return EADDRNOTAVAIL;
}
ifp = ifindex2ifnet[gsr.gsr_interface];
ifnet_head_done();
if (ifp == NULL) {
return EADDRNOTAVAIL;
}
if (sopt->sopt_name == MCAST_BLOCK_SOURCE) {
doblock = 1;
}
break;
default:
MLD_PRINTF(("%s: unknown sopt_name %d\n",
__func__, sopt->sopt_name));
return EOPNOTSUPP;
}
if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6_addr)) {
return EINVAL;
}
(void) in6_setscope(&gsa->sin6_addr, ifp, IN6_NULL_IF_EMBEDDED_SCOPE(&gsa->sin6_scope_id));
/*
* Check if we are actually a member of this group.
*/
imo = in6p_findmoptions(inp);
if (imo == NULL) {
return ENOMEM;
}
IM6O_LOCK(imo);
idx = im6o_match_group(imo, ifp, gsa);
if (idx == (size_t)-1 || imo->im6o_mfilters == NULL) {
error = EADDRNOTAVAIL;
goto out_imo_locked;
}
VERIFY(imo->im6o_mfilters != NULL);
imf = &imo->im6o_mfilters[idx];
inm = imo->im6o_membership[idx];
/*
* Attempting to use the delta-based API on an
* non exclusive-mode membership is an error.
*/
fmode = imf->im6f_st[0];
if (fmode != MCAST_EXCLUDE) {
error = EINVAL;
goto out_imo_locked;
}
/*
* Deal with error cases up-front:
* Asked to block, but already blocked; or
* Asked to unblock, but nothing to unblock.
* If adding a new block entry, allocate it.
*/
ims = im6o_match_source(imo, idx, ssa);
if ((ims != NULL && doblock) || (ims == NULL && !doblock)) {
MLD_PRINTF(("%s: source %s %spresent\n", __func__,
ip6_sprintf(&ssa->sin6_addr),
doblock ? "" : "not "));
error = EADDRNOTAVAIL;
goto out_imo_locked;
}
/*
* Begin state merge transaction at socket layer.
*/
if (doblock) {
MLD_PRINTF(("%s: %s source\n", __func__, "block"));
ims = im6f_graft(imf, fmode, ssa);
if (ims == NULL) {
error = ENOMEM;
}
} else {
MLD_PRINTF(("%s: %s source\n", __func__, "allow"));
error = im6f_prune(imf, ssa);
}
if (error) {
MLD_PRINTF(("%s: merge imf state failed\n", __func__));
goto out_im6f_rollback;
}
/*
* Begin state merge transaction at MLD layer.
*/
IN6M_LOCK(inm);
MLD_PRINTF(("%s: merge inm state\n", __func__));
error = in6m_merge(inm, imf);
if (error) {
MLD_PRINTF(("%s: failed to merge inm state\n", __func__));
IN6M_UNLOCK(inm);
goto out_im6f_rollback;
}
MLD_PRINTF(("%s: doing mld downcall\n", __func__));
error = mld_change_state(inm, &mtp, 0);
IN6M_UNLOCK(inm);
#if MLD_DEBUG
if (error) {
MLD_PRINTF(("%s: failed mld downcall\n", __func__));
}
#endif
out_im6f_rollback:
if (error) {
im6f_rollback(imf);
} else {
im6f_commit(imf);
}
im6f_reap(imf);
out_imo_locked:
IM6O_UNLOCK(imo);
IM6O_REMREF(imo); /* from in6p_findmoptions() */
/* schedule timer now that we've dropped the lock(s) */
mld_set_fast_timeout(&mtp);
return error;
}
/*
* Given an inpcb, return its multicast options structure pointer. Accepts
* an unlocked inpcb pointer, but will return it locked. May sleep.
*
*/
static struct ip6_moptions *
in6p_findmoptions(struct inpcb *inp)
{
struct ip6_moptions *imo;
struct in6_multi **immp;
struct in6_mfilter *imfp;
size_t idx;
if ((imo = inp->in6p_moptions) != NULL) {
IM6O_ADDREF(imo); /* for caller */
return imo;
}
imo = ip6_allocmoptions(Z_WAITOK);
if (imo == NULL) {
return NULL;
}
immp = kalloc_type(struct in6_multi *, IPV6_MIN_MEMBERSHIPS,
Z_WAITOK | Z_ZERO | Z_NOFAIL);
imfp = kalloc_type(struct in6_mfilter, IPV6_MIN_MEMBERSHIPS,
Z_WAITOK | Z_ZERO | Z_NOFAIL);
imo->im6o_multicast_ifp = NULL;
imo->im6o_multicast_hlim = (u_char)ip6_defmcasthlim;
imo->im6o_multicast_loop = (u_char)in6_mcast_loop;
imo->im6o_num_memberships = 0;
imo->im6o_max_memberships = IPV6_MIN_MEMBERSHIPS;
imo->im6o_membership = immp;
imo->im6o_mfilters = imfp;
/* Initialize per-group source filters. */
for (idx = 0; idx < IPV6_MIN_MEMBERSHIPS; idx++) {
im6f_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE);
}
inp->in6p_moptions = imo; /* keep reference from ip6_allocmoptions() */
IM6O_ADDREF(imo); /* for caller */
return imo;
}
/*
* Atomically get source filters on a socket for an IPv6 multicast group.
* Called with INP lock held; returns with lock released.
*/
static int
in6p_get_source_filters(struct inpcb *inp, struct sockopt *sopt)
{
struct __msfilterreq64 msfr = {}, msfr64;
struct __msfilterreq32 msfr32;
struct sockaddr_in6 *gsa;
struct ifnet *ifp;
struct ip6_moptions *imo;
struct in6_mfilter *imf;
struct ip6_msource *ims;
struct in6_msource *lims;
struct sockaddr_in6 *psin;
struct sockaddr_storage *ptss;
struct sockaddr_storage *tss;
int error;
size_t idx, nsrcs, ncsrcs;
user_addr_t tmp_ptr;
const bool is_currproc_64bit_proc = IS_64BIT_PROCESS(current_proc());
imo = inp->in6p_moptions;
VERIFY(imo != NULL);
if (is_currproc_64bit_proc) {
error = sooptcopyin(sopt, &msfr64,
sizeof(struct __msfilterreq64),
sizeof(struct __msfilterreq64));
if (error) {
return error;
}
/* we never use msfr.msfr_srcs; */
memcpy(&msfr, &msfr64, sizeof(msfr64));
} else {
error = sooptcopyin(sopt, &msfr32,
sizeof(struct __msfilterreq32),
sizeof(struct __msfilterreq32));
if (error) {
return error;
}
/* we never use msfr.msfr_srcs; */
memcpy(&msfr, &msfr32, sizeof(msfr32));
}
if (msfr.msfr_group.ss_family != AF_INET6 ||
msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6)) {
return EINVAL;
}
gsa = SIN6(&msfr.msfr_group);
if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6_addr)) {
return EINVAL;
}
ifnet_head_lock_shared();
if (msfr.msfr_ifindex == 0 || !IF_INDEX_IN_RANGE(msfr.msfr_ifindex)) {
ifnet_head_done();
return EADDRNOTAVAIL;
}
ifp = ifindex2ifnet[msfr.msfr_ifindex];
ifnet_head_done();
if (ifp == NULL) {
return EADDRNOTAVAIL;
}
if ((size_t) msfr.msfr_nsrcs >
UINT32_MAX / sizeof(struct sockaddr_storage)) {
msfr.msfr_nsrcs = UINT32_MAX / sizeof(struct sockaddr_storage);
}
if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc) {
msfr.msfr_nsrcs = (uint32_t)in6_mcast_maxsocksrc;
}
(void)in6_setscope(&gsa->sin6_addr, ifp, IN6_NULL_IF_EMBEDDED_SCOPE(&gsa->sin6_scope_id));
IM6O_LOCK(imo);
/*
* Lookup group on the socket.
*/
idx = im6o_match_group(imo, ifp, gsa);
if (idx == (size_t)-1 || imo->im6o_mfilters == NULL) {
IM6O_UNLOCK(imo);
return EADDRNOTAVAIL;
}
imf = &imo->im6o_mfilters[idx];
/*
* Ignore memberships which are in limbo.
