1670 lines
47 KiB
C
1670 lines
47 KiB
C
/*
|
|
* Copyright (c) 2003-2021 Apple Inc. All rights reserved.
|
|
*
|
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
|
|
*
|
|
* This file contains Original Code and/or Modifications of Original Code
|
|
* as defined in and that are subject to the Apple Public Source License
|
|
* Version 2.0 (the 'License'). You may not use this file except in
|
|
* compliance with the License. The rights granted to you under the License
|
|
* may not be used to create, or enable the creation or redistribution of,
|
|
* unlawful or unlicensed copies of an Apple operating system, or to
|
|
* circumvent, violate, or enable the circumvention or violation of, any
|
|
* terms of an Apple operating system software license agreement.
|
|
*
|
|
* Please obtain a copy of the License at
|
|
* http://www.opensource.apple.com/apsl/ and read it before using this file.
|
|
*
|
|
* The Original Code and all software distributed under the License are
|
|
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
|
|
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
|
|
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
|
|
* Please see the License for the specific language governing rights and
|
|
* limitations under the License.
|
|
*
|
|
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
|
|
*/
|
|
/*
|
|
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the project nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1982, 1986, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)in_pcb.c 8.2 (Berkeley) 1/4/94
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/domain.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/time.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/kauth.h>
|
|
#include <sys/priv.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_types.h>
|
|
#include <net/route.h>
|
|
#include <net/ntstat.h>
|
|
#include <net/restricted_in_port.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/ip6.h>
|
|
#include <netinet/ip_var.h>
|
|
|
|
#include <netinet6/ip6_var.h>
|
|
#include <netinet6/nd6.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet6/in6_pcb.h>
|
|
|
|
#include <net/if_types.h>
|
|
#include <net/if_var.h>
|
|
|
|
#include <kern/kern_types.h>
|
|
#include <kern/zalloc.h>
|
|
|
|
#if IPSEC
|
|
#include <netinet6/ipsec.h>
|
|
#include <netinet6/ipsec6.h>
|
|
#include <netinet6/ah.h>
|
|
#include <netinet6/ah6.h>
|
|
#include <netkey/key.h>
|
|
#endif /* IPSEC */
|
|
|
|
#if NECP
|
|
#include <net/necp.h>
|
|
#endif /* NECP */
|
|
|
|
#include <net/sockaddr_utils.h>
|
|
|
|
/*
|
|
* in6_pcblookup_local_and_cleanup does everything
|
|
* in6_pcblookup_local does but it checks for a socket
|
|
* that's going away. Since we know that the lock is
|
|
* held read+write when this function is called, we
|
|
* can safely dispose of this socket like the slow
|
|
* timer would usually do and return NULL. This is
|
|
* great for bind.
|
|
*/
|
|
static struct inpcb *
|
|
in6_pcblookup_local_and_cleanup(struct inpcbinfo *pcbinfo,
|
|
struct in6_addr *laddr, u_int lport_arg, uint32_t ifscope, int wild_okay)
|
|
{
|
|
struct inpcb *inp;
|
|
|
|
/* Perform normal lookup */
|
|
inp = in6_pcblookup_local(pcbinfo, laddr, lport_arg, ifscope, wild_okay);
|
|
|
|
/* Check if we found a match but it's waiting to be disposed */
|
|
if (inp != NULL && inp->inp_wantcnt == WNT_STOPUSING) {
|
|
struct socket *so = inp->inp_socket;
|
|
|
|
socket_lock(so, 0);
|
|
|
|
if (so->so_usecount == 0) {
|
|
if (inp->inp_state != INPCB_STATE_DEAD) {
|
|
in6_pcbdetach(inp);
|
|
}
|
|
in_pcbdispose(inp); /* will unlock & destroy */
|
|
inp = NULL;
|
|
} else {
|
|
socket_unlock(so, 0);
|
|
}
|
|
}
|
|
|
|
return inp;
|
|
}
|
|
|
|
/*
|
|
* Bind an INPCB to an address and/or port. This routine should not alter
|
|
* the caller-supplied local address "nam".
|
|
*/
|
|
int
|
|
in6_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct proc *p)
|
|
{
|
|
struct socket *so = inp->inp_socket;
|
|
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
|
|
u_short lport = 0;
|
|
int wild = 0, reuseport = (so->so_options & SO_REUSEPORT);
|
|
struct ifnet *outif = NULL;
|
|
struct sockaddr_in6 sin6;
|
|
uint32_t lifscope = IFSCOPE_NONE;
|
|
int error = 0;
|
|
#if XNU_TARGET_OS_OSX
|
|
kauth_cred_t cred;
|
|
#endif /* XNU_TARGET_OS_OSX */
|
|
|
|
if (inp->inp_flags2 & INP2_BIND_IN_PROGRESS) {
|
|
return EINVAL;
|
|
}
|
|
inp->inp_flags2 |= INP2_BIND_IN_PROGRESS;
|
|
|
|
if (TAILQ_EMPTY(&in6_ifaddrhead)) { /* XXX broken! */
|
|
error = EADDRNOTAVAIL;
|
|
goto done;
|
|
}
|
|
if (!(so->so_options & (SO_REUSEADDR | SO_REUSEPORT))) {
|
|
wild = 1;
|
|
}
|
|
|
|
in_pcb_check_management_entitled(inp);
|
|
|
|
socket_unlock(so, 0); /* keep reference */
|
|
lck_rw_lock_exclusive(&pcbinfo->ipi_lock);
|
|
if (inp->inp_lport || !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) {
|
|
/* another thread completed the bind */
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
socket_lock(so, 0);
|
|
error = EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
SOCKADDR_ZERO(&sin6, sizeof(sin6));
|
|
if (nam != NULL) {
|
|
if (nam->sa_len != sizeof(struct sockaddr_in6)) {
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
socket_lock(so, 0);
|
|
error = EINVAL;
|
|
goto done;
|
|
}
|
|
/*
|
|
* family check.
