gems-kernel/source/THIRDPARTY/xnu/bsd/netinet6/in6_pcb.c

1671 lines
47 KiB
C
Raw Normal View History

2024-06-03 11:29:39 -05:00
/*
* Copyright (c) 2003-2021 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
/*
* Copyright (c) 1982, 1986, 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)in_pcb.c 8.2 (Berkeley) 1/4/94
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sockio.h>
#include <sys/errno.h>
#include <sys/time.h>
#include <sys/proc.h>
#include <sys/kauth.h>
#include <sys/priv.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/route.h>
#include <net/ntstat.h>
#include <net/restricted_in_port.h>
#include <netinet/in.h>
#include <netinet/in_var.h>
#include <netinet/in_systm.h>
#include <netinet/ip6.h>
#include <netinet/ip_var.h>
#include <netinet6/ip6_var.h>
#include <netinet6/nd6.h>
#include <netinet/in_pcb.h>
#include <netinet6/in6_pcb.h>
#include <net/if_types.h>
#include <net/if_var.h>
#include <kern/kern_types.h>
#include <kern/zalloc.h>
#if IPSEC
#include <netinet6/ipsec.h>
#include <netinet6/ipsec6.h>
#include <netinet6/ah.h>
#include <netinet6/ah6.h>
#include <netkey/key.h>
#endif /* IPSEC */
#if NECP
#include <net/necp.h>
#endif /* NECP */
#include <net/sockaddr_utils.h>
/*
* in6_pcblookup_local_and_cleanup does everything
* in6_pcblookup_local does but it checks for a socket
* that's going away. Since we know that the lock is
* held read+write when this function is called, we
* can safely dispose of this socket like the slow
* timer would usually do and return NULL. This is
* great for bind.
*/
static struct inpcb *
in6_pcblookup_local_and_cleanup(struct inpcbinfo *pcbinfo,
struct in6_addr *laddr, u_int lport_arg, uint32_t ifscope, int wild_okay)
{
struct inpcb *inp;
/* Perform normal lookup */
inp = in6_pcblookup_local(pcbinfo, laddr, lport_arg, ifscope, wild_okay);
/* Check if we found a match but it's waiting to be disposed */
if (inp != NULL && inp->inp_wantcnt == WNT_STOPUSING) {
struct socket *so = inp->inp_socket;
socket_lock(so, 0);
if (so->so_usecount == 0) {
if (inp->inp_state != INPCB_STATE_DEAD) {
in6_pcbdetach(inp);
}
in_pcbdispose(inp); /* will unlock & destroy */
inp = NULL;
} else {
socket_unlock(so, 0);
}
}
return inp;
}
/*
* Bind an INPCB to an address and/or port. This routine should not alter
* the caller-supplied local address "nam".
*/
int
in6_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct proc *p)
{
struct socket *so = inp->inp_socket;
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
u_short lport = 0;
int wild = 0, reuseport = (so->so_options & SO_REUSEPORT);
struct ifnet *outif = NULL;
struct sockaddr_in6 sin6;
uint32_t lifscope = IFSCOPE_NONE;
int error = 0;
#if XNU_TARGET_OS_OSX
kauth_cred_t cred;
#endif /* XNU_TARGET_OS_OSX */
if (inp->inp_flags2 & INP2_BIND_IN_PROGRESS) {
return EINVAL;
}
inp->inp_flags2 |= INP2_BIND_IN_PROGRESS;
if (TAILQ_EMPTY(&in6_ifaddrhead)) { /* XXX broken! */
error = EADDRNOTAVAIL;
goto done;
}
if (!(so->so_options & (SO_REUSEADDR | SO_REUSEPORT))) {
wild = 1;
}
in_pcb_check_management_entitled(inp);
socket_unlock(so, 0); /* keep reference */
lck_rw_lock_exclusive(&pcbinfo->ipi_lock);
if (inp->inp_lport || !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) {
/* another thread completed the bind */
lck_rw_done(&pcbinfo->ipi_lock);
socket_lock(so, 0);
error = EINVAL;
goto done;
}
SOCKADDR_ZERO(&sin6, sizeof(sin6));
if (nam != NULL) {
if (nam->sa_len != sizeof(struct sockaddr_in6)) {
lck_rw_done(&pcbinfo->ipi_lock);
socket_lock(so, 0);
error = EINVAL;
goto done;
}
/*
* family check.
*/
if (nam->sa_family != AF_INET6) {
lck_rw_done(&pcbinfo->ipi_lock);
socket_lock(so, 0);
error = EAFNOSUPPORT;
goto done;
}
lport = SIN6(nam)->sin6_port;
*(&sin6) = *SIN6(nam);
/* KAME hack: embed scopeid */
if (in6_embedscope(&sin6.sin6_addr, &sin6, inp, NULL,
NULL, &lifscope) != 0) {
lck_rw_done(&pcbinfo->ipi_lock);
socket_lock(so, 0);
error = EINVAL;
goto done;
}
/* Sanitize local copy for address searches */
sin6.sin6_flowinfo = 0;
sin6.sin6_port = 0;
if (in6_embedded_scope) {
sin6.sin6_scope_id = 0;
}
if (IN6_IS_ADDR_MULTICAST(&sin6.sin6_addr)) {
/*
* Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
* allow compepte duplication of binding if
* SO_REUSEPORT is set, or if SO_REUSEADDR is set
* and a multicast address is bound on both
* new and duplicated sockets.
*/
if (so->so_options & SO_REUSEADDR) {
reuseport = SO_REUSEADDR | SO_REUSEPORT;
}
} else if (!IN6_IS_ADDR_UNSPECIFIED(&sin6.sin6_addr)) {
struct ifaddr *ifa;
ifa = ifa_ifwithaddr(SA(&sin6));
if (ifa == NULL) {
lck_rw_done(&pcbinfo->ipi_lock);
socket_lock(so, 0);
error = EADDRNOTAVAIL;
goto done;
} else {
/*
* XXX: bind to an anycast address might
* accidentally cause sending a packet with
* anycast source address. We should allow
* to bind to a deprecated address, since
* the application dare to use it.
*/
IFA_LOCK_SPIN(ifa);
if (((struct in6_ifaddr *)ifa)->ia6_flags &
(IN6_IFF_ANYCAST | IN6_IFF_NOTREADY |
IN6_IFF_DETACHED | IN6_IFF_CLAT46)) {
IFA_UNLOCK(ifa);
ifa_remref(ifa);
lck_rw_done(&pcbinfo->ipi_lock);
socket_lock(so, 0);
error = EADDRNOTAVAIL;
goto done;
}
/*
* Opportunistically determine the outbound
* interface that may be used; this may not
* hold true if we end up using a route
* going over a different interface, e.g.