*/
if (imf->im6f_st[1] == MCAST_UNDEFINED) {
IM6O_UNLOCK(imo);
return EAGAIN;
}
msfr.msfr_fmode = imf->im6f_st[1];
/*
* If the user specified a buffer, copy out the source filter
* entries to userland gracefully.
* We only copy out the number of entries which userland
* has asked for, but we always tell userland how big the
* buffer really needs to be.
*/
tss = NULL;
if (is_currproc_64bit_proc) {
tmp_ptr = (user_addr_t)msfr64.msfr_srcs;
} else {
tmp_ptr = CAST_USER_ADDR_T(msfr32.msfr_srcs);
}
if (tmp_ptr != USER_ADDR_NULL && msfr.msfr_nsrcs > 0) {
tss = kalloc_data((size_t) msfr.msfr_nsrcs * sizeof(*tss),
Z_WAITOK | Z_ZERO);
if (tss == NULL) {
IM6O_UNLOCK(imo);
return ENOBUFS;
}
}
/*
* Count number of sources in-mode at t0.
* If buffer space exists and remains, copy out source entries.
*/
nsrcs = msfr.msfr_nsrcs;
ncsrcs = 0;
ptss = tss;
RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) {
lims = (struct in6_msource *)ims;
if (lims->im6sl_st[0] == MCAST_UNDEFINED ||
lims->im6sl_st[0] != imf->im6f_st[0]) {
continue;
}
if (tss != NULL && nsrcs > 0) {
psin = SIN6(ptss);
psin->sin6_family = AF_INET6;
psin->sin6_len = sizeof(struct sockaddr_in6);
psin->sin6_addr = lims->im6s_addr;
psin->sin6_port = 0;
--nsrcs;
++ptss;
++ncsrcs;
}
}
IM6O_UNLOCK(imo);
if (tss != NULL) {
error = copyout(tss, tmp_ptr, ncsrcs * sizeof(*tss));
kfree_data(tss, (size_t) msfr.msfr_nsrcs * sizeof(*tss));
if (error) {
return error;
}
}
msfr.msfr_nsrcs = (uint32_t)ncsrcs;
if (is_currproc_64bit_proc) {
msfr64.msfr_ifindex = msfr.msfr_ifindex;
msfr64.msfr_fmode = msfr.msfr_fmode;
msfr64.msfr_nsrcs = msfr.msfr_nsrcs;
memcpy(&msfr64.msfr_group, &msfr.msfr_group,
sizeof(struct sockaddr_storage));
error = sooptcopyout(sopt, &msfr64,
sizeof(struct __msfilterreq64));
} else {
msfr32.msfr_ifindex = msfr.msfr_ifindex;
msfr32.msfr_fmode = msfr.msfr_fmode;
msfr32.msfr_nsrcs = msfr.msfr_nsrcs;
memcpy(&msfr32.msfr_group, &msfr.msfr_group,
sizeof(struct sockaddr_storage));
error = sooptcopyout(sopt, &msfr32,
sizeof(struct __msfilterreq32));
}
return error;
}
/*
* Return the IP multicast options in response to user getsockopt().
*/
int
ip6_getmoptions(struct inpcb *inp, struct sockopt *sopt)
{
struct ip6_moptions *im6o;
int error;
u_int optval;
im6o = inp->in6p_moptions;
/*
* If socket is neither of type SOCK_RAW or SOCK_DGRAM,
* or is a divert socket, reject it.
*/
if (SOCK_PROTO(inp->inp_socket) == IPPROTO_DIVERT ||
(SOCK_TYPE(inp->inp_socket) != SOCK_RAW &&
SOCK_TYPE(inp->inp_socket) != SOCK_DGRAM)) {
return EOPNOTSUPP;
}
error = 0;
switch (sopt->sopt_name) {
case IPV6_MULTICAST_IF:
if (im6o != NULL) {
IM6O_LOCK(im6o);
}
if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) {
optval = 0;
} else {
optval = im6o->im6o_multicast_ifp->if_index;
}
if (im6o != NULL) {
IM6O_UNLOCK(im6o);
}
error = sooptcopyout(sopt, &optval, sizeof(u_int));
break;
case IPV6_MULTICAST_HOPS:
if (im6o == NULL) {
optval = ip6_defmcasthlim;
} else {
IM6O_LOCK(im6o);
optval = im6o->im6o_multicast_hlim;
IM6O_UNLOCK(im6o);
}
error = sooptcopyout(sopt, &optval, sizeof(u_int));
break;
case IPV6_MULTICAST_LOOP:
if (im6o == NULL) {
optval = in6_mcast_loop; /* XXX VIMAGE */
} else {
IM6O_LOCK(im6o);
optval = im6o->im6o_multicast_loop;
IM6O_UNLOCK(im6o);
}
error = sooptcopyout(sopt, &optval, sizeof(u_int));
break;
case IPV6_MSFILTER:
if (im6o == NULL) {
error = EADDRNOTAVAIL;
} else {
error = in6p_get_source_filters(inp, sopt);
}
break;
default:
error = ENOPROTOOPT;
break;
}
return error;
}
/*
* Look up the ifnet to use for a multicast group membership,
* given the address of an IPv6 group.
*
* This routine exists to support legacy IPv6 multicast applications.
*
* If inp is non-NULL and is bound to an interface, use this socket's
* inp_boundif for any required routing table lookup.
*
* If the route lookup fails, return NULL.
*
* FUTURE: Support multiple forwarding tables for IPv6.
*
* Returns NULL if no ifp could be found.
*/
static struct ifnet *
in6p_lookup_mcast_ifp(const struct inpcb *in6p,
const struct sockaddr_in6 *gsin6)
{
struct route_in6 ro6;
struct ifnet *ifp;
unsigned int ifscope = IFSCOPE_NONE;
VERIFY(in6p == NULL || (in6p->inp_vflag & INP_IPV6));
VERIFY(gsin6->sin6_family == AF_INET6);
if (IN6_IS_ADDR_MULTICAST(&gsin6->sin6_addr) == 0) {
return NULL;
}
if (in6p != NULL && (in6p->inp_flags & INP_BOUND_IF)) {
ifscope = in6p->inp_boundifp->if_index;
}
ifp = NULL;
memset(&ro6, 0, sizeof(struct route_in6));
memcpy(&ro6.ro_dst, gsin6, sizeof(struct sockaddr_in6));
rtalloc_scoped_ign((struct route *)&ro6, 0, ifscope);
if (ro6.ro_rt != NULL) {
ifp = ro6.ro_rt->rt_ifp;
VERIFY(ifp != NULL);
}
ROUTE_RELEASE(&ro6);
return ifp;
}
/*
* Since ipv6_mreq contains an ifindex and ip_mreq contains an AF_INET
* address, we need to lookup the AF_INET address when translating an
* ipv6_mreq structure into an ipmreq structure.
* This is used when userland performs multicast setsockopt() on AF_INET6
* sockets with AF_INET multicast addresses (IPv6 v4 mapped addresses).
*/
static int
in6p_lookup_v4addr(struct ipv6_mreq *mreq, struct ip_mreq *v4mreq)
{
struct ifnet *ifp;
struct ifaddr *ifa;
struct sockaddr_in *sin;
ifnet_head_lock_shared();
if (!IF_INDEX_IN_RANGE(mreq->ipv6mr_interface)) {
ifnet_head_done();
return EADDRNOTAVAIL;
} else {
ifp = ifindex2ifnet[mreq->ipv6mr_interface];
}
ifnet_head_done();
if (ifp == NULL) {
return EADDRNOTAVAIL;
}
ifa = ifa_ifpgetprimary(ifp, AF_INET);
if (ifa == NULL) {
return EADDRNOTAVAIL;
}
sin = SIN(ifa->ifa_addr);
v4mreq->imr_interface.s_addr = sin->sin_addr.s_addr;
ifa_remref(ifa);
return 0;
}
/*
* Join an IPv6 multicast group, possibly with a source.
*
* FIXME: The KAME use of the unspecified address (::)
* to join *all* multicast groups is currently unsupported.