|
|
*/
|
|
if (nam->sa_family != AF_INET6) {
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
socket_lock(so, 0);
|
|
error = EAFNOSUPPORT;
|
|
goto done;
|
|
}
|
|
lport = SIN6(nam)->sin6_port;
|
|
|
|
*(&sin6) = *SIN6(nam);
|
|
|
|
/* KAME hack: embed scopeid */
|
|
if (in6_embedscope(&sin6.sin6_addr, &sin6, inp, NULL,
|
|
NULL, &lifscope) != 0) {
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
socket_lock(so, 0);
|
|
error = EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
/* Sanitize local copy for address searches */
|
|
sin6.sin6_flowinfo = 0;
|
|
sin6.sin6_port = 0;
|
|
if (in6_embedded_scope) {
|
|
sin6.sin6_scope_id = 0;
|
|
}
|
|
|
|
if (IN6_IS_ADDR_MULTICAST(&sin6.sin6_addr)) {
|
|
/*
|
|
* Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
|
|
* allow compepte duplication of binding if
|
|
* SO_REUSEPORT is set, or if SO_REUSEADDR is set
|
|
* and a multicast address is bound on both
|
|
* new and duplicated sockets.
|
|
*/
|
|
if (so->so_options & SO_REUSEADDR) {
|
|
reuseport = SO_REUSEADDR | SO_REUSEPORT;
|
|
}
|
|
} else if (!IN6_IS_ADDR_UNSPECIFIED(&sin6.sin6_addr)) {
|
|
struct ifaddr *ifa;
|
|
|
|
ifa = ifa_ifwithaddr(SA(&sin6));
|
|
if (ifa == NULL) {
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
socket_lock(so, 0);
|
|
error = EADDRNOTAVAIL;
|
|
goto done;
|
|
} else {
|
|
/*
|
|
* XXX: bind to an anycast address might
|
|
* accidentally cause sending a packet with
|
|
* anycast source address. We should allow
|
|
* to bind to a deprecated address, since
|
|
* the application dare to use it.
|
|
*/
|
|
IFA_LOCK_SPIN(ifa);
|
|
if (((struct in6_ifaddr *)ifa)->ia6_flags &
|
|
(IN6_IFF_ANYCAST | IN6_IFF_NOTREADY |
|
|
IN6_IFF_DETACHED | IN6_IFF_CLAT46)) {
|
|
IFA_UNLOCK(ifa);
|
|
ifa_remref(ifa);
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
socket_lock(so, 0);
|
|
error = EADDRNOTAVAIL;
|
|
goto done;
|
|
}
|
|
/*
|
|
* Opportunistically determine the outbound
|
|
* interface that may be used; this may not
|
|
* hold true if we end up using a route
|
|
* going over a different interface, e.g.
|
|
* when sending to a local address. This
|
|
* will get updated again after sending.
|
|
*/
|
|
outif = ifa->ifa_ifp;
|
|
IFA_UNLOCK(ifa);
|
|
ifa_remref(ifa);
|
|
}
|
|
}
|
|
|
|
#if SKYWALK
|
|
if (inp->inp_flags2 & INP2_EXTERNAL_PORT) {
|
|
// Extract the external flow info
|
|
struct ns_flow_info nfi = {};
|
|
int netns_error = necp_client_get_netns_flow_info(inp->necp_client_uuid,
|
|
&nfi);
|
|
if (netns_error != 0) {
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
socket_lock(so, 0);
|
|
error = netns_error;
|
|
goto done;
|
|
}
|
|
|
|
// Extract the reserved port
|
|
u_int16_t reserved_lport = 0;
|
|
if (nfi.nfi_laddr.sa.sa_family == AF_INET) {
|
|
reserved_lport = nfi.nfi_laddr.sin.sin_port;
|
|
} else if (nfi.nfi_laddr.sa.sa_family == AF_INET6) {
|
|
reserved_lport = nfi.nfi_laddr.sin6.sin6_port;
|
|
} else {
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
socket_lock(so, 0);
|
|
error = EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
// Validate or use the reserved port
|
|
if (lport == 0) {
|
|
lport = reserved_lport;
|
|
} else if (lport != reserved_lport) {
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
socket_lock(so, 0);
|
|
error = EINVAL;
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
/* Do not allow reserving a UDP port if remaining UDP port count is below 4096 */
|
|
if (SOCK_PROTO(so) == IPPROTO_UDP && !allow_udp_port_exhaustion) {
|
|
uint32_t current_reservations = 0;
|
|
current_reservations = netns_lookup_reservations_count_in6(inp->in6p_laddr, IPPROTO_UDP);
|
|
if (USHRT_MAX - UDP_RANDOM_PORT_RESERVE < current_reservations) {
|
|
log(LOG_ERR, "UDP port not available, less than 4096 UDP ports left");
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
socket_lock(so, 0);
|
|
error = EADDRNOTAVAIL;
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
#endif /* SKYWALK */
|
|
|
|