* when sending to a local address. This
* will get updated again after sending.
*/
outif = ifa->ifa_ifp;
IFA_UNLOCK(ifa);
ifa_remref(ifa);
}
}
#if SKYWALK
if (inp->inp_flags2 & INP2_EXTERNAL_PORT) {
// Extract the external flow info
struct ns_flow_info nfi = {};
int netns_error = necp_client_get_netns_flow_info(inp->necp_client_uuid,
&nfi);
if (netns_error != 0) {
lck_rw_done(&pcbinfo->ipi_lock);
socket_lock(so, 0);
error = netns_error;
goto done;
}
// Extract the reserved port
u_int16_t reserved_lport = 0;
if (nfi.nfi_laddr.sa.sa_family == AF_INET) {
reserved_lport = nfi.nfi_laddr.sin.sin_port;
} else if (nfi.nfi_laddr.sa.sa_family == AF_INET6) {
reserved_lport = nfi.nfi_laddr.sin6.sin6_port;
} else {
lck_rw_done(&pcbinfo->ipi_lock);
socket_lock(so, 0);
error = EINVAL;
goto done;
}
// Validate or use the reserved port
if (lport == 0) {
lport = reserved_lport;
} else if (lport != reserved_lport) {
lck_rw_done(&pcbinfo->ipi_lock);
socket_lock(so, 0);
error = EINVAL;
goto done;
}
}
/* Do not allow reserving a UDP port if remaining UDP port count is below 4096 */
if (SOCK_PROTO(so) == IPPROTO_UDP && !allow_udp_port_exhaustion) {
uint32_t current_reservations = 0;
current_reservations = netns_lookup_reservations_count_in6(inp->in6p_laddr, IPPROTO_UDP);
if (USHRT_MAX - UDP_RANDOM_PORT_RESERVE < current_reservations) {
log(LOG_ERR, "UDP port not available, less than 4096 UDP ports left");
lck_rw_done(&pcbinfo->ipi_lock);
socket_lock(so, 0);
error = EADDRNOTAVAIL;
goto done;
}
}
#endif /* SKYWALK */
if (lport != 0) {
struct inpcb *t;
uid_t u;
#if XNU_TARGET_OS_OSX
if (ntohs(lport) < IPV6PORT_RESERVED &&
!IN6_IS_ADDR_UNSPECIFIED(&sin6.sin6_addr) &&
!(inp->inp_flags2 & INP2_EXTERNAL_PORT)) {
cred = kauth_cred_proc_ref(p);
error = priv_check_cred(cred,
PRIV_NETINET_RESERVEDPORT, 0);
kauth_cred_unref(&cred);
if (error != 0) {
lck_rw_done(&pcbinfo->ipi_lock);
socket_lock(so, 0);
error = EACCES;
goto done;
}
}
#endif /* XNU_TARGET_OS_OSX */
/*
* Check wether the process is allowed to bind to a restricted port
*/
if (!current_task_can_use_restricted_in_port(lport,
(uint8_t)SOCK_PROTO(so), PORT_FLAGS_BSD)) {
lck_rw_done(&pcbinfo->ipi_lock);
socket_lock(so, 0);
error = EADDRINUSE;
goto done;
}
if (!IN6_IS_ADDR_MULTICAST(&sin6.sin6_addr) &&
(u = kauth_cred_getuid(so->so_cred)) != 0) {
t = in6_pcblookup_local_and_cleanup(pcbinfo,
&sin6.sin6_addr, lport, sin6.sin6_scope_id,
INPLOOKUP_WILDCARD);
if (t != NULL &&
(!IN6_IS_ADDR_UNSPECIFIED(&sin6.sin6_addr) ||
!IN6_IS_ADDR_UNSPECIFIED(&t->in6p_laddr) ||
!(t->inp_socket->so_options & SO_REUSEPORT)) &&
(u != kauth_cred_getuid(t->inp_socket->so_cred)) &&
!(t->inp_socket->so_flags & SOF_REUSESHAREUID) &&
(!(t->inp_flags2 & INP2_EXTERNAL_PORT) ||
!(inp->inp_flags2 & INP2_EXTERNAL_PORT) ||
uuid_compare(t->necp_client_uuid, inp->necp_client_uuid) != 0)) {
lck_rw_done(&pcbinfo->ipi_lock);
socket_lock(so, 0);
error = EADDRINUSE;
goto done;
}
if (!(inp->inp_flags & IN6P_IPV6_V6ONLY) &&
IN6_IS_ADDR_UNSPECIFIED(&sin6.sin6_addr)) {
struct sockaddr_in sin;
in6_sin6_2_sin(&sin, &sin6);
t = in_pcblookup_local_and_cleanup(
pcbinfo, sin.sin_addr, lport,
INPLOOKUP_WILDCARD);
if (t != NULL &&
!(t->inp_socket->so_options & SO_REUSEPORT) &&
(kauth_cred_getuid(so->so_cred) !=
kauth_cred_getuid(t->inp_socket->so_cred)) &&
(t->inp_laddr.s_addr != INADDR_ANY ||
SOCK_DOM(so) == SOCK_DOM(t->inp_socket)) &&
(!(t->inp_flags2 & INP2_EXTERNAL_PORT) ||
!(inp->inp_flags2 & INP2_EXTERNAL_PORT) ||
uuid_compare(t->necp_client_uuid, inp->necp_client_uuid) != 0)) {
lck_rw_done(&pcbinfo->ipi_lock);
socket_lock(so, 0);
error = EADDRINUSE;
goto done;
}
#if SKYWALK
VERIFY(!NETNS_TOKEN_VALID(
&inp->inp_wildcard_netns_token));
if ((SOCK_PROTO(so) == IPPROTO_TCP ||
SOCK_PROTO(so) == IPPROTO_UDP) &&
!(inp->inp_flags2 & INP2_EXTERNAL_PORT)) {
if (netns_reserve_in(&inp->
inp_wildcard_netns_token,
sin.sin_addr,
(uint8_t)SOCK_PROTO(so), lport,
NETNS_BSD, NULL) != 0) {
lck_rw_done(&pcbinfo->ipi_lock);
socket_lock(so, 0);
error = EADDRINUSE;
goto done;
}
}
#endif /* SKYWALK */
}
}
t = in6_pcblookup_local_and_cleanup(pcbinfo,
&sin6.sin6_addr, lport, sin6.sin6_scope_id, wild);
if (t != NULL &&
(reuseport & t->inp_socket->so_options) == 0 &&
(!(t->inp_flags2 & INP2_EXTERNAL_PORT) ||
!(inp->inp_flags2 & INP2_EXTERNAL_PORT) ||
uuid_compare(t->necp_client_uuid, inp->necp_client_uuid) != 0)) {
#if SKYWALK
netns_release(&inp->inp_wildcard_netns_token);
#endif /* SKYWALK */
lck_rw_done(&pcbinfo->ipi_lock);
socket_lock(so, 0);
error = EADDRINUSE;
goto done;
}
if (!(inp->inp_flags & IN6P_IPV6_V6ONLY) &&
IN6_IS_ADDR_UNSPECIFIED(&sin6.sin6_addr)) {
struct sockaddr_in sin;