*/
static int
in6p_join_group(struct inpcb *inp, struct sockopt *sopt)
{
struct group_source_req gsr;
struct sockaddr_in6 *gsa, *ssa;
struct ifnet *ifp;
struct in6_mfilter *imf;
struct ip6_moptions *imo;
struct in6_multi *__single inm = NULL;
struct in6_msource *lims = NULL;
size_t idx;
int error, is_new;
struct mld_tparams mtp;
bzero(&mtp, sizeof(mtp));
ifp = NULL;
imf = NULL;
error = 0;
is_new = 0;
memset(&gsr, 0, sizeof(struct group_source_req));
gsa = SIN6(&gsr.gsr_group);
ssa = SIN6(&gsr.gsr_source);
/*
* Chew everything into struct group_source_req.
* Overwrite the port field if present, as the sockaddr
* being copied in may be matched with a binary comparison.
* Ignore passed-in scope ID.
*/
switch (sopt->sopt_name) {
case IPV6_JOIN_GROUP: {
struct ipv6_mreq mreq;
error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq),
sizeof(struct ipv6_mreq));
if (error) {
return error;
}
if (IN6_IS_ADDR_V4MAPPED(&mreq.ipv6mr_multiaddr)) {
struct ip_mreq v4mreq;
struct sockopt v4sopt;
v4mreq.imr_multiaddr.s_addr =
mreq.ipv6mr_multiaddr.s6_addr32[3];
if (mreq.ipv6mr_interface == 0) {
v4mreq.imr_interface.s_addr = INADDR_ANY;
} else {
error = in6p_lookup_v4addr(&mreq, &v4mreq);
}
if (error) {
return error;
}
v4sopt.sopt_dir = SOPT_SET;
v4sopt.sopt_level = sopt->sopt_level;
v4sopt.sopt_name = IP_ADD_MEMBERSHIP;
v4sopt.sopt_val = CAST_USER_ADDR_T(&v4mreq);
v4sopt.sopt_valsize = sizeof(v4mreq);
v4sopt.sopt_p = kernproc;
return inp_join_group(inp, &v4sopt);
}
gsa->sin6_family = AF_INET6;
gsa->sin6_len = sizeof(struct sockaddr_in6);
gsa->sin6_addr = mreq.ipv6mr_multiaddr;
/* Only allow IPv6 multicast addresses */
if (IN6_IS_ADDR_MULTICAST(&gsa->sin6_addr) == 0) {
return EINVAL;
}
if (mreq.ipv6mr_interface == 0) {
ifp = in6p_lookup_mcast_ifp(inp, gsa);
} else {
ifnet_head_lock_shared();
if (!IF_INDEX_IN_RANGE(mreq.ipv6mr_interface)) {
ifnet_head_done();
return EADDRNOTAVAIL;
}
ifp = ifindex2ifnet[mreq.ipv6mr_interface];
ifnet_head_done();
}
MLD_PRINTF(("%s: ipv6mr_interface = %d, ifp = 0x%llx\n",
__func__, mreq.ipv6mr_interface,
(uint64_t)VM_KERNEL_ADDRPERM(ifp)));
break;
}
case MCAST_JOIN_GROUP:
case MCAST_JOIN_SOURCE_GROUP:
if (sopt->sopt_name == MCAST_JOIN_GROUP) {
error = sooptcopyin(sopt, &gsr,
sizeof(struct group_req),
sizeof(struct group_req));
} else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
error = sooptcopyin(sopt, &gsr,
sizeof(struct group_source_req),
sizeof(struct group_source_req));
}
if (error) {
return error;
}
if (gsa->sin6_family != AF_INET6 ||
gsa->sin6_len != sizeof(struct sockaddr_in6)) {
return EINVAL;
}
if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
if (ssa->sin6_family != AF_INET6 ||
ssa->sin6_len != sizeof(struct sockaddr_in6)) {
return EINVAL;
}
if (IN6_IS_ADDR_MULTICAST(&ssa->sin6_addr)) {
return EINVAL;
}
/*
* TODO: Validate embedded scope ID in source
* list entry against passed-in ifp, if and only
* if source list filter entry is iface or node local.
*/
in6_clearscope(&ssa->sin6_addr);
ssa->sin6_port = 0;
ssa->sin6_scope_id = 0;
}
ifnet_head_lock_shared();
if (gsr.gsr_interface == 0 ||
!IF_INDEX_IN_RANGE(gsr.gsr_interface)) {
ifnet_head_done();
return EADDRNOTAVAIL;
}
ifp = ifindex2ifnet[gsr.gsr_interface];
ifnet_head_done();
break;
default:
MLD_PRINTF(("%s: unknown sopt_name %d\n",
__func__, sopt->sopt_name));
return EOPNOTSUPP;
}
if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6_addr)) {
return EINVAL;
}
if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
return EADDRNOTAVAIL;
}
INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_mcast_join_total);
/*
* TBD: revisit the criteria for non-OS initiated joins
*/
if (inp->inp_lport == htons(5353)) {
INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_mcast_join_os_total);
}
gsa->sin6_port = 0;
if (in6_embedded_scope) {
gsa->sin6_scope_id = 0;
}
(void)in6_setscope(&gsa->sin6_addr, ifp, &gsa->sin6_scope_id);
if (!in6_embedded_scope) {
if ((IN6_IS_ADDR_MC_LINKLOCAL(&gsa->sin6_addr) ||
IN6_IS_ADDR_MC_INTFACELOCAL(&gsa->sin6_addr)) &&
gsa->sin6_scope_id == 0) {
return EINVAL;
}
}
/*
* Some addresses are not valid without an embedded scopeid.
* This check must be present because otherwise we will later hit
* a VERIFY() in in6_mc_join().
*/
if ((IN6_IS_ADDR_MC_LINKLOCAL(&gsa->sin6_addr) ||
IN6_IS_ADDR_MC_INTFACELOCAL(&gsa->sin6_addr)) &&
gsa->sin6_scope_id == 0) {
return EINVAL;
}
if (in6_embedded_scope) {
gsa->sin6_scope_id = 0;
}
imo = in6p_findmoptions(inp);
if (imo == NULL) {
return ENOMEM;
}
IM6O_LOCK(imo);
idx = im6o_match_group(imo, ifp, gsa);
if (idx == (size_t)-1) {
is_new = 1;
} else {
inm = imo->im6o_membership[idx];
imf = &imo->im6o_mfilters[idx];
if (ssa->sin6_family != AF_UNSPEC) {
/*
* MCAST_JOIN_SOURCE_GROUP on an exclusive membership
* is an error. On an existing inclusive membership,
* it just adds the source to the filter list.
*/
if (imf->im6f_st[1] != MCAST_INCLUDE) {
error = EINVAL;
goto out_imo_locked;
}
/*
* Throw out duplicates.
*
* XXX FIXME: This makes a naive assumption that
* even if entries exist for *ssa in this imf,
* they will be rejected as dupes, even if they
* are not valid in the current mode (in-mode).
*
* in6_msource is transactioned just as for anything
* else in SSM -- but note naive use of in6m_graft()
* below for allocating new filter entries.
*
* This is only an issue if someone mixes the
* full-state SSM API with the delta-based API,
* which is discouraged in the relevant RFCs.
*/
lims = im6o_match_source(imo, idx, ssa);
if (lims != NULL /*&&
* lims->im6sl_st[1] == MCAST_INCLUDE*/) {
error = EADDRNOTAVAIL;
goto out_imo_locked;
}
} else {
/*
* MCAST_JOIN_GROUP on an existing exclusive
* membership is an error; return EADDRINUSE
* to preserve 4.4BSD API idempotence, and
* avoid tedious detour to code below.
* NOTE: This is bending RFC 3678 a bit.
*
* On an existing inclusive membership, this is also
* an error; if you want to change filter mode,
* you must use the userland API setsourcefilter().
* XXX We don't reject this for imf in UNDEFINED
* state at t1, because allocation of a filter
* is atomic with allocation of a membership.
*/
error = EINVAL;
/* See comments above for EADDRINUSE */
if (imf->im6f_st[1] == MCAST_EXCLUDE) {
error = EADDRINUSE;
}
goto out_imo_locked;
}
}
/*
* Begin state merge transaction at socket layer.