if (lport != 0) {
|
|
struct inpcb *t;
|
|
uid_t u;
|
|
|
|
#if XNU_TARGET_OS_OSX
|
|
if (ntohs(lport) < IPV6PORT_RESERVED &&
|
|
!IN6_IS_ADDR_UNSPECIFIED(&sin6.sin6_addr) &&
|
|
!(inp->inp_flags2 & INP2_EXTERNAL_PORT)) {
|
|
cred = kauth_cred_proc_ref(p);
|
|
error = priv_check_cred(cred,
|
|
PRIV_NETINET_RESERVEDPORT, 0);
|
|
kauth_cred_unref(&cred);
|
|
if (error != 0) {
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
socket_lock(so, 0);
|
|
error = EACCES;
|
|
goto done;
|
|
}
|
|
}
|
|
#endif /* XNU_TARGET_OS_OSX */
|
|
/*
|
|
* Check wether the process is allowed to bind to a restricted port
|
|
*/
|
|
if (!current_task_can_use_restricted_in_port(lport,
|
|
(uint8_t)SOCK_PROTO(so), PORT_FLAGS_BSD)) {
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
socket_lock(so, 0);
|
|
error = EADDRINUSE;
|
|
goto done;
|
|
}
|
|
|
|
if (!IN6_IS_ADDR_MULTICAST(&sin6.sin6_addr) &&
|
|
(u = kauth_cred_getuid(so->so_cred)) != 0) {
|
|
t = in6_pcblookup_local_and_cleanup(pcbinfo,
|
|
&sin6.sin6_addr, lport, sin6.sin6_scope_id,
|
|
INPLOOKUP_WILDCARD);
|
|
if (t != NULL &&
|
|
(!IN6_IS_ADDR_UNSPECIFIED(&sin6.sin6_addr) ||
|
|
!IN6_IS_ADDR_UNSPECIFIED(&t->in6p_laddr) ||
|
|
!(t->inp_socket->so_options & SO_REUSEPORT)) &&
|
|
(u != kauth_cred_getuid(t->inp_socket->so_cred)) &&
|
|
!(t->inp_socket->so_flags & SOF_REUSESHAREUID) &&
|
|
(!(t->inp_flags2 & INP2_EXTERNAL_PORT) ||
|
|
!(inp->inp_flags2 & INP2_EXTERNAL_PORT) ||
|
|
uuid_compare(t->necp_client_uuid, inp->necp_client_uuid) != 0)) {
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
socket_lock(so, 0);
|
|
error = EADDRINUSE;
|
|
goto done;
|
|
}
|
|
if (!(inp->inp_flags & IN6P_IPV6_V6ONLY) &&
|
|
IN6_IS_ADDR_UNSPECIFIED(&sin6.sin6_addr)) {
|
|
struct sockaddr_in sin;
|
|
|
|
in6_sin6_2_sin(&sin, &sin6);
|
|
t = in_pcblookup_local_and_cleanup(
|
|
pcbinfo, sin.sin_addr, lport,
|
|
INPLOOKUP_WILDCARD);
|
|
if (t != NULL &&
|
|
!(t->inp_socket->so_options & SO_REUSEPORT) &&
|
|
(kauth_cred_getuid(so->so_cred) !=
|
|
kauth_cred_getuid(t->inp_socket->so_cred)) &&
|
|
(t->inp_laddr.s_addr != INADDR_ANY ||
|
|
SOCK_DOM(so) == SOCK_DOM(t->inp_socket)) &&
|
|
(!(t->inp_flags2 & INP2_EXTERNAL_PORT) ||
|
|
!(inp->inp_flags2 & INP2_EXTERNAL_PORT) ||
|
|
uuid_compare(t->necp_client_uuid, inp->necp_client_uuid) != 0)) {
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
socket_lock(so, 0);
|
|
error = EADDRINUSE;
|
|
goto done;
|
|
}
|
|
|
|
#if SKYWALK
|
|
VERIFY(!NETNS_TOKEN_VALID(
|
|
&inp->inp_wildcard_netns_token));
|
|
if ((SOCK_PROTO(so) == IPPROTO_TCP ||
|
|
SOCK_PROTO(so) == IPPROTO_UDP) &&
|
|
!(inp->inp_flags2 & INP2_EXTERNAL_PORT)) {
|
|
if (netns_reserve_in(&inp->
|
|
inp_wildcard_netns_token,
|
|
sin.sin_addr,
|
|
(uint8_t)SOCK_PROTO(so), lport,
|
|
NETNS_BSD, NULL) != 0) {
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
socket_lock(so, 0);
|
|
error = EADDRINUSE;
|
|
goto done;
|
|
}
|
|
}
|
|
#endif /* SKYWALK */
|
|
}
|
|
}
|
|
t = in6_pcblookup_local_and_cleanup(pcbinfo,
|
|
&sin6.sin6_addr, lport, sin6.sin6_scope_id, wild);
|
|
if (t != NULL &&
|
|
(reuseport & t->inp_socket->so_options) == 0 &&
|
|
(!(t->inp_flags2 & INP2_EXTERNAL_PORT) ||
|
|
!(inp->inp_flags2 & INP2_EXTERNAL_PORT) ||
|
|
uuid_compare(t->necp_client_uuid, inp->necp_client_uuid) != 0)) {
|
|
#if SKYWALK
|
|
netns_release(&inp->inp_wildcard_netns_token);
|
|
#endif /* SKYWALK */
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
socket_lock(so, 0);
|
|
error = EADDRINUSE;
|
|
goto done;
|
|
}
|
|
if (!(inp->inp_flags & IN6P_IPV6_V6ONLY) &&
|
|
IN6_IS_ADDR_UNSPECIFIED(&sin6.sin6_addr)) {
|
|
struct sockaddr_in sin;
|
|
|
|
in6_sin6_2_sin(&sin, &sin6);
|
|
t = in_pcblookup_local_and_cleanup(pcbinfo,
|
|
sin.sin_addr, lport, wild);
|
|
if (t != NULL && (reuseport &
|
|
t->inp_socket->so_options) == 0 &&
|
|
(t->inp_laddr.s_addr != INADDR_ANY ||
|
|
SOCK_DOM(so) == SOCK_DOM(t->inp_socket)) &&
|
|
(!(t->inp_flags2 & INP2_EXTERNAL_PORT) ||
|
|