in6_sin6_2_sin(&sin, &sin6);
t = in_pcblookup_local_and_cleanup(pcbinfo,
sin.sin_addr, lport, wild);
if (t != NULL && (reuseport &
t->inp_socket->so_options) == 0 &&
(t->inp_laddr.s_addr != INADDR_ANY ||
SOCK_DOM(so) == SOCK_DOM(t->inp_socket)) &&
(!(t->inp_flags2 & INP2_EXTERNAL_PORT) ||
!(inp->inp_flags2 & INP2_EXTERNAL_PORT) ||
uuid_compare(t->necp_client_uuid, inp->necp_client_uuid) != 0)) {
#if SKYWALK
netns_release(&inp->inp_wildcard_netns_token);
#endif /* SKYWALK */
lck_rw_done(&pcbinfo->ipi_lock);
socket_lock(so, 0);
error = EADDRINUSE;
goto done;
}
#if SKYWALK
if ((SOCK_PROTO(so) == IPPROTO_TCP ||
SOCK_PROTO(so) == IPPROTO_UDP) &&
!(inp->inp_flags2 & INP2_EXTERNAL_PORT) &&
(!NETNS_TOKEN_VALID(
&inp->inp_wildcard_netns_token))) {
if (netns_reserve_in(&inp->
inp_wildcard_netns_token,
sin.sin_addr,
(uint8_t)SOCK_PROTO(so), lport,
NETNS_BSD, NULL) != 0) {
lck_rw_done(&pcbinfo->ipi_lock);
socket_lock(so, 0);
error = EADDRINUSE;
goto done;
}
}
#endif /* SKYWALK */
}
#if SKYWALK
if ((SOCK_PROTO(so) == IPPROTO_TCP ||
SOCK_PROTO(so) == IPPROTO_UDP) &&
!(inp->inp_flags2 & INP2_EXTERNAL_PORT)) {
if (netns_reserve_in6(&inp->inp_netns_token,
sin6.sin6_addr, (uint8_t)SOCK_PROTO(so), lport,
NETNS_BSD, NULL) != 0) {
netns_release(&inp->inp_wildcard_netns_token);
lck_rw_done(&pcbinfo->ipi_lock);
socket_lock(so, 0);
error = EADDRINUSE;
goto done;
}
}
#endif /* SKYWALK */
}
}
socket_lock(so, 0);
/*
* We unlocked socket's protocol lock for a long time.
* The socket might have been dropped/defuncted.
* Checking if world has changed since.
*/
if (inp->inp_state == INPCB_STATE_DEAD) {
#if SKYWALK
netns_release(&inp->inp_netns_token);
netns_release(&inp->inp_wildcard_netns_token);
#endif /* SKYWALK */
lck_rw_done(&pcbinfo->ipi_lock);
error = ECONNABORTED;
goto done;
}
/* check if the socket got bound when the lock was released */
if (inp->inp_lport || !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) {
#if SKYWALK
netns_release(&inp->inp_netns_token);
netns_release(&inp->inp_wildcard_netns_token);
#endif /* SKYWALK */
lck_rw_done(&pcbinfo->ipi_lock);
error = EINVAL;
goto done;
}
if (!IN6_IS_ADDR_UNSPECIFIED(&sin6.sin6_addr)) {
inp->in6p_laddr = sin6.sin6_addr;
inp->in6p_last_outifp = outif;
inp->inp_lifscope = lifscope;
in6_verify_ifscope(&inp->in6p_laddr, lifscope);
#if SKYWALK
if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) {
netns_set_ifnet(&inp->inp_netns_token,
inp->in6p_last_outifp);
}
#endif /* SKYWALK */
}
if (lport == 0) {
int e;
if ((e = in6_pcbsetport(&inp->in6p_laddr, inp, p, 1)) != 0) {
/* Undo any address bind from above. */
#if SKYWALK
netns_release(&inp->inp_netns_token);
netns_release(&inp->inp_wildcard_netns_token);
#endif /* SKYWALK */
inp->in6p_laddr = in6addr_any;
inp->in6p_last_outifp = NULL;
inp->inp_lifscope = IFSCOPE_NONE;
lck_rw_done(&pcbinfo->ipi_lock);
error = e;
goto done;
}
} else {
inp->inp_lport = lport;
if (in_pcbinshash(inp, 1) != 0) {
#if SKYWALK
netns_release(&inp->inp_netns_token);
netns_release(&inp->inp_wildcard_netns_token);
#endif /* SKYWALK */
inp->in6p_laddr = in6addr_any;
inp->inp_lifscope = IFSCOPE_NONE;
inp->inp_lport = 0;
inp->in6p_last_outifp = NULL;
lck_rw_done(&pcbinfo->ipi_lock);
error = EAGAIN;
goto done;
}
}
lck_rw_done(&pcbinfo->ipi_lock);
sflt_notify(so, sock_evt_bound, NULL);
done:
inp->inp_flags2 &= ~INP2_BIND_IN_PROGRESS;
return error;
}
/*
* Transform old in6_pcbconnect() into an inner subroutine for new
* in6_pcbconnect(); do some validity-checking on the remote address
* (in "nam") and then determine local host address (i.e., which
* interface) to use to access that remote host.
*
* This routine may alter the caller-supplied remote address "nam".
*
* This routine might return an ifp with a reference held if the caller
* provides a non-NULL outif, even in the error case. The caller is
* responsible for releasing its reference.
*/
int
in6_pcbladdr(struct inpcb *inp, struct sockaddr *nam,
struct in6_addr *plocal_addr6, struct ifnet **outif)
{
struct in6_addr *addr6 = NULL;
struct in6_addr src_storage;
int error = 0;
unsigned int ifscope;
if (outif != NULL) {
*outif = NULL;
}
if (nam->sa_len != sizeof(struct sockaddr_in6)) {
return EINVAL;
}
if (SIN6(nam)->sin6_family != AF_INET6) {
return EAFNOSUPPORT;
}
if (SIN6(nam)->sin6_port == 0) {
return EADDRNOTAVAIL;
}
/* KAME hack: embed scopeid */
if (in6_embedscope(&SIN6(nam)->sin6_addr, SIN6(nam), inp, NULL, NULL, IN6_NULL_IF_EMBEDDED_SCOPE(&SIN6(nam)->sin6_scope_id)) != 0) {
return EINVAL;
}
in_pcb_check_management_entitled(inp);
if (!TAILQ_EMPTY(&in6_ifaddrhead)) {
/*
* If the destination address is UNSPECIFIED addr,
* use the loopback addr, e.g ::1.