*/
if (is_new) {
if (imo->im6o_num_memberships == imo->im6o_max_memberships) {
error = im6o_grow(imo);
if (error) {
goto out_imo_locked;
}
}
/*
* Allocate the new slot upfront so we can deal with
* grafting the new source filter in same code path
* as for join-source on existing membership.
*/
idx = imo->im6o_num_memberships;
imo->im6o_membership[idx] = NULL;
imo->im6o_num_memberships++;
VERIFY(imo->im6o_mfilters != NULL);
imf = &imo->im6o_mfilters[idx];
VERIFY(RB_EMPTY(&imf->im6f_sources));
}
/*
* Graft new source into filter list for this inpcb's
* membership of the group. The in6_multi may not have
* been allocated yet if this is a new membership, however,
* the in_mfilter slot will be allocated and must be initialized.
*
* Note: Grafting of exclusive mode filters doesn't happen
* in this path.
* XXX: Should check for non-NULL lims (node exists but may
* not be in-mode) for interop with full-state API.
*/
if (ssa->sin6_family != AF_UNSPEC) {
/* Membership starts in IN mode */
if (is_new) {
MLD_PRINTF(("%s: new join w/source\n", __func__);
im6f_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE));
} else {
MLD_PRINTF(("%s: %s source\n", __func__, "allow"));
}
lims = im6f_graft(imf, MCAST_INCLUDE, ssa);
if (lims == NULL) {
MLD_PRINTF(("%s: merge imf state failed\n",
__func__));
error = ENOMEM;
goto out_im6o_free;
}
} else {
/* No address specified; Membership starts in EX mode */
if (is_new) {
MLD_PRINTF(("%s: new join w/o source", __func__));
im6f_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE);
}
}
/*
* Begin state merge transaction at MLD layer.
*/
if (is_new) {
VERIFY(inm == NULL);
error = in6_mc_join(ifp, &gsa->sin6_addr, imf, &inm, 0);
VERIFY(inm != NULL || error != 0);
if (error) {
goto out_im6o_free;
}
imo->im6o_membership[idx] = inm; /* from in6_mc_join() */
} else {
MLD_PRINTF(("%s: merge inm state\n", __func__));
IN6M_LOCK(inm);
error = in6m_merge(inm, imf);
if (error) {
MLD_PRINTF(("%s: failed to merge inm state\n",
__func__));
IN6M_UNLOCK(inm);
goto out_im6f_rollback;
}
MLD_PRINTF(("%s: doing mld downcall\n", __func__));
error = mld_change_state(inm, &mtp, 0);
IN6M_UNLOCK(inm);
if (error) {
MLD_PRINTF(("%s: failed mld downcall\n",
__func__));
goto out_im6f_rollback;
}
}
out_im6f_rollback:
if (error) {
im6f_rollback(imf);
if (is_new) {
im6f_purge(imf);
} else {
im6f_reap(imf);
}
} else {
im6f_commit(imf);
}
out_im6o_free:
if (error && is_new) {
VERIFY(inm == NULL);
imo->im6o_membership[idx] = NULL;
--imo->im6o_num_memberships;
}
out_imo_locked:
IM6O_UNLOCK(imo);
IM6O_REMREF(imo); /* from in6p_findmoptions() */
/* schedule timer now that we've dropped the lock(s) */
mld_set_fast_timeout(&mtp);
return error;
}
/*
* Leave an IPv6 multicast group on an inpcb, possibly with a source.
*/
static int
in6p_leave_group(struct inpcb *inp, struct sockopt *sopt)
{
struct ipv6_mreq mreq;
struct group_source_req gsr;
struct sockaddr_in6 *gsa, *ssa;
struct ifnet *ifp;
struct in6_mfilter *imf;
struct ip6_moptions *imo;
struct in6_msource *ims;
struct in6_multi *inm = NULL;
uint32_t ifindex = 0;
size_t idx;
int error, is_final;
struct mld_tparams mtp;
bzero(&mtp, sizeof(mtp));
ifp = NULL;
error = 0;
is_final = 1;
memset(&gsr, 0, sizeof(struct group_source_req));
gsa = SIN6(&gsr.gsr_group);
ssa = SIN6(&gsr.gsr_source);
/*
* Chew everything passed in up into a struct group_source_req
* as that is easier to process.
* Note: Any embedded scope ID in the multicast group passed
* in by userland is ignored, the interface index is the recommended
* mechanism to specify an interface; see below.
*/
switch (sopt->sopt_name) {
case IPV6_LEAVE_GROUP: {
error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq),
sizeof(struct ipv6_mreq));
if (error) {
return error;
}
if (IN6_IS_ADDR_V4MAPPED(&mreq.ipv6mr_multiaddr)) {
struct ip_mreq v4mreq;
struct sockopt v4sopt;
v4mreq.imr_multiaddr.s_addr =
mreq.ipv6mr_multiaddr.s6_addr32[3];
if (mreq.ipv6mr_interface == 0) {
v4mreq.imr_interface.s_addr = INADDR_ANY;
} else {
error = in6p_lookup_v4addr(&mreq, &v4mreq);
}
if (error) {
return error;
}
v4sopt.sopt_dir = SOPT_SET;
v4sopt.sopt_level = sopt->sopt_level;
v4sopt.sopt_name = IP_DROP_MEMBERSHIP;
v4sopt.sopt_val = CAST_USER_ADDR_T(&v4mreq);
v4sopt.sopt_valsize = sizeof(v4mreq);
v4sopt.sopt_p = kernproc;
return inp_leave_group(inp, &v4sopt);
}
gsa->sin6_family = AF_INET6;
gsa->sin6_len = sizeof(struct sockaddr_in6);
gsa->sin6_addr = mreq.ipv6mr_multiaddr;
gsa->sin6_port = 0;
if (!in6_embedded_scope) {
gsa->sin6_scope_id = 0;
}
ifindex = mreq.ipv6mr_interface;
/* Only allow IPv6 multicast addresses */
if (IN6_IS_ADDR_MULTICAST(&gsa->sin6_addr) == 0) {
return EINVAL;
}
break;
}
case MCAST_LEAVE_GROUP:
case MCAST_LEAVE_SOURCE_GROUP:
if (sopt->sopt_name == MCAST_LEAVE_GROUP) {
error = sooptcopyin(sopt, &gsr,
sizeof(struct group_req),
sizeof(struct group_req));
} else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
error = sooptcopyin(sopt, &gsr,
sizeof(struct group_source_req),
sizeof(struct group_source_req));
}
if (error) {
return error;
}
if (gsa->sin6_family != AF_INET6 ||
gsa->sin6_len != sizeof(struct sockaddr_in6)) {
return EINVAL;
}
if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
if (ssa->sin6_family != AF_INET6 ||
ssa->sin6_len != sizeof(struct sockaddr_in6)) {
return EINVAL;
}
if (IN6_IS_ADDR_MULTICAST(&ssa->sin6_addr)) {
return EINVAL;
}
/*
* TODO: Validate embedded scope ID in source
* list entry against passed-in ifp, if and only
* if source list filter entry is iface or node local.
*/
in6_clearscope(&ssa->sin6_addr);
}
gsa->sin6_port = 0;
if (in6_embedded_scope) {
gsa->sin6_scope_id = 0;
}
ifindex = gsr.gsr_interface;
break;
default:
MLD_PRINTF(("%s: unknown sopt_name %d\n",
__func__, sopt->sopt_name));
return EOPNOTSUPP;
}
if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6_addr)) {
return EINVAL;
}
/*
* Validate interface index if provided. If no interface index
* was provided separately, attempt to look the membership up
* from the default scope as a last resort to disambiguate
* the membership we are being asked to leave.
* XXX SCOPE6 lock potentially taken here.
*/
if (ifindex != 0) {
ifnet_head_lock_shared();
if (!IF_INDEX_IN_RANGE(ifindex)) {
ifnet_head_done();
return EADDRNOTAVAIL;
}
ifp = ifindex2ifnet[ifindex];
ifnet_head_done();
if (ifp == NULL) {
return EADDRNOTAVAIL;
}
(void) in6_setscope(&gsa->sin6_addr, ifp, NULL);
if (!in6_embedded_scope) {
gsa->sin6_scope_id = ifindex;
}
} else {
error = sa6_embedscope(gsa, ip6_use_defzone, IN6_NULL_IF_EMBEDDED_SCOPE(&ifindex));
if (error) {
return EADDRNOTAVAIL;
}
/*
* Some badly behaved applications don't pass an ifindex
* or a scope ID, which is an API violation. In this case,
* perform a lookup as per a v6 join.