!(inp->inp_flags2 & INP2_EXTERNAL_PORT) ||
|
|
uuid_compare(t->necp_client_uuid, inp->necp_client_uuid) != 0)) {
|
|
#if SKYWALK
|
|
netns_release(&inp->inp_wildcard_netns_token);
|
|
#endif /* SKYWALK */
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
socket_lock(so, 0);
|
|
error = EADDRINUSE;
|
|
goto done;
|
|
}
|
|
#if SKYWALK
|
|
if ((SOCK_PROTO(so) == IPPROTO_TCP ||
|
|
SOCK_PROTO(so) == IPPROTO_UDP) &&
|
|
!(inp->inp_flags2 & INP2_EXTERNAL_PORT) &&
|
|
(!NETNS_TOKEN_VALID(
|
|
&inp->inp_wildcard_netns_token))) {
|
|
if (netns_reserve_in(&inp->
|
|
inp_wildcard_netns_token,
|
|
sin.sin_addr,
|
|
(uint8_t)SOCK_PROTO(so), lport,
|
|
NETNS_BSD, NULL) != 0) {
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
socket_lock(so, 0);
|
|
error = EADDRINUSE;
|
|
goto done;
|
|
}
|
|
}
|
|
#endif /* SKYWALK */
|
|
}
|
|
#if SKYWALK
|
|
if ((SOCK_PROTO(so) == IPPROTO_TCP ||
|
|
SOCK_PROTO(so) == IPPROTO_UDP) &&
|
|
!(inp->inp_flags2 & INP2_EXTERNAL_PORT)) {
|
|
if (netns_reserve_in6(&inp->inp_netns_token,
|
|
sin6.sin6_addr, (uint8_t)SOCK_PROTO(so), lport,
|
|
NETNS_BSD, NULL) != 0) {
|
|
netns_release(&inp->inp_wildcard_netns_token);
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
socket_lock(so, 0);
|
|
error = EADDRINUSE;
|
|
goto done;
|
|
}
|
|
}
|
|
#endif /* SKYWALK */
|
|
}
|
|
}
|
|
|
|
socket_lock(so, 0);
|
|
/*
|
|
* We unlocked socket's protocol lock for a long time.
|
|
* The socket might have been dropped/defuncted.
|
|
* Checking if world has changed since.
|
|
*/
|
|
if (inp->inp_state == INPCB_STATE_DEAD) {
|
|
#if SKYWALK
|
|
netns_release(&inp->inp_netns_token);
|
|
netns_release(&inp->inp_wildcard_netns_token);
|
|
#endif /* SKYWALK */
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
error = ECONNABORTED;
|
|
goto done;
|
|
}
|
|
|
|
/* check if the socket got bound when the lock was released */
|
|
if (inp->inp_lport || !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) {
|
|
#if SKYWALK
|
|
netns_release(&inp->inp_netns_token);
|
|
netns_release(&inp->inp_wildcard_netns_token);
|
|
#endif /* SKYWALK */
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
error = EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
if (!IN6_IS_ADDR_UNSPECIFIED(&sin6.sin6_addr)) {
|
|
inp->in6p_laddr = sin6.sin6_addr;
|
|
inp->in6p_last_outifp = outif;
|
|
inp->inp_lifscope = lifscope;
|
|
in6_verify_ifscope(&inp->in6p_laddr, lifscope);
|
|
#if SKYWALK
|
|
if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) {
|
|
netns_set_ifnet(&inp->inp_netns_token,
|
|
inp->in6p_last_outifp);
|
|
}
|
|
#endif /* SKYWALK */
|
|
}
|
|
|
|
if (lport == 0) {
|
|
int e;
|
|
if ((e = in6_pcbsetport(&inp->in6p_laddr, inp, p, 1)) != 0) {
|
|
/* Undo any address bind from above. */
|
|
#if SKYWALK
|
|
netns_release(&inp->inp_netns_token);
|
|
netns_release(&inp->inp_wildcard_netns_token);
|
|
#endif /* SKYWALK */
|
|
inp->in6p_laddr = in6addr_any;
|
|
inp->in6p_last_outifp = NULL;
|
|
inp->inp_lifscope = IFSCOPE_NONE;
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
error = e;
|
|
goto done;
|
|
}
|
|
} else {
|
|
inp->inp_lport = lport;
|
|
if (in_pcbinshash(inp, 1) != 0) {
|
|
#if SKYWALK
|
|
netns_release(&inp->inp_netns_token);
|
|
netns_release(&inp->inp_wildcard_netns_token);
|
|
#endif /* SKYWALK */
|
|
inp->in6p_laddr = in6addr_any;
|
|
inp->inp_lifscope = IFSCOPE_NONE;
|
|
inp->inp_lport = 0;
|
|
inp->in6p_last_outifp = NULL;
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
error = EAGAIN;
|
|
goto done;
|
|
}
|
|
}
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
sflt_notify(so, sock_evt_bound, NULL);
|
|
done:
|
|
inp->inp_flags2 &= ~INP2_BIND_IN_PROGRESS;
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Transform old in6_pcbconnect() into an inner subroutine for new
|
|
* in6_pcbconnect(); do some validity-checking on the remote address
|
|
* (in "nam") and then determine local host address (i.e., which
|
|
* interface) to use to access that remote host.