*/
if (IN6_IS_ADDR_UNSPECIFIED(&SIN6(nam)->sin6_addr)) {
SIN6(nam)->sin6_addr = in6addr_loopback;
}
}
ifscope = (inp->inp_flags & INP_BOUND_IF) ?
inp->inp_boundifp->if_index : IFSCOPE_NONE;
/*
* XXX: in6_selectsrc might replace the bound local address
* with the address specified by setsockopt(IPV6_PKTINFO).
* Is it the intended behavior?
*
* in6_selectsrc() might return outif with its reference held
* even in the error case; caller always needs to release it
* if non-NULL.
*/
addr6 = in6_selectsrc(SIN6(nam), inp->in6p_outputopts, inp,
&inp->in6p_route, outif, &src_storage, ifscope, &error);
if (outif != NULL) {
struct rtentry *rt = inp->in6p_route.ro_rt;
/*
* If in6_selectsrc() returns a route, it should be one
* which points to the same ifp as outif. Just in case
* it isn't, use the one from the route for consistency.
* Otherwise if there is no route, leave outif alone as
* it could still be useful to the caller.
*/
if (rt != NULL && rt->rt_ifp != *outif) {
ifnet_reference(rt->rt_ifp); /* for caller */
if (*outif != NULL) {
ifnet_release(*outif);
}
*outif = rt->rt_ifp;
}
}
if (addr6 == NULL) {
if (outif != NULL && (*outif) != NULL &&
inp_restricted_send(inp, *outif)) {
soevent(inp->inp_socket,
(SO_FILT_HINT_LOCKED | SO_FILT_HINT_IFDENIED));
error = EHOSTUNREACH;
}
if (error == 0) {
error = EADDRNOTAVAIL;
}
return error;
}
*plocal_addr6 = *addr6;
/*
* Don't do pcblookup call here; return interface in
* plocal_addr6 and exit to caller, that will do the lookup.
*/
return 0;
}
/*
* Outer subroutine:
* Connect from a socket to a specified address.
* Both address and port must be specified in argument sin.
* If don't have a local address for this socket yet,
* then pick one.
*/
int
in6_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct proc *p)
{
struct in6_addr addr6;
struct sockaddr_in6 *sin6 = SIN6(nam);
struct inpcb *pcb;
int error = 0;
struct ifnet *outif = NULL;
struct socket *so = inp->inp_socket;
#if CONTENT_FILTER
so->so_state_change_cnt++;
#endif
if (SOCK_CHECK_PROTO(so, IPPROTO_UDP) &&
sin6->sin6_port == htons(53) && !(so->so_flags1 & SOF1_DNS_COUNTED)) {
so->so_flags1 |= SOF1_DNS_COUNTED;
INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_inet_dgram_dns);
}
/*
* Call inner routine, to assign local interface address.
* in6_pcbladdr() may automatically fill in sin6_scope_id.
*
* in6_pcbladdr() might return an ifp with its reference held
* even in the error case, so make sure that it's released
* whenever it's non-NULL.
*/
if ((error = in6_pcbladdr(inp, nam, &addr6, &outif)) != 0) {
if (outif != NULL && inp_restricted_send(inp, outif)) {
soevent(so,
(SO_FILT_HINT_LOCKED | SO_FILT_HINT_IFDENIED));
}
goto done;
}
socket_unlock(so, 0);
uint32_t lifscope;
if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) {
lifscope = inp->inp_lifscope;
} else if (outif != NULL) {
lifscope = in6_addr2scopeid(outif, &addr6);
} else {
lifscope = sin6->sin6_scope_id;
}
pcb = in6_pcblookup_hash(inp->inp_pcbinfo, &sin6->sin6_addr,
sin6->sin6_port, sin6->sin6_scope_id, IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr) ?
&addr6 : &inp->in6p_laddr, inp->inp_lport, lifscope, 0, NULL);
socket_lock(so, 0);
if (pcb != NULL) {
in_pcb_checkstate(pcb, WNT_RELEASE, pcb == inp ? 1 : 0);
error = EADDRINUSE;
goto done;
}
if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) {
if (inp->inp_lport == 0) {
error = in6_pcbbind(inp, NULL, p);
if (error) {
goto done;
}
}
inp->in6p_laddr = addr6;
inp->in6p_last_outifp = outif; /* no reference needed */
if (IN6_IS_SCOPE_EMBED(&inp->in6p_laddr) &&
IN6_ARE_ADDR_EQUAL(&inp->in6p_laddr, &sin6->sin6_addr)) {
inp->inp_lifscope = sin6->sin6_scope_id;
} else {
inp->inp_lifscope = lifscope;
}
in6_verify_ifscope(&inp->in6p_laddr, inp->inp_lifscope);
#if SKYWALK
if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) {
netns_set_ifnet(&inp->inp_netns_token,
inp->in6p_last_outifp);
}
#endif /* SKYWALK */
inp->in6p_flags |= INP_IN6ADDR_ANY;
}
if (!lck_rw_try_lock_exclusive(&inp->inp_pcbinfo->ipi_lock)) {
/* lock inversion issue, mostly with udp multicast packets */
socket_unlock(so, 0);
lck_rw_lock_exclusive(&inp->inp_pcbinfo->ipi_lock);
socket_lock(so, 0);
}
inp->in6p_faddr = sin6->sin6_addr;
inp->inp_fport = sin6->sin6_port;
inp->inp_fifscope = sin6->sin6_scope_id;
in6_verify_ifscope(&inp->in6p_faddr, inp->inp_fifscope);
if (nstat_collect && SOCK_PROTO(so) == IPPROTO_UDP) {
nstat_pcb_invalidate_cache(inp);
}
in_pcbrehash(inp);
lck_rw_done(&inp->inp_pcbinfo->ipi_lock);
done:
if (outif != NULL) {
ifnet_release(outif);
}
return error;
}
void
in6_pcbdisconnect(struct inpcb *inp)
{
struct socket *so = inp->inp_socket;
#if CONTENT_FILTER
if (so) {
so->so_state_change_cnt++;
}
#endif
if (!lck_rw_try_lock_exclusive(&inp->inp_pcbinfo->ipi_lock)) {
/* lock inversion issue, mostly with udp multicast packets */
socket_unlock(so, 0);
lck_rw_lock_exclusive(&inp->inp_pcbinfo->ipi_lock);
socket_lock(so, 0);
}
if (nstat_collect && SOCK_PROTO(so) == IPPROTO_UDP) {
nstat_pcb_cache(inp);
}
bzero((caddr_t)&inp->in6p_faddr, sizeof(inp->in6p_faddr));
inp->inp_fport = 0;
/* clear flowinfo - RFC 6437 */
inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
in_pcbrehash(inp);
lck_rw_done(&inp->inp_pcbinfo->ipi_lock);
/*
* A multipath subflow socket would have its SS_NOFDREF set by default,
* so check for SOF_MP_SUBFLOW socket flag before detaching the PCB;
* when the socket is closed for real, SOF_MP_SUBFLOW would be cleared.