*
* XXX For now, stomp on zone ID for the corner case.
* This is not the 'KAME way', but we need to see the ifp
* directly until such time as this implementation is
* refactored, assuming the scope IDs are the way to go.
*/
if (in6_embedded_scope) {
ifindex = ntohs(gsa->sin6_addr.s6_addr16[1]);
}
if (ifindex == 0) {
MLD_PRINTF(("%s: warning: no ifindex, looking up "
"ifp for group %s.\n", __func__,
ip6_sprintf(&gsa->sin6_addr)));
ifp = in6p_lookup_mcast_ifp(inp, gsa);
} else {
if (!IF_INDEX_IN_RANGE(ifindex)) {
return EADDRNOTAVAIL;
}
ifnet_head_lock_shared();
ifp = ifindex2ifnet[ifindex];
ifnet_head_done();
}
if (ifp == NULL) {
return EADDRNOTAVAIL;
}
}
VERIFY(ifp != NULL);
MLD_PRINTF(("%s: ifp = 0x%llx\n", __func__,
(uint64_t)VM_KERNEL_ADDRPERM(ifp)));
/*
* Find the membership in the membership array.
*/
imo = in6p_findmoptions(inp);
if (imo == NULL) {
return ENOMEM;
}
IM6O_LOCK(imo);
idx = im6o_match_group(imo, ifp, gsa);
if (idx == (size_t)-1) {
error = EADDRNOTAVAIL;
goto out_locked;
}
inm = imo->im6o_membership[idx];
imf = &imo->im6o_mfilters[idx];
if (ssa->sin6_family != AF_UNSPEC) {
is_final = 0;
}
/*
* Begin state merge transaction at socket layer.
*/
/*
* If we were instructed only to leave a given source, do so.
* MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships.
*/
if (is_final) {
im6f_leave(imf);
} else {
if (imf->im6f_st[0] == MCAST_EXCLUDE) {
error = EADDRNOTAVAIL;
goto out_locked;
}
ims = im6o_match_source(imo, idx, ssa);
if (ims == NULL) {
MLD_PRINTF(("%s: source %s %spresent\n", __func__,
ip6_sprintf(&ssa->sin6_addr),
"not "));
error = EADDRNOTAVAIL;
goto out_locked;
}
MLD_PRINTF(("%s: %s source\n", __func__, "block"));
error = im6f_prune(imf, ssa);
if (error) {
MLD_PRINTF(("%s: merge imf state failed\n",
__func__));
goto out_locked;
}
}
/*
* Begin state merge transaction at MLD layer.
*/
if (is_final) {
/*
* Give up the multicast address record to which
* the membership points. Reference held in im6o
* will be released below.
*/
(void) in6_mc_leave(inm, imf);
} else {
MLD_PRINTF(("%s: merge inm state\n", __func__));
IN6M_LOCK(inm);
error = in6m_merge(inm, imf);
if (error) {
MLD_PRINTF(("%s: failed to merge inm state\n",
__func__));
IN6M_UNLOCK(inm);
goto out_im6f_rollback;
}
MLD_PRINTF(("%s: doing mld downcall\n", __func__));
error = mld_change_state(inm, &mtp, 0);
if (error) {
MLD_PRINTF(("%s: failed mld downcall\n", __func__));
}
IN6M_UNLOCK(inm);
}
out_im6f_rollback:
if (error) {
im6f_rollback(imf);
} else {
im6f_commit(imf);
}
im6f_reap(imf);
if (is_final) {
/* Remove the gap in the membership array. */
VERIFY(inm == imo->im6o_membership[idx]);
IN6M_REMREF(inm);
for (++idx; idx < imo->im6o_num_memberships; ++idx) {
imo->im6o_membership[idx - 1] = imo->im6o_membership[idx];
imo->im6o_mfilters[idx - 1] = imo->im6o_mfilters[idx];
}
imo->im6o_num_memberships--;
/* Re-initialize the now unused tail of the list */
imo->im6o_membership[imo->im6o_num_memberships] = NULL;
im6f_init(&imo->im6o_mfilters[imo->im6o_num_memberships], MCAST_UNDEFINED, MCAST_EXCLUDE);
}
out_locked:
IM6O_UNLOCK(imo);
IM6O_REMREF(imo); /* from in6p_findmoptions() */
/* schedule timer now that we've dropped the lock(s) */
mld_set_fast_timeout(&mtp);
return error;
}
/*
* Select the interface for transmitting IPv6 multicast datagrams.
*
* Either an instance of struct in6_addr or an instance of struct ipv6_mreqn
* may be passed to this socket option. An address of in6addr_any or an
* interface index of 0 is used to remove a previous selection.
* When no interface is selected, one is chosen for every send.
*/
static int
in6p_set_multicast_if(struct inpcb *inp, struct sockopt *sopt)
{
struct ifnet *ifp;
struct ip6_moptions *imo;
u_int ifindex;
int error;
if (sopt->sopt_valsize != sizeof(u_int)) {
return EINVAL;
}
error = sooptcopyin(sopt, &ifindex, sizeof(u_int), sizeof(u_int));
if (error) {
return error;
}
ifnet_head_lock_shared();
if (!IF_INDEX_IN_RANGE(ifindex)) {
ifnet_head_done();
return EINVAL;
}
ifp = ifindex2ifnet[ifindex];
ifnet_head_done();
if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
return EADDRNOTAVAIL;
}
imo = in6p_findmoptions(inp);
if (imo == NULL) {
return ENOMEM;
}
IM6O_LOCK(imo);
imo->im6o_multicast_ifp = ifp;
IM6O_UNLOCK(imo);
IM6O_REMREF(imo); /* from in6p_findmoptions() */
return 0;
}
/*
* Atomically set source filters on a socket for an IPv6 multicast group.
*
*/
static int
in6p_set_source_filters(struct inpcb *inp, struct sockopt *sopt)
{
struct __msfilterreq64 msfr = {}, msfr64;
struct __msfilterreq32 msfr32;
struct sockaddr_in6 *gsa;
struct ifnet *ifp;
struct in6_mfilter *imf;
struct ip6_moptions *imo;
struct in6_multi *inm;
size_t idx;
int error;
user_addr_t tmp_ptr;
struct mld_tparams mtp;
const bool is_currproc_64bit_proc = IS_64BIT_PROCESS(current_proc());
bzero(&mtp, sizeof(mtp));
if (is_currproc_64bit_proc) {
error = sooptcopyin(sopt, &msfr64,
sizeof(struct __msfilterreq64),
sizeof(struct __msfilterreq64));
if (error) {
return error;
}
/* we never use msfr.msfr_srcs; */
memcpy(&msfr, &msfr64, sizeof(msfr64));
} else {
error = sooptcopyin(sopt, &msfr32,
sizeof(struct __msfilterreq32),
sizeof(struct __msfilterreq32));
if (error) {
return error;
}
/* we never use msfr.msfr_srcs; */
memcpy(&msfr, &msfr32, sizeof(msfr32));
}
if ((size_t) msfr.msfr_nsrcs >
UINT32_MAX / sizeof(struct sockaddr_storage)) {
msfr.msfr_nsrcs = UINT32_MAX / sizeof(struct sockaddr_storage);
}
if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc) {
return ENOBUFS;
}
if (msfr.msfr_fmode != MCAST_EXCLUDE &&
msfr.msfr_fmode != MCAST_INCLUDE) {
return EINVAL;
}
if (msfr.msfr_group.ss_family != AF_INET6 ||
msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6)) {
return EINVAL;
}
gsa = SIN6(&msfr.msfr_group);
if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6_addr)) {
return EINVAL;
}
gsa->sin6_port = 0; /* ignore port */
ifnet_head_lock_shared();
if (msfr.msfr_ifindex == 0 || !IF_INDEX_IN_RANGE(msfr.msfr_ifindex)) {
ifnet_head_done();
return EADDRNOTAVAIL;
}
ifp = ifindex2ifnet[msfr.msfr_ifindex];
ifnet_head_done();
if (ifp == NULL) {
return EADDRNOTAVAIL;
}
(void)in6_setscope(&gsa->sin6_addr, ifp, IN6_NULL_IF_EMBEDDED_SCOPE(&gsa->sin6_scope_id));
/*
* Take the INP write lock.