|
|
*
|
|
* This routine may alter the caller-supplied remote address "nam".
|
|
*
|
|
* This routine might return an ifp with a reference held if the caller
|
|
* provides a non-NULL outif, even in the error case. The caller is
|
|
* responsible for releasing its reference.
|
|
*/
|
|
int
|
|
in6_pcbladdr(struct inpcb *inp, struct sockaddr *nam,
|
|
struct in6_addr *plocal_addr6, struct ifnet **outif)
|
|
{
|
|
struct in6_addr *addr6 = NULL;
|
|
struct in6_addr src_storage;
|
|
int error = 0;
|
|
unsigned int ifscope;
|
|
|
|
if (outif != NULL) {
|
|
*outif = NULL;
|
|
}
|
|
if (nam->sa_len != sizeof(struct sockaddr_in6)) {
|
|
return EINVAL;
|
|
}
|
|
if (SIN6(nam)->sin6_family != AF_INET6) {
|
|
return EAFNOSUPPORT;
|
|
}
|
|
if (SIN6(nam)->sin6_port == 0) {
|
|
return EADDRNOTAVAIL;
|
|
}
|
|
|
|
/* KAME hack: embed scopeid */
|
|
if (in6_embedscope(&SIN6(nam)->sin6_addr, SIN6(nam), inp, NULL, NULL, IN6_NULL_IF_EMBEDDED_SCOPE(&SIN6(nam)->sin6_scope_id)) != 0) {
|
|
return EINVAL;
|
|
}
|
|
|
|
in_pcb_check_management_entitled(inp);
|
|
|
|
if (!TAILQ_EMPTY(&in6_ifaddrhead)) {
|
|
/*
|
|
* If the destination address is UNSPECIFIED addr,
|
|
* use the loopback addr, e.g ::1.
|
|
*/
|
|
if (IN6_IS_ADDR_UNSPECIFIED(&SIN6(nam)->sin6_addr)) {
|
|
SIN6(nam)->sin6_addr = in6addr_loopback;
|
|
}
|
|
}
|
|
|
|
ifscope = (inp->inp_flags & INP_BOUND_IF) ?
|
|
inp->inp_boundifp->if_index : IFSCOPE_NONE;
|
|
|
|
/*
|
|
* XXX: in6_selectsrc might replace the bound local address
|
|
* with the address specified by setsockopt(IPV6_PKTINFO).
|
|
* Is it the intended behavior?
|
|
*
|
|
* in6_selectsrc() might return outif with its reference held
|
|
* even in the error case; caller always needs to release it
|
|
* if non-NULL.
|
|
*/
|
|
addr6 = in6_selectsrc(SIN6(nam), inp->in6p_outputopts, inp,
|
|
&inp->in6p_route, outif, &src_storage, ifscope, &error);
|
|
|
|
if (outif != NULL) {
|
|
struct rtentry *rt = inp->in6p_route.ro_rt;
|
|
/*
|
|
* If in6_selectsrc() returns a route, it should be one
|
|
* which points to the same ifp as outif. Just in case
|
|
* it isn't, use the one from the route for consistency.
|
|
* Otherwise if there is no route, leave outif alone as
|
|
* it could still be useful to the caller.
|
|
*/
|
|
if (rt != NULL && rt->rt_ifp != *outif) {
|
|
ifnet_reference(rt->rt_ifp); /* for caller */
|
|
if (*outif != NULL) {
|
|
ifnet_release(*outif);
|
|
}
|
|
*outif = rt->rt_ifp;
|
|
}
|
|
}
|
|
|
|
if (addr6 == NULL) {
|
|
if (outif != NULL && (*outif) != NULL &&
|
|
inp_restricted_send(inp, *outif)) {
|
|
soevent(inp->inp_socket,
|
|
(SO_FILT_HINT_LOCKED | SO_FILT_HINT_IFDENIED));
|
|
error = EHOSTUNREACH;
|
|
}
|
|
if (error == 0) {
|
|
error = EADDRNOTAVAIL;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
*plocal_addr6 = *addr6;
|
|
/*
|
|
* Don't do pcblookup call here; return interface in
|
|
* plocal_addr6 and exit to caller, that will do the lookup.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Outer subroutine:
|
|
* Connect from a socket to a specified address.
|
|
* Both address and port must be specified in argument sin.
|
|
* If don't have a local address for this socket yet,
|
|
* then pick one.
|
|
*/
|
|
int
|
|
in6_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct proc *p)
|
|
{
|
|
struct in6_addr addr6;
|
|
struct sockaddr_in6 *sin6 = SIN6(nam);
|
|
struct inpcb *pcb;
|
|
int error = 0;
|
|
struct ifnet *outif = NULL;
|
|
struct socket *so = inp->inp_socket;
|
|
|
|
#if CONTENT_FILTER
|
|
so->so_state_change_cnt++;
|
|
#endif
|
|
|
|
if (SOCK_CHECK_PROTO(so, IPPROTO_UDP) &&
|
|
sin6->sin6_port == htons(53) && !(so->so_flags1 & SOF1_DNS_COUNTED)) {
|
|
so->so_flags1 |= SOF1_DNS_COUNTED;
|
|
INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_inet_dgram_dns);
|
|
}
|
|
|
|
/*
|
|
* Call inner routine, to assign local interface address.