*/
if (!(so->so_flags & SOF_MP_SUBFLOW) && (so->so_state & SS_NOFDREF)) {
in6_pcbdetach(inp);
}
}
void
in6_pcbdetach(struct inpcb *inp)
{
struct socket *so = inp->inp_socket;
if (so->so_pcb == NULL) {
/* PCB has been disposed */
panic("%s: inp=%p so=%p proto=%d so_pcb is null!", __func__,
inp, so, SOCK_PROTO(so));
/* NOTREACHED */
}
#if IPSEC
if (inp->in6p_sp != NULL) {
(void) ipsec6_delete_pcbpolicy(inp);
}
#endif /* IPSEC */
if (inp->inp_stat != NULL && SOCK_PROTO(so) == IPPROTO_UDP) {
if (inp->inp_stat->rxpackets == 0 && inp->inp_stat->txpackets == 0) {
INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_inet6_dgram_no_data);
}
}
/*
* Let NetworkStatistics know this PCB is going away
* before we detach it.
*/
if (nstat_collect &&
(SOCK_PROTO(so) == IPPROTO_TCP || SOCK_PROTO(so) == IPPROTO_UDP)) {
nstat_pcb_detach(inp);
}
/* mark socket state as dead */
if (in_pcb_checkstate(inp, WNT_STOPUSING, 1) != WNT_STOPUSING) {
panic("%s: so=%p proto=%d couldn't set to STOPUSING",
__func__, so, SOCK_PROTO(so));
/* NOTREACHED */
}
#if SKYWALK
/* Free up the port in the namespace registrar if not in TIME_WAIT */
if (!(inp->inp_flags2 & INP2_TIMEWAIT)) {
netns_release(&inp->inp_netns_token);
netns_release(&inp->inp_wildcard_netns_token);
}
#endif /* SKYWALK */
if (!(so->so_flags & SOF_PCBCLEARING)) {
struct ip_moptions *imo;
struct ip6_moptions *im6o;
inp->inp_vflag = 0;
if (inp->in6p_options != NULL) {
m_freem(inp->in6p_options);
inp->in6p_options = NULL;
}
ip6_freepcbopts(inp->in6p_outputopts);
inp->in6p_outputopts = NULL;
ROUTE_RELEASE(&inp->in6p_route);
/* free IPv4 related resources in case of mapped addr */
if (inp->inp_options != NULL) {
(void) m_free(inp->inp_options);
inp->inp_options = NULL;
}
im6o = inp->in6p_moptions;
inp->in6p_moptions = NULL;
if (im6o != NULL) {
IM6O_REMREF(im6o);
}
imo = inp->inp_moptions;
inp->inp_moptions = NULL;
if (imo != NULL) {
IMO_REMREF(imo);
}
sofreelastref(so, 0);
inp->inp_state = INPCB_STATE_DEAD;
/* makes sure we're not called twice from so_close */
so->so_flags |= SOF_PCBCLEARING;
inpcb_gc_sched(inp->inp_pcbinfo, INPCB_TIMER_FAST);
}
}
struct sockaddr *
in6_sockaddr(in_port_t port, struct in6_addr *addr_p, uint32_t ifscope)
{
struct sockaddr_in6 *sin6;
sin6 = SIN6(alloc_sockaddr(sizeof(*sin6),
Z_WAITOK | Z_NOFAIL));
sin6->sin6_family = AF_INET6;
sin6->sin6_port = port;
sin6->sin6_addr = *addr_p;
/* would be good to use sa6_recoverscope(), except for locking */
if (IN6_IS_SCOPE_EMBED(&sin6->sin6_addr)) {
sin6->sin6_scope_id = ifscope;
if (in6_embedded_scope) {
in6_verify_ifscope(&sin6->sin6_addr, ifscope);
sin6->sin6_scope_id = ntohs(sin6->sin6_addr.s6_addr16[1]);
}
} else {
sin6->sin6_scope_id = 0; /* XXX */
}
if (in6_embedded_scope && IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr)) {
sin6->sin6_addr.s6_addr16[1] = 0;
}
return SA(sin6);
}
void
in6_sockaddr_s(in_port_t port, struct in6_addr *addr_p,
struct sockaddr_in6 *sin6, uint32_t ifscope)
{
SOCKADDR_ZERO(sin6, sizeof(*sin6));
sin6->sin6_family = AF_INET6;
sin6->sin6_len = sizeof(*sin6);
sin6->sin6_port = port;
sin6->sin6_addr = *addr_p;
/* would be good to use sa6_recoverscope(), except for locking */
if (IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr)) {
sin6->sin6_scope_id = ifscope;
if (in6_embedded_scope) {
in6_verify_ifscope(&sin6->sin6_addr, ifscope);
sin6->sin6_scope_id = ntohs(sin6->sin6_addr.s6_addr16[1]);
}
} else {
sin6->sin6_scope_id = 0; /* XXX */
}
if (in6_embedded_scope && IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr)) {
sin6->sin6_addr.s6_addr16[1] = 0;
}
}
/*
* The calling convention of in6_getsockaddr() and in6_getpeeraddr() was
* modified to match the pru_sockaddr() and pru_peeraddr() entry points
* in struct pr_usrreqs, so that protocols can just reference then directly
* without the need for a wrapper function.