* Check if this socket is a member of this group.
*/
imo = in6p_findmoptions(inp);
if (imo == NULL) {
return ENOMEM;
}
IM6O_LOCK(imo);
idx = im6o_match_group(imo, ifp, gsa);
if (idx == (size_t)-1 || imo->im6o_mfilters == NULL) {
error = EADDRNOTAVAIL;
goto out_imo_locked;
}
inm = imo->im6o_membership[idx];
imf = &imo->im6o_mfilters[idx];
/*
* Begin state merge transaction at socket layer.
*/
imf->im6f_st[1] = (uint8_t)msfr.msfr_fmode;
/*
* Apply any new source filters, if present.
* Make a copy of the user-space source vector so
* that we may copy them with a single copyin. This
* allows us to deal with page faults up-front.
*/
if (msfr.msfr_nsrcs > 0) {
struct in6_msource *__single lims;
struct sockaddr_in6 *psin;
struct sockaddr_storage *kss, *pkss;
unsigned int i;
if (is_currproc_64bit_proc) {
tmp_ptr = (user_addr_t)msfr64.msfr_srcs;
} else {
tmp_ptr = CAST_USER_ADDR_T(msfr32.msfr_srcs);
}
MLD_PRINTF(("%s: loading %lu source list entries\n",
__func__, (unsigned long)msfr.msfr_nsrcs));
kss = kalloc_data((size_t) msfr.msfr_nsrcs * sizeof(*kss), Z_WAITOK);
if (kss == NULL) {
error = ENOMEM;
goto out_imo_locked;
}
error = copyin(tmp_ptr, kss,
(size_t) msfr.msfr_nsrcs * sizeof(*kss));
if (error) {
kfree_data(kss, (size_t) msfr.msfr_nsrcs * sizeof(*kss));
goto out_imo_locked;
}
/*
* Mark all source filters as UNDEFINED at t1.
* Restore new group filter mode, as im6f_leave()
* will set it to INCLUDE.
*/
im6f_leave(imf);
imf->im6f_st[1] = (uint8_t)msfr.msfr_fmode;
/*
* Update socket layer filters at t1, lazy-allocating
* new entries. This saves a bunch of memory at the
* cost of one RB_FIND() per source entry; duplicate
* entries in the msfr_nsrcs vector are ignored.
* If we encounter an error, rollback transaction.
*
* XXX This too could be replaced with a set-symmetric
* difference like loop to avoid walking from root
* every time, as the key space is common.
*/
for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) {
psin = SIN6(pkss);
if (psin->sin6_family != AF_INET6) {
error = EAFNOSUPPORT;
break;
}
if (psin->sin6_len != sizeof(struct sockaddr_in6)) {
error = EINVAL;
break;
}
if (IN6_IS_ADDR_MULTICAST(&psin->sin6_addr)) {
error = EINVAL;
break;
}
/*
* TODO: Validate embedded scope ID in source
* list entry against passed-in ifp, if and only
* if source list filter entry is iface or node local.
*/
in6_clearscope(&psin->sin6_addr);
error = im6f_get_source(imf, psin, &lims);
if (error) {
break;
}
lims->im6sl_st[1] = imf->im6f_st[1];
}
kfree_data(kss, (size_t) msfr.msfr_nsrcs * sizeof(*kss));
}
if (error) {
goto out_im6f_rollback;
}
/*
* Begin state merge transaction at MLD layer.
*/
IN6M_LOCK(inm);
MLD_PRINTF(("%s: merge inm state\n", __func__));
error = in6m_merge(inm, imf);
if (error) {
MLD_PRINTF(("%s: failed to merge inm state\n", __func__));
IN6M_UNLOCK(inm);
goto out_im6f_rollback;
}
MLD_PRINTF(("%s: doing mld downcall\n", __func__));
error = mld_change_state(inm, &mtp, 0);
IN6M_UNLOCK(inm);
#if MLD_DEBUG
if (error) {
MLD_PRINTF(("%s: failed mld downcall\n", __func__));
}
#endif
out_im6f_rollback:
if (error) {
im6f_rollback(imf);
} else {
im6f_commit(imf);
}
im6f_reap(imf);
out_imo_locked:
IM6O_UNLOCK(imo);
IM6O_REMREF(imo); /* from in6p_findmoptions() */
/* schedule timer now that we've dropped the lock(s) */
mld_set_fast_timeout(&mtp);
return error;
}
/*
* Set the IP multicast options in response to user setsockopt().
*
* Many of the socket options handled in this function duplicate the
* functionality of socket options in the regular unicast API. However,
* it is not possible to merge the duplicate code, because the idempotence
* of the IPv6 multicast part of the BSD Sockets API must be preserved;
* the effects of these options must be treated as separate and distinct.
*
*/
int
ip6_setmoptions(struct inpcb *inp, struct sockopt *sopt)
{
struct ip6_moptions *im6o;
int error;
error = 0;
/*
* If socket is neither of type SOCK_RAW or SOCK_DGRAM,
* or is a divert socket, reject it.
*/
if (SOCK_PROTO(inp->inp_socket) == IPPROTO_DIVERT ||
(SOCK_TYPE(inp->inp_socket) != SOCK_RAW &&
SOCK_TYPE(inp->inp_socket) != SOCK_DGRAM)) {
return EOPNOTSUPP;
}
switch (sopt->sopt_name) {
case IPV6_MULTICAST_IF:
error = in6p_set_multicast_if(inp, sopt);
break;
case IPV6_MULTICAST_HOPS: {
int hlim;
if (sopt->sopt_valsize != sizeof(int)) {
error = EINVAL;
break;
}
error = sooptcopyin(sopt, &hlim, sizeof(hlim), sizeof(int));
if (error) {
break;
}
if (hlim < -1 || hlim > IPV6_MAXHLIM) {
error = EINVAL;
break;
} else if (hlim == -1) {
hlim = ip6_defmcasthlim;
}
im6o = in6p_findmoptions(inp);
if (im6o == NULL) {
error = ENOMEM;
break;
}
IM6O_LOCK(im6o);
im6o->im6o_multicast_hlim = (u_char)hlim;
IM6O_UNLOCK(im6o);
IM6O_REMREF(im6o); /* from in6p_findmoptions() */
break;
}
case IPV6_MULTICAST_LOOP: {
u_int loop;
/*
* Set the loopback flag for outgoing multicast packets.
* Must be zero or one.
*/
if (sopt->sopt_valsize != sizeof(u_int)) {
error = EINVAL;
break;
}
error = sooptcopyin(sopt, &loop, sizeof(u_int), sizeof(u_int));
if (error) {
break;
}
if (loop > 1) {
error = EINVAL;
break;
}
im6o = in6p_findmoptions(inp);
if (im6o == NULL) {
error = ENOMEM;
break;
}
IM6O_LOCK(im6o);
im6o->im6o_multicast_loop = (u_char)loop;
IM6O_UNLOCK(im6o);
IM6O_REMREF(im6o); /* from in6p_findmoptions() */
break;
}
case IPV6_JOIN_GROUP:
case MCAST_JOIN_GROUP:
case MCAST_JOIN_SOURCE_GROUP:
error = in6p_join_group(inp, sopt);
break;
case IPV6_LEAVE_GROUP:
case MCAST_LEAVE_GROUP:
case MCAST_LEAVE_SOURCE_GROUP:
error = in6p_leave_group(inp, sopt);
break;
case MCAST_BLOCK_SOURCE:
case MCAST_UNBLOCK_SOURCE:
error = in6p_block_unblock_source(inp, sopt);
break;
case IPV6_MSFILTER:
error = in6p_set_source_filters(inp, sopt);
break;
default:
error = EOPNOTSUPP;
break;
}
return error;
}
/*
* Expose MLD's multicast filter mode and source list(s) to userland,
* keyed by (ifindex, group).
* The filter mode is written out as a uint32_t, followed by
* 0..n of struct in6_addr.
* For use by ifmcstat(8).