|
|
* in6_pcbladdr() may automatically fill in sin6_scope_id.
|
|
*
|
|
* in6_pcbladdr() might return an ifp with its reference held
|
|
* even in the error case, so make sure that it's released
|
|
* whenever it's non-NULL.
|
|
*/
|
|
if ((error = in6_pcbladdr(inp, nam, &addr6, &outif)) != 0) {
|
|
if (outif != NULL && inp_restricted_send(inp, outif)) {
|
|
soevent(so,
|
|
(SO_FILT_HINT_LOCKED | SO_FILT_HINT_IFDENIED));
|
|
}
|
|
goto done;
|
|
}
|
|
socket_unlock(so, 0);
|
|
|
|
uint32_t lifscope;
|
|
if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) {
|
|
lifscope = inp->inp_lifscope;
|
|
} else if (outif != NULL) {
|
|
lifscope = in6_addr2scopeid(outif, &addr6);
|
|
} else {
|
|
lifscope = sin6->sin6_scope_id;
|
|
}
|
|
|
|
pcb = in6_pcblookup_hash(inp->inp_pcbinfo, &sin6->sin6_addr,
|
|
sin6->sin6_port, sin6->sin6_scope_id, IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr) ?
|
|
&addr6 : &inp->in6p_laddr, inp->inp_lport, lifscope, 0, NULL);
|
|
socket_lock(so, 0);
|
|
if (pcb != NULL) {
|
|
in_pcb_checkstate(pcb, WNT_RELEASE, pcb == inp ? 1 : 0);
|
|
error = EADDRINUSE;
|
|
goto done;
|
|
}
|
|
if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) {
|
|
if (inp->inp_lport == 0) {
|
|
error = in6_pcbbind(inp, NULL, p);
|
|
if (error) {
|
|
goto done;
|
|
}
|
|
}
|
|
inp->in6p_laddr = addr6;
|
|
inp->in6p_last_outifp = outif; /* no reference needed */
|
|
if (IN6_IS_SCOPE_EMBED(&inp->in6p_laddr) &&
|
|
IN6_ARE_ADDR_EQUAL(&inp->in6p_laddr, &sin6->sin6_addr)) {
|
|
inp->inp_lifscope = sin6->sin6_scope_id;
|
|
} else {
|
|
inp->inp_lifscope = lifscope;
|
|
}
|
|
in6_verify_ifscope(&inp->in6p_laddr, inp->inp_lifscope);
|
|
#if SKYWALK
|
|
if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) {
|
|
netns_set_ifnet(&inp->inp_netns_token,
|
|
inp->in6p_last_outifp);
|
|
}
|
|
#endif /* SKYWALK */
|
|
inp->in6p_flags |= INP_IN6ADDR_ANY;
|
|
}
|
|
if (!lck_rw_try_lock_exclusive(&inp->inp_pcbinfo->ipi_lock)) {
|
|
/* lock inversion issue, mostly with udp multicast packets */
|
|
socket_unlock(so, 0);
|
|
lck_rw_lock_exclusive(&inp->inp_pcbinfo->ipi_lock);
|
|
socket_lock(so, 0);
|
|
}
|
|
inp->in6p_faddr = sin6->sin6_addr;
|
|
inp->inp_fport = sin6->sin6_port;
|
|
inp->inp_fifscope = sin6->sin6_scope_id;
|
|
in6_verify_ifscope(&inp->in6p_faddr, inp->inp_fifscope);
|
|
if (nstat_collect && SOCK_PROTO(so) == IPPROTO_UDP) {
|
|
nstat_pcb_invalidate_cache(inp);
|
|
}
|
|
in_pcbrehash(inp);
|
|
lck_rw_done(&inp->inp_pcbinfo->ipi_lock);
|
|
|
|
done:
|
|
if (outif != NULL) {
|
|
ifnet_release(outif);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
void
|
|
in6_pcbdisconnect(struct inpcb *inp)
|
|
{
|
|
struct socket *so = inp->inp_socket;
|
|
|
|
#if CONTENT_FILTER
|
|
if (so) {
|
|
so->so_state_change_cnt++;
|
|
}
|
|
#endif
|
|
|
|
if (!lck_rw_try_lock_exclusive(&inp->inp_pcbinfo->ipi_lock)) {
|
|
/* lock inversion issue, mostly with udp multicast packets */
|
|
socket_unlock(so, 0);
|
|
lck_rw_lock_exclusive(&inp->inp_pcbinfo->ipi_lock);
|
|
socket_lock(so, 0);
|
|
}
|
|
if (nstat_collect && SOCK_PROTO(so) == IPPROTO_UDP) {
|
|
nstat_pcb_cache(inp);
|
|
}
|
|
bzero((caddr_t)&inp->in6p_faddr, sizeof(inp->in6p_faddr));
|
|
inp->inp_fport = 0;
|
|
/* clear flowinfo - RFC 6437 */
|
|
inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
|
|
in_pcbrehash(inp);
|
|
lck_rw_done(&inp->inp_pcbinfo->ipi_lock);
|
|
/*
|
|
* A multipath subflow socket would have its SS_NOFDREF set by default,
|
|
* so check for SOF_MP_SUBFLOW socket flag before detaching the PCB;
|
|
* when the socket is closed for real, SOF_MP_SUBFLOW would be cleared.