*/
int
in6_getsockaddr(struct socket *so, struct sockaddr **nam)
{
struct inpcb *inp;
struct in6_addr addr;
in_port_t port;
if ((inp = sotoinpcb(so)) == NULL) {
return EINVAL;
}
port = inp->inp_lport;
addr = inp->in6p_laddr;
*nam = in6_sockaddr(port, &addr, inp->inp_lifscope);
if (*nam == NULL) {
return ENOBUFS;
}
return 0;
}
int
in6_getsockaddr_s(struct socket *so, struct sockaddr_in6 *ss)
{
struct inpcb *inp;
struct in6_addr addr;
in_port_t port;
VERIFY(ss != NULL);
SOCKADDR_ZERO(ss, sizeof(*ss));
if ((inp = sotoinpcb(so)) == NULL) {
return EINVAL;
}
port = inp->inp_lport;
addr = inp->in6p_laddr;
in6_sockaddr_s(port, &addr, ss, inp->inp_lifscope);
return 0;
}
int
in6_getpeeraddr(struct socket *so, struct sockaddr **nam)
{
struct inpcb *inp;
struct in6_addr addr;
in_port_t port;
if ((inp = sotoinpcb(so)) == NULL) {
return EINVAL;
}
port = inp->inp_fport;
addr = inp->in6p_faddr;
*nam = in6_sockaddr(port, &addr, inp->inp_fifscope);
if (*nam == NULL) {
return ENOBUFS;
}
return 0;
}
int
in6_mapped_sockaddr(struct socket *so, struct sockaddr **nam)
{
struct inpcb *inp = sotoinpcb(so);
int error;
if (inp == NULL) {
return EINVAL;
}
if (inp->inp_vflag & INP_IPV4) {
error = in_getsockaddr(so, nam);
if (error == 0) {
error = in6_sin_2_v4mapsin6_in_sock(nam);
}
} else {
/* scope issues will be handled in in6_getsockaddr(). */
error = in6_getsockaddr(so, nam);
}
return error;
}
int
in6_mapped_peeraddr(struct socket *so, struct sockaddr **nam)
{
struct inpcb *inp = sotoinpcb(so);
int error;
if (inp == NULL) {
return EINVAL;
}
if (inp->inp_vflag & INP_IPV4) {
error = in_getpeeraddr(so, nam);
if (error == 0) {
error = in6_sin_2_v4mapsin6_in_sock(nam);
}
} else {
/* scope issues will be handled in in6_getpeeraddr(). */
error = in6_getpeeraddr(so, nam);
}
return error;
}
/*
* Pass some notification to all connections of a protocol
* associated with address dst. The local address and/or port numbers
* may be specified to limit the search. The "usual action" will be
* taken, depending on the ctlinput cmd. The caller must filter any
* cmds that are uninteresting (e.g., no error in the map).
* Call the protocol specific routine (if any) to report
* any errors for each matching socket.
*/
void
in6_pcbnotify(struct inpcbinfo *pcbinfo, struct sockaddr *dst, u_int fport_arg,
const struct sockaddr *src, u_int lport_arg, int cmd, void *cmdarg,
void (*notify)(struct inpcb *, int))
{
struct inpcbhead *head = pcbinfo->ipi_listhead;
struct inpcb *inp, *ninp;
struct sockaddr_in6 sa6_src, *sa6_dst;
uint16_t fport = (uint16_t)fport_arg, lport = (uint16_t)lport_arg;
u_int32_t flowinfo;
int errno;
if ((unsigned)cmd >= PRC_NCMDS || dst->sa_family != AF_INET6) {
return;
}
sa6_dst = SIN6(dst);
if (IN6_IS_ADDR_UNSPECIFIED(&sa6_dst->sin6_addr)) {
return;
}
/*
* note that src can be NULL when we get notify by local fragmentation.
*/
sa6_src = (src == NULL) ?
sa6_any : *SIN6(src);
flowinfo = sa6_src.sin6_flowinfo;
/*
* Redirects go to all references to the destination,
* and use in6_rtchange to invalidate the route cache.
* Dead host indications: also use in6_rtchange to invalidate
* the cache, and deliver the error to all the sockets.
* Otherwise, if we have knowledge of the local port and address,
* deliver only to that socket.
*/
if (PRC_IS_REDIRECT(cmd) || cmd == PRC_HOSTDEAD) {
fport = 0;
lport = 0;
bzero((caddr_t)&sa6_src.sin6_addr, sizeof(sa6_src.sin6_addr));
if (cmd != PRC_HOSTDEAD) {
notify = in6_rtchange;
}
}
errno = inet6ctlerrmap[cmd];
lck_rw_lock_shared(&pcbinfo->ipi_lock);
for (inp = LIST_FIRST(head); inp != NULL; inp = ninp) {
ninp = LIST_NEXT(inp, inp_list);
if (!(inp->inp_vflag & INP_IPV6)) {
continue;
}
/*
* If the error designates a new path MTU for a destination
* and the application (associated with this socket) wanted to
* know the value, notify. Note that we notify for all
* disconnected sockets if the corresponding application
* wanted. This is because some UDP applications keep sending
* sockets disconnected.
* XXX: should we avoid to notify the value to TCP sockets?
*/
if (cmd == PRC_MSGSIZE && cmdarg != NULL) {
socket_lock(inp->inp_socket, 1);
ip6_notify_pmtu(inp, SIN6(dst),
(u_int32_t *)cmdarg);
socket_unlock(inp->inp_socket, 1);
}
/*
* Detect if we should notify the error. If no source and
* destination ports are specifed, but non-zero flowinfo and
* local address match, notify the error. This is the case
* when the error is delivered with an encrypted buffer
* by ESP. Otherwise, just compare addresses and ports
* as usual.
*/
if (lport == 0 && fport == 0 && flowinfo &&
inp->inp_socket != NULL &&
flowinfo == (inp->inp_flow & IPV6_FLOWLABEL_MASK) &&
in6_are_addr_equal_scoped(&inp->in6p_laddr, &sa6_src.sin6_addr, inp->inp_lifscope, sa6_src.sin6_scope_id)) {
goto do_notify;
} else if (!in6_are_addr_equal_scoped(&inp->in6p_faddr, &sa6_dst->sin6_addr,
inp->inp_fifscope, sa6_dst->sin6_scope_id) || inp->inp_socket == NULL ||
(lport && inp->inp_lport != lport) ||
(!IN6_IS_ADDR_UNSPECIFIED(&sa6_src.sin6_addr) &&
!in6_are_addr_equal_scoped(&inp->in6p_laddr, &sa6_src.sin6_addr, inp->inp_lifscope, sa6_src.sin6_scope_id)) || (fport && inp->inp_fport != fport)) {
continue;
}
do_notify:
if (notify) {
if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) ==
WNT_STOPUSING) {
continue;
}
socket_lock(inp->inp_socket, 1);
(*notify)(inp, errno);
(void) in_pcb_checkstate(inp, WNT_RELEASE, 1);
socket_unlock(inp->inp_socket, 1);
}
}
lck_rw_done(&pcbinfo->ipi_lock);
}
/*
* Lookup a PCB based on the local address and port.