*/
static int
sysctl_ip6_mcast_filters SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp)
struct in6_addr mcaddr;
struct in6_addr src;
struct ifnet *ifp;
struct in6_multi *inm;
struct in6_multistep step;
struct ip6_msource *ims;
int *name;
int retval = 0;
u_int namelen;
uint32_t fmode, ifindex;
namelen = arg2;
if (req->newptr != USER_ADDR_NULL) {
return EPERM;
}
/* int: ifindex + 4 * 32 bits of IPv6 address */
if (namelen != 5) {
return EINVAL;
}
name = __unsafe_forge_bidi_indexable(int *, arg1, namelen * sizeof(int));
ifindex = name[0];
ifnet_head_lock_shared();
if (!IF_INDEX_IN_RANGE(ifindex)) {
MLD_PRINTF(("%s: ifindex %u out of range\n",
__func__, ifindex));
ifnet_head_done();
return ENOENT;
}
memcpy(&mcaddr, &name[1], sizeof(struct in6_addr));
if (!IN6_IS_ADDR_MULTICAST(&mcaddr)) {
MLD_PRINTF(("%s: group %s is not multicast\n",
__func__, ip6_sprintf(&mcaddr)));
ifnet_head_done();
return EINVAL;
}
ifp = ifindex2ifnet[ifindex];
ifnet_head_done();
if (ifp == NULL) {
MLD_PRINTF(("%s: no ifp for ifindex %u\n", __func__, ifindex));
return ENOENT;
}
/*
* Internal MLD lookups require that scope/zone ID is set.
*/
uint32_t ifscope = IFSCOPE_NONE;
(void)in6_setscope(&mcaddr, ifp, &ifscope);
in6_multihead_lock_shared();
IN6_FIRST_MULTI(step, inm);
while (inm != NULL) {
IN6M_LOCK(inm);
if (inm->in6m_ifp != ifp) {
goto next;
}
if (!in6_are_addr_equal_scoped(&inm->in6m_addr, &mcaddr, inm->ifscope, ifscope)) {
goto next;
}
fmode = inm->in6m_st[1].iss_fmode;
retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t));
if (retval != 0) {
IN6M_UNLOCK(inm);
break; /* abort */
}
RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) {
MLD_PRINTF(("%s: visit node 0x%llx\n", __func__,
(uint64_t)VM_KERNEL_ADDRPERM(ims)));
/*
* Only copy-out sources which are in-mode.
*/
if (fmode != im6s_get_mode(inm, ims, 1)) {
MLD_PRINTF(("%s: skip non-in-mode\n",
__func__));
continue; /* process next source */
}
src = ims->im6s_addr;
retval = SYSCTL_OUT(req, &src, sizeof(struct in6_addr));
if (retval != 0) {
break; /* process next inm */
}
}
next:
IN6M_UNLOCK(inm);
IN6_NEXT_MULTI(step, inm);
}
in6_multihead_lock_done();
return retval;
}
static struct in6_multi *
in6_multi_alloc(zalloc_flags_t how)
{
struct in6_multi *__single in6m;
if (in6m_debug == 0) {
in6m = kalloc_type(struct in6_multi, how | Z_ZERO);
} else {
struct in6_multi_dbg *__single in6m_dbg;
in6m_dbg = kalloc_type(struct in6_multi_dbg, how | Z_ZERO);
in6m = (struct in6_multi *__single)in6m_dbg;
}
if (in6m != NULL) {
lck_mtx_init(&in6m->in6m_lock, &in6_multihead_lock_grp,
&in6_multihead_lock_attr);
in6m->in6m_debug |= IFD_ALLOC;
if (in6m_debug != 0) {
in6m->in6m_debug |= IFD_DEBUG;
in6m->in6m_trace = in6m_trace;
}
in6m->ifscope = IFSCOPE_NONE;
}
return in6m;
}
static void
in6_multi_free(struct in6_multi *in6m)
{
IN6M_LOCK(in6m);
if (in6m->in6m_debug & IFD_ATTACHED) {
panic("%s: attached in6m=%p is being freed", __func__, in6m);
/* NOTREACHED */
} else if (in6m->in6m_ifma != NULL) {
panic("%s: ifma not NULL for in6m=%p", __func__, in6m);
/* NOTREACHED */
} else if (!(in6m->in6m_debug & IFD_ALLOC)) {
panic("%s: in6m %p cannot be freed", __func__, in6m);
/* NOTREACHED */
} else if (in6m->in6m_refcount != 0) {
panic("%s: non-zero refcount in6m=%p", __func__, in6m);
/* NOTREACHED */
} else if (in6m->in6m_reqcnt != 0) {
panic("%s: non-zero reqcnt in6m=%p", __func__, in6m);
/* NOTREACHED */
}
/* Free any pending MLDv2 state-change records */
IF_DRAIN(&in6m->in6m_scq);
in6m->in6m_debug &= ~IFD_ALLOC;
if ((in6m->in6m_debug & (IFD_DEBUG | IFD_TRASHED)) ==
(IFD_DEBUG | IFD_TRASHED)) {
lck_mtx_lock(&in6m_trash_lock);
TAILQ_REMOVE(&in6m_trash_head, (struct in6_multi_dbg *)in6m,
in6m_trash_link);
lck_mtx_unlock(&in6m_trash_lock);
in6m->in6m_debug &= ~IFD_TRASHED;
}
IN6M_UNLOCK(in6m);
lck_mtx_destroy(&in6m->in6m_lock, &in6_multihead_lock_grp);
if (!in6m_debug) {
kfree_type(struct in6_multi, in6m);
} else {
struct in6_multi_dbg *__single in6m_dbg =
(struct in6_multi_dbg *__single)in6m;
kfree_type(struct in6_multi_dbg, in6m_dbg);
in6m = NULL;
}
}
static void
in6_multi_attach(struct in6_multi *in6m)
{
in6_multihead_lock_assert(LCK_RW_ASSERT_EXCLUSIVE);
IN6M_LOCK_ASSERT_HELD(in6m);
if (in6m->in6m_debug & IFD_ATTACHED) {
panic("%s: Attempt to attach an already attached in6m=%p",
__func__, in6m);
/* NOTREACHED */
}
in6m->in6m_reqcnt++;
VERIFY(in6m->in6m_reqcnt == 1);
IN6M_ADDREF_LOCKED(in6m);
in6m->in6m_debug |= IFD_ATTACHED;
/*
* Reattach case: If debugging is enabled, take it
* out of the trash list and clear IFD_TRASHED.