|
|
*/
|
|
if (!(so->so_flags & SOF_MP_SUBFLOW) && (so->so_state & SS_NOFDREF)) {
|
|
in6_pcbdetach(inp);
|
|
}
|
|
}
|
|
|
|
void
|
|
in6_pcbdetach(struct inpcb *inp)
|
|
{
|
|
struct socket *so = inp->inp_socket;
|
|
|
|
if (so->so_pcb == NULL) {
|
|
/* PCB has been disposed */
|
|
panic("%s: inp=%p so=%p proto=%d so_pcb is null!", __func__,
|
|
inp, so, SOCK_PROTO(so));
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
#if IPSEC
|
|
if (inp->in6p_sp != NULL) {
|
|
(void) ipsec6_delete_pcbpolicy(inp);
|
|
}
|
|
#endif /* IPSEC */
|
|
|
|
if (inp->inp_stat != NULL && SOCK_PROTO(so) == IPPROTO_UDP) {
|
|
if (inp->inp_stat->rxpackets == 0 && inp->inp_stat->txpackets == 0) {
|
|
INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_inet6_dgram_no_data);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Let NetworkStatistics know this PCB is going away
|
|
* before we detach it.
|
|
*/
|
|
if (nstat_collect &&
|
|
(SOCK_PROTO(so) == IPPROTO_TCP || SOCK_PROTO(so) == IPPROTO_UDP)) {
|
|
nstat_pcb_detach(inp);
|
|
}
|
|
/* mark socket state as dead */
|
|
if (in_pcb_checkstate(inp, WNT_STOPUSING, 1) != WNT_STOPUSING) {
|
|
panic("%s: so=%p proto=%d couldn't set to STOPUSING",
|
|
__func__, so, SOCK_PROTO(so));
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
#if SKYWALK
|
|
/* Free up the port in the namespace registrar if not in TIME_WAIT */
|
|
if (!(inp->inp_flags2 & INP2_TIMEWAIT)) {
|
|
netns_release(&inp->inp_netns_token);
|
|
netns_release(&inp->inp_wildcard_netns_token);
|
|
}
|
|
#endif /* SKYWALK */
|
|
|
|
if (!(so->so_flags & SOF_PCBCLEARING)) {
|
|
struct ip_moptions *imo;
|
|
struct ip6_moptions *im6o;
|
|
|
|
inp->inp_vflag = 0;
|
|
if (inp->in6p_options != NULL) {
|
|
m_freem(inp->in6p_options);
|
|
inp->in6p_options = NULL;
|
|
}
|
|
ip6_freepcbopts(inp->in6p_outputopts);
|
|
inp->in6p_outputopts = NULL;
|
|
ROUTE_RELEASE(&inp->in6p_route);
|
|
/* free IPv4 related resources in case of mapped addr */
|
|
if (inp->inp_options != NULL) {
|
|
(void) m_free(inp->inp_options);
|
|
inp->inp_options = NULL;
|
|
}
|
|
im6o = inp->in6p_moptions;
|
|
inp->in6p_moptions = NULL;
|
|
if (im6o != NULL) {
|
|
IM6O_REMREF(im6o);
|
|
}
|
|
imo = inp->inp_moptions;
|
|
inp->inp_moptions = NULL;
|
|
if (imo != NULL) {
|
|
IMO_REMREF(imo);
|
|
}
|
|
|
|
sofreelastref(so, 0);
|
|
inp->inp_state = INPCB_STATE_DEAD;
|
|
/* makes sure we're not called twice from so_close */
|
|
so->so_flags |= SOF_PCBCLEARING;
|
|
|
|
inpcb_gc_sched(inp->inp_pcbinfo, INPCB_TIMER_FAST);
|
|
}
|
|
}
|
|
|
|
struct sockaddr *
|
|
in6_sockaddr(in_port_t port, struct in6_addr *addr_p, uint32_t ifscope)
|
|
{
|
|
struct sockaddr_in6 *sin6;
|
|
|
|
sin6 = SIN6(alloc_sockaddr(sizeof(*sin6),
|
|
Z_WAITOK | Z_NOFAIL));
|
|
|
|
sin6->sin6_family = AF_INET6;
|
|
sin6->sin6_port = port;
|
|
sin6->sin6_addr = *addr_p;
|
|
|
|
/* would be good to use sa6_recoverscope(), except for locking */
|
|
if (IN6_IS_SCOPE_EMBED(&sin6->sin6_addr)) {
|
|
sin6->sin6_scope_id = ifscope;
|
|
if (in6_embedded_scope) {
|
|
in6_verify_ifscope(&sin6->sin6_addr, ifscope);
|
|
sin6->sin6_scope_id = ntohs(sin6->sin6_addr.s6_addr16[1]);
|
|
}
|
|
} else {
|
|
sin6->sin6_scope_id = 0; /* XXX */
|
|
}
|
|
if (in6_embedded_scope && IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr)) {
|
|
sin6->sin6_addr.s6_addr16[1] = 0;
|
|
}
|
|
|
|
return SA(sin6);
|
|
}
|
|
|
|
void
|
|
in6_sockaddr_s(in_port_t port, struct in6_addr *addr_p,
|
|
struct sockaddr_in6 *sin6, uint32_t ifscope)
|
|
{
|
|
SOCKADDR_ZERO(sin6, sizeof(*sin6));
|
|
sin6->sin6_family = AF_INET6;
|
|
sin6->sin6_len = sizeof(*sin6);
|
|
sin6->sin6_port = port;
|
|
sin6->sin6_addr = *addr_p;
|
|
|
|
/* would be good to use sa6_recoverscope(), except for locking */
|
|
if (IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr)) {
|
|
sin6->sin6_scope_id = ifscope;
|
|
if (in6_embedded_scope) {
|
|
in6_verify_ifscope(&sin6->sin6_addr, ifscope);
|
|
sin6->sin6_scope_id = ntohs(sin6->sin6_addr.s6_addr16[1]);
|
|
}
|
|
} else {
|
|
sin6->sin6_scope_id = 0; /* XXX */
|
|
}
|
|
if (in6_embedded_scope && IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr)) {
|
|
sin6->sin6_addr.s6_addr16[1] = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The calling convention of in6_getsockaddr() and in6_getpeeraddr() was
|
|
* modified to match the pru_sockaddr() and pru_peeraddr() entry points
|
|
* in struct pr_usrreqs, so that protocols can just reference then directly
|
|
* without the need for a wrapper function.