*/
struct inpcb *
in6_pcblookup_local(struct inpcbinfo *pcbinfo, struct in6_addr *laddr,
u_int lport_arg, uint32_t ifscope, int wild_okay)
{
struct inpcb *inp;
int matchwild = 3, wildcard;
uint16_t lport = (uint16_t)lport_arg;
struct inpcbporthead *porthash;
struct inpcb *match = NULL;
struct inpcbport *phd;
if (!wild_okay) {
struct inpcbhead *head;
/*
* Look for an unconnected (wildcard foreign addr) PCB that
* matches the local address and port we're looking for.
*/
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0,
pcbinfo->ipi_hashmask)];
LIST_FOREACH(inp, head, inp_hash) {
if (!(inp->inp_vflag & INP_IPV6)) {
continue;
}
if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr) &&
in6_are_addr_equal_scoped(&inp->in6p_laddr, laddr, inp->inp_lifscope, ifscope) &&
inp->inp_lport == lport) {
/*
* Found.
*/
return inp;
}
}
/*
* Not found.
*/
return NULL;
}
/*
* Best fit PCB lookup.
*
* First see if this local port is in use by looking on the
* port hash list.
*/
porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
pcbinfo->ipi_porthashmask)];
LIST_FOREACH(phd, porthash, phd_hash) {
if (phd->phd_port == lport) {
break;
}
}
if (phd != NULL) {
/*
* Port is in use by one or more PCBs. Look for best
* fit.
*/
LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
wildcard = 0;
if (!(inp->inp_vflag & INP_IPV6)) {
continue;
}
if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) {
wildcard++;
}
if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) {
if (IN6_IS_ADDR_UNSPECIFIED(laddr)) {
wildcard++;
} else if (!in6_are_addr_equal_scoped(
&inp->in6p_laddr, laddr, inp->inp_lifscope, ifscope)) {
continue;
}
} else {
if (!IN6_IS_ADDR_UNSPECIFIED(laddr)) {
wildcard++;
}
}
if (wildcard < matchwild) {
match = inp;
matchwild = wildcard;
if (matchwild == 0) {
break;
}
}
}
}
return match;
}
/*
* Check for alternatives when higher level complains
* about service problems. For now, invalidate cached
* routing information. If the route was created dynamically
* (by a redirect), time to try a default gateway again.
*/
void
in6_losing(struct inpcb *in6p)
{
struct rtentry *rt;
if ((rt = in6p->in6p_route.ro_rt) != NULL) {
RT_LOCK(rt);
if (rt->rt_flags & RTF_DYNAMIC) {
/*
* Prevent another thread from modifying rt_key,
* rt_gateway via rt_setgate() after the rt_lock
* is dropped by marking the route as defunct.
*/
rt->rt_flags |= RTF_CONDEMNED;
RT_UNLOCK(rt);
(void) rtrequest(RTM_DELETE, rt_key(rt),
rt->rt_gateway, rt_mask(rt), rt->rt_flags, NULL);
} else {
RT_UNLOCK(rt);
}
/*
* A new route can be allocated
* the next time output is attempted.
*/
}
ROUTE_RELEASE(&in6p->in6p_route);
}
/*
* After a routing change, flush old routing
* and allocate a (hopefully) better one.
*/
void
in6_rtchange(struct inpcb *inp, int errno)
{
#pragma unused(errno)
/*
* A new route can be allocated the next time
* output is attempted.
*/
ROUTE_RELEASE(&inp->in6p_route);
}
/*
* Check if PCB exists hash list. Also returns uid and gid of socket
*/
int
in6_pcblookup_hash_exists(struct inpcbinfo *pcbinfo, struct in6_addr *faddr,
u_int fport_arg, uint32_t fifscope, struct in6_addr *laddr, u_int lport_arg, uint32_t lifscope, int wildcard,
uid_t *uid, gid_t *gid, struct ifnet *ifp, bool relaxed)
{
struct inpcbhead *head;
struct inpcb *inp;
uint16_t fport = (uint16_t)fport_arg, lport = (uint16_t)lport_arg;
int found;
*uid = UID_MAX;
*gid = GID_MAX;
lck_rw_lock_shared(&pcbinfo->ipi_lock);
/*
* First look for an exact match.
*/
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr->s6_addr32[3] /* XXX */,
lport, fport, pcbinfo->ipi_hashmask)];
LIST_FOREACH(inp, head, inp_hash) {
if (!(inp->inp_vflag & INP_IPV6)) {
continue;
}
if (inp_restricted_recv(inp, ifp)) {
continue;
}
#if NECP
if (!necp_socket_is_allowed_to_recv_on_interface(inp, ifp)) {
continue;
}
#endif /* NECP */
if (((in6_are_addr_equal_scoped(&inp->in6p_faddr, faddr, inp->inp_fifscope, fifscope) &&
in6_are_addr_equal_scoped(&inp->in6p_laddr, laddr, inp->inp_lifscope, lifscope)) ||
(relaxed &&
IN6_ARE_ADDR_EQUAL(&inp->in6p_faddr, faddr) &&
IN6_ARE_ADDR_EQUAL(&inp->in6p_laddr, laddr))) &&
inp->inp_fport == fport &&
inp->inp_lport == lport) {
if ((found = (inp->inp_socket != NULL))) {
/*
* Found. Check if pcb is still valid
*/
*uid = kauth_cred_getuid(
inp->inp_socket->so_cred);
*gid = kauth_cred_getgid(
inp->inp_socket->so_cred);
}
lck_rw_done(&pcbinfo->ipi_lock);
return found;
}
}
if (wildcard) {
struct inpcb *local_wild = NULL;
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0,
pcbinfo->ipi_hashmask)];
LIST_FOREACH(inp, head, inp_hash) {
if (!(inp->inp_vflag & INP_IPV6)) {
continue;
}
if (inp_restricted_recv(inp, ifp)) {
continue;
}
#if NECP
if (!necp_socket_is_allowed_to_recv_on_interface(inp, ifp)) {
continue;
}
#endif /* NECP */
if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr) &&
inp->inp_lport == lport) {
if (in6_are_addr_equal_scoped(&inp->in6p_laddr,
laddr, inp->inp_lifscope, lifscope) ||
(relaxed && IN6_ARE_ADDR_EQUAL(&inp->in6p_laddr, laddr))) {
found = (inp->inp_socket != NULL);
if (found) {
*uid = kauth_cred_getuid(
inp->inp_socket->so_cred);
*gid = kauth_cred_getgid(
inp->inp_socket->so_cred);
}
lck_rw_done(&pcbinfo->ipi_lock);
return found;
} else if (IN6_IS_ADDR_UNSPECIFIED(
&inp->in6p_laddr)) {
local_wild = inp;
}
}
}
if (local_wild) {
if ((found = (local_wild->inp_socket != NULL))) {
*uid = kauth_cred_getuid(
local_wild->inp_socket->so_cred);
*gid = kauth_cred_getgid(
local_wild->inp_socket->so_cred);
}
lck_rw_done(&pcbinfo->ipi_lock);
return found;
}
}
/*
* Not found.