*/
if ((in6m->in6m_debug & (IFD_DEBUG | IFD_TRASHED)) ==
(IFD_DEBUG | IFD_TRASHED)) {
/* Become a regular mutex, just in case */
IN6M_CONVERT_LOCK(in6m);
lck_mtx_lock(&in6m_trash_lock);
TAILQ_REMOVE(&in6m_trash_head, (struct in6_multi_dbg *)in6m,
in6m_trash_link);
lck_mtx_unlock(&in6m_trash_lock);
in6m->in6m_debug &= ~IFD_TRASHED;
}
LIST_INSERT_HEAD(&in6_multihead, in6m, in6m_entry);
}
int
in6_multi_detach(struct in6_multi *in6m)
{
in6_multihead_lock_assert(LCK_RW_ASSERT_EXCLUSIVE);
IN6M_LOCK_ASSERT_HELD(in6m);
if (in6m->in6m_reqcnt == 0) {
panic("%s: in6m=%p negative reqcnt", __func__, in6m);
/* NOTREACHED */
}
--in6m->in6m_reqcnt;
if (in6m->in6m_reqcnt > 0) {
return 0;
}
if (!(in6m->in6m_debug & IFD_ATTACHED)) {
panic("%s: Attempt to detach an unattached record in6m=%p",
__func__, in6m);
/* NOTREACHED */
} else if (in6m->in6m_debug & IFD_TRASHED) {
panic("%s: in6m %p is already in trash list", __func__, in6m);
/* NOTREACHED */
}
/*
* NOTE: Caller calls IFMA_REMREF
*/
in6m->in6m_debug &= ~IFD_ATTACHED;
LIST_REMOVE(in6m, in6m_entry);
if (in6m->in6m_debug & IFD_DEBUG) {
/* Become a regular mutex, just in case */
IN6M_CONVERT_LOCK(in6m);
lck_mtx_lock(&in6m_trash_lock);
TAILQ_INSERT_TAIL(&in6m_trash_head,
(struct in6_multi_dbg *)in6m, in6m_trash_link);
lck_mtx_unlock(&in6m_trash_lock);
in6m->in6m_debug |= IFD_TRASHED;
}
return 1;
}
void
in6m_addref(struct in6_multi *in6m, int locked)
{
if (!locked) {
IN6M_LOCK_SPIN(in6m);
} else {
IN6M_LOCK_ASSERT_HELD(in6m);
}
if (++in6m->in6m_refcount == 0) {
panic("%s: in6m=%p wraparound refcnt", __func__, in6m);
/* NOTREACHED */
} else if (in6m->in6m_trace != NULL) {
(*in6m->in6m_trace)(in6m, TRUE);
}
if (!locked) {
IN6M_UNLOCK(in6m);
}
}
void
in6m_remref(struct in6_multi *in6m, int locked)
{
struct ifmultiaddr *ifma;
struct mld_ifinfo *mli;
if (!locked) {
IN6M_LOCK_SPIN(in6m);
} else {
IN6M_LOCK_ASSERT_HELD(in6m);
}
if (in6m->in6m_refcount == 0 || (in6m->in6m_refcount == 1 && locked)) {
panic("%s: in6m=%p negative refcnt", __func__, in6m);
/* NOTREACHED */
} else if (in6m->in6m_trace != NULL) {
(*in6m->in6m_trace)(in6m, FALSE);
}
--in6m->in6m_refcount;
if (in6m->in6m_refcount > 0) {
if (!locked) {
IN6M_UNLOCK(in6m);
}
return;
}
/*
* Synchronization with in6_mc_get(). In the event the in6m has been
* detached, the underlying ifma would still be in the if_multiaddrs
* list, and thus can be looked up via if_addmulti(). At that point,
* the only way to find this in6m is via ifma_protospec. To avoid
* race conditions between the last in6m_remref() of that in6m and its
* use via ifma_protospec, in6_multihead lock is used for serialization.
* In order to avoid violating the lock order, we must drop in6m_lock
* before acquiring in6_multihead lock. To prevent the in6m from being
* freed prematurely, we hold an extra reference.
*/
++in6m->in6m_refcount;
IN6M_UNLOCK(in6m);
in6_multihead_lock_shared();
IN6M_LOCK_SPIN(in6m);
--in6m->in6m_refcount;
if (in6m->in6m_refcount > 0) {
/* We've lost the race, so abort since in6m is still in use */
IN6M_UNLOCK(in6m);
in6_multihead_lock_done();
/* If it was locked, return it as such */
if (locked) {
IN6M_LOCK(in6m);
}
return;
}
in6m_purge(in6m);
ifma = in6m->in6m_ifma;
in6m->in6m_ifma = NULL;
in6m->in6m_ifp = NULL;
mli = in6m->in6m_mli;
in6m->in6m_mli = NULL;
IN6M_UNLOCK(in6m);
IFMA_LOCK_SPIN(ifma);
ifma->ifma_protospec = NULL;
IFMA_UNLOCK(ifma);
in6_multihead_lock_done();
in6_multi_free(in6m);
if_delmulti_ifma(ifma);
/* Release reference held to the underlying ifmultiaddr */
IFMA_REMREF(ifma);
if (mli != NULL) {
MLI_REMREF(mli);
}
}
static void
in6m_trace(struct in6_multi *in6m, int refhold)
{
struct in6_multi_dbg *__single in6m_dbg =
(struct in6_multi_dbg *__single)in6m;
ctrace_t *tr;
u_int32_t idx;
u_int16_t *cnt;
if (!(in6m->in6m_debug & IFD_DEBUG)) {
panic("%s: in6m %p has no debug structure", __func__, in6m);
/* NOTREACHED */
}
if (refhold) {
cnt = &in6m_dbg->in6m_refhold_cnt;
tr = in6m_dbg->in6m_refhold;
} else {
cnt = &in6m_dbg->in6m_refrele_cnt;
tr = in6m_dbg->in6m_refrele;
}
idx = os_atomic_inc_orig(cnt, relaxed) % IN6M_TRACE_HIST_SIZE;
ctrace_record(&tr[idx]);
}
static struct in6_multi_mship *
in6_multi_mship_alloc(zalloc_flags_t how)
{
return zalloc_flags(imm_zone, how | Z_ZERO);
}
static void
in6_multi_mship_free(struct in6_multi_mship *imm)
{
if (imm->i6mm_maddr != NULL) {
panic("%s: i6mm_maddr not NULL for imm=%p", __func__, imm);
/* NOTREACHED */
}
zfree(imm_zone, imm);
}
void
in6_multihead_lock_exclusive(void)
{
lck_rw_lock_exclusive(&in6_multihead_lock);
}
void
in6_multihead_lock_shared(void)
{
lck_rw_lock_shared(&in6_multihead_lock);
}
void
in6_multihead_lock_assert(int what)
{
#if !MACH_ASSERT
#pragma unused(what)
#endif
LCK_RW_ASSERT(&in6_multihead_lock, what);
}
void
in6_multihead_lock_done(void)
{
lck_rw_done(&in6_multihead_lock);
}
static struct ip6_msource *
ip6ms_alloc(zalloc_flags_t how)
{
return zalloc_flags(ip6ms_zone, how | Z_ZERO);
}
static void
ip6ms_free(struct ip6_msource *i6ms)
{
zfree(ip6ms_zone, i6ms);
}
static struct in6_msource *
in6ms_alloc(zalloc_flags_t how)
{
return zalloc_flags(in6ms_zone, how | Z_ZERO);
}
static void
in6ms_free(struct in6_msource *in6ms)
{
zfree(in6ms_zone, in6ms);
}
#ifdef MLD_DEBUG
static const char *in6m_modestrs[] = { "un", "in", "ex" };
static const char *
in6m_mode_str(const int mode)
{
if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE) {
return in6m_modestrs[mode];
}
return "??";
}
static const char *in6m_statestrs[] = {
"not-member",
"silent",
"reporting",
"idle",
"lazy",
"sleeping",
"awakening",
"query-pending",
"sg-query-pending",
"leaving"
};
static const char *
in6m_state_str(const int state)
{
if (state >= MLD_NOT_MEMBER && state <= MLD_LEAVING_MEMBER) {
return in6m_statestrs[state];
}
return "??";
}
/*
* Dump an in6_multi structure to the console.
*/
void
in6m_print(const struct in6_multi *inm)
{
int t;
IN6M_LOCK_ASSERT_HELD(__DECONST(struct in6_multi *, inm));
if (mld_debug == 0) {
return;
}
printf("%s: --- begin in6m 0x%llx ---\n", __func__,
(uint64_t)VM_KERNEL_ADDRPERM(inm));
printf("addr %s ifp 0x%llx(%s) ifma 0x%llx\n",
ip6_sprintf(&inm->in6m_addr),
(uint64_t)VM_KERNEL_ADDRPERM(inm->in6m_ifp),
if_name(inm->in6m_ifp),
(uint64_t)VM_KERNEL_ADDRPERM(inm->in6m_ifma));
printf("timer %u state %s refcount %u scq.len %u\n",
inm->in6m_timer,
in6m_state_str(inm->in6m_state),
inm->in6m_refcount,
inm->in6m_scq.ifq_len);
printf("mli 0x%llx nsrc %lu sctimer %u scrv %u\n",
(uint64_t)VM_KERNEL_ADDRPERM(inm->in6m_mli),
inm->in6m_nsrc,
inm->in6m_sctimer,
inm->in6m_scrv);
for (t = 0; t < 2; t++) {
printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t,
in6m_mode_str(inm->in6m_st[t].iss_fmode),
inm->in6m_st[t].iss_asm,
inm->in6m_st[t].iss_ex,
inm->in6m_st[t].iss_in,
inm->in6m_st[t].iss_rec);
}
printf("%s: --- end in6m 0x%llx ---\n", __func__,
(uint64_t)VM_KERNEL_ADDRPERM(inm));
}
#else
void
in6m_print(__unused const struct in6_multi *inm)
{
}
#endif