*/
lck_rw_done(&pcbinfo->ipi_lock);
return 0;
}
/*
* Lookup PCB in hash list.
*/
struct inpcb *
in6_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in6_addr *faddr,
u_int fport_arg, uint32_t fifscope, struct in6_addr *laddr, u_int lport_arg, uint32_t lifscope, int wildcard,
struct ifnet *ifp)
{
struct inpcbhead *head;
struct inpcb *inp;
uint16_t fport = (uint16_t)fport_arg, lport = (uint16_t)lport_arg;
lck_rw_lock_shared(&pcbinfo->ipi_lock);
/*
* First look for an exact match.
*/
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr->s6_addr32[3] /* XXX */,
lport, fport, pcbinfo->ipi_hashmask)];
LIST_FOREACH(inp, head, inp_hash) {
if (!(inp->inp_vflag & INP_IPV6)) {
continue;
}
if (inp_restricted_recv(inp, ifp)) {
continue;
}
#if NECP
if (!necp_socket_is_allowed_to_recv_on_interface(inp, ifp)) {
continue;
}
#endif /* NECP */
if (in6_are_addr_equal_scoped(&inp->in6p_faddr, faddr, inp->inp_fifscope, fifscope) &&
in6_are_addr_equal_scoped(&inp->in6p_laddr, laddr, inp->inp_lifscope, lifscope) &&
inp->inp_fport == fport &&
inp->inp_lport == lport) {
/*
* Found. Check if pcb is still valid
*/
if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) !=
WNT_STOPUSING) {
lck_rw_done(&pcbinfo->ipi_lock);
return inp;
} else {
/* it's there but dead, say it isn't found */
lck_rw_done(&pcbinfo->ipi_lock);
return NULL;
}
}
}
if (wildcard) {
struct inpcb *local_wild = NULL;
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0,
pcbinfo->ipi_hashmask)];
LIST_FOREACH(inp, head, inp_hash) {
if (!(inp->inp_vflag & INP_IPV6)) {
continue;
}
if (inp_restricted_recv(inp, ifp)) {
continue;
}
#if NECP
if (!necp_socket_is_allowed_to_recv_on_interface(inp, ifp)) {
continue;
}
#endif /* NECP */
if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr) &&
inp->inp_lport == lport) {
if (in6_are_addr_equal_scoped(&inp->in6p_laddr,
laddr, inp->inp_lifscope, lifscope)) {
if (in_pcb_checkstate(inp, WNT_ACQUIRE,
0) != WNT_STOPUSING) {
lck_rw_done(&pcbinfo->ipi_lock);
return inp;
} else {
/* dead; say it isn't found */
lck_rw_done(&pcbinfo->ipi_lock);
return NULL;
}
} else if (IN6_IS_ADDR_UNSPECIFIED(
&inp->in6p_laddr)) {
local_wild = inp;
}
}
}
if (local_wild && in_pcb_checkstate(local_wild,
WNT_ACQUIRE, 0) != WNT_STOPUSING) {
lck_rw_done(&pcbinfo->ipi_lock);
return local_wild;
} else {
lck_rw_done(&pcbinfo->ipi_lock);
return NULL;
}
}
/*
* Not found.
*/
lck_rw_done(&pcbinfo->ipi_lock);
return NULL;
}
void
init_sin6(struct sockaddr_in6 *sin6, struct mbuf *m)
{
struct ip6_hdr *ip;
ip = mtod(m, struct ip6_hdr *);
SOCKADDR_ZERO(sin6, sizeof(*sin6));
sin6->sin6_len = sizeof(*sin6);
sin6->sin6_family = AF_INET6;
sin6->sin6_addr = ip->ip6_src;
if (IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr)) {
if (in6_embedded_scope) {
sin6->sin6_addr.s6_addr16[1] = 0;
}
if ((m->m_pkthdr.pkt_flags & (PKTF_LOOP | PKTF_IFAINFO)) ==
(PKTF_LOOP | PKTF_IFAINFO)) {
sin6->sin6_scope_id = m->m_pkthdr.src_ifindex;
} else if (m->m_pkthdr.rcvif != NULL) {
sin6->sin6_scope_id = m->m_pkthdr.rcvif->if_index;
}
}
}
/*
* The following routines implement this scheme:
*
* Callers of ip6_output() that intend to cache the route in the inpcb pass
* a local copy of the struct route to ip6_output(). Using a local copy of
* the cached route significantly simplifies things as IP no longer has to
* worry about having exclusive access to the passed in struct route, since
* it's defined in the caller's stack; in essence, this allows for a lock-
* less operation when updating the struct route at the IP level and below,
* whenever necessary. The scheme works as follows:
*
* Prior to dropping the socket's lock and calling ip6_output(), the caller
* copies the struct route from the inpcb into its stack, and adds a reference
* to the cached route entry, if there was any. The socket's lock is then
* dropped and ip6_output() is called with a pointer to the copy of struct
* route defined on the stack (not to the one in the inpcb.)
*
* Upon returning from ip6_output(), the caller then acquires the socket's
* lock and synchronizes the cache; if there is no route cached in the inpcb,
* it copies the local copy of struct route (which may or may not contain any
* route) back into the cache; otherwise, if the inpcb has a route cached in
* it, the one in the local copy will be freed, if there's any. Trashing the
* cached route in the inpcb can be avoided because ip6_output() is single-
* threaded per-PCB (i.e. multiple transmits on a PCB are always serialized
* by the socket/transport layer.)
*/
void
in6p_route_copyout(struct inpcb *inp, struct route_in6 *dst)
{
struct route_in6 *src = &inp->in6p_route;
socket_lock_assert_owned(inp->inp_socket);
/* Minor sanity check */
if (src->ro_rt != NULL && rt_key(src->ro_rt)->sa_family != AF_INET6) {
panic("%s: wrong or corrupted route: %p", __func__, src);
}
route_copyout((struct route *)dst, (struct route *)src, sizeof(*dst));
}
void
in6p_route_copyin(struct inpcb *inp, struct route_in6 *src)
{
struct route_in6 *dst = &inp->in6p_route;
socket_lock_assert_owned(inp->inp_socket);
/* Minor sanity check */
if (src->ro_rt != NULL && rt_key(src->ro_rt)->sa_family != AF_INET6) {
panic("%s: wrong or corrupted route: %p", __func__, src);
}
route_copyin((struct route *)src, (struct route *)dst, sizeof(*src));
}