|
|
*/
|
|
int
|
|
in6_getsockaddr(struct socket *so, struct sockaddr **nam)
|
|
{
|
|
struct inpcb *inp;
|
|
struct in6_addr addr;
|
|
in_port_t port;
|
|
|
|
if ((inp = sotoinpcb(so)) == NULL) {
|
|
return EINVAL;
|
|
}
|
|
|
|
port = inp->inp_lport;
|
|
addr = inp->in6p_laddr;
|
|
|
|
*nam = in6_sockaddr(port, &addr, inp->inp_lifscope);
|
|
if (*nam == NULL) {
|
|
return ENOBUFS;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
in6_getsockaddr_s(struct socket *so, struct sockaddr_in6 *ss)
|
|
{
|
|
struct inpcb *inp;
|
|
struct in6_addr addr;
|
|
in_port_t port;
|
|
|
|
VERIFY(ss != NULL);
|
|
SOCKADDR_ZERO(ss, sizeof(*ss));
|
|
|
|
if ((inp = sotoinpcb(so)) == NULL) {
|
|
return EINVAL;
|
|
}
|
|
|
|
port = inp->inp_lport;
|
|
addr = inp->in6p_laddr;
|
|
|
|
in6_sockaddr_s(port, &addr, ss, inp->inp_lifscope);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
in6_getpeeraddr(struct socket *so, struct sockaddr **nam)
|
|
{
|
|
struct inpcb *inp;
|
|
struct in6_addr addr;
|
|
in_port_t port;
|
|
|
|
if ((inp = sotoinpcb(so)) == NULL) {
|
|
return EINVAL;
|
|
}
|
|
|
|
port = inp->inp_fport;
|
|
addr = inp->in6p_faddr;
|
|
|
|
*nam = in6_sockaddr(port, &addr, inp->inp_fifscope);
|
|
if (*nam == NULL) {
|
|
return ENOBUFS;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
in6_mapped_sockaddr(struct socket *so, struct sockaddr **nam)
|
|
{
|
|
struct inpcb *inp = sotoinpcb(so);
|
|
int error;
|
|
|
|
if (inp == NULL) {
|
|
return EINVAL;
|
|
}
|
|
if (inp->inp_vflag & INP_IPV4) {
|
|
error = in_getsockaddr(so, nam);
|
|
if (error == 0) {
|
|
error = in6_sin_2_v4mapsin6_in_sock(nam);
|
|
}
|
|
} else {
|
|
/* scope issues will be handled in in6_getsockaddr(). */
|
|
error = in6_getsockaddr(so, nam);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
int
|
|
in6_mapped_peeraddr(struct socket *so, struct sockaddr **nam)
|
|
{
|
|
struct inpcb *inp = sotoinpcb(so);
|
|
int error;
|
|
|
|
if (inp == NULL) {
|
|
return EINVAL;
|
|
}
|
|
if (inp->inp_vflag & INP_IPV4) {
|
|
error = in_getpeeraddr(so, nam);
|
|
if (error == 0) {
|
|
error = in6_sin_2_v4mapsin6_in_sock(nam);
|
|
}
|
|
} else {
|
|
/* scope issues will be handled in in6_getpeeraddr(). */
|
|
error = in6_getpeeraddr(so, nam);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Pass some notification to all connections of a protocol
|
|
* associated with address dst. The local address and/or port numbers
|
|
* may be specified to limit the search. The "usual action" will be
|
|
* taken, depending on the ctlinput cmd. The caller must filter any
|
|
* cmds that are uninteresting (e.g., no error in the map).
|
|
* Call the protocol specific routine (if any) to report
|
|
* any errors for each matching socket.
|
|
*/
|
|
void
|
|
in6_pcbnotify(struct inpcbinfo *pcbinfo, struct sockaddr *dst, u_int fport_arg,
|
|
const struct sockaddr *src, u_int lport_arg, int cmd, void *cmdarg,
|
|
void (*notify)(struct inpcb *, int))
|
|
{
|
|
struct inpcbhead *head = pcbinfo->ipi_listhead;
|
|
struct inpcb *inp, *ninp;
|
|
struct sockaddr_in6 sa6_src, *sa6_dst;
|
|
uint16_t fport = (uint16_t)fport_arg, lport = (uint16_t)lport_arg;
|
|
u_int32_t flowinfo;
|
|
int errno;
|
|
|
|
if ((unsigned)cmd >= PRC_NCMDS || dst->sa_family != AF_INET6) {
|
|
return;
|
|
}
|
|
|
|
sa6_dst = SIN6(dst);
|
|
if (IN6_IS_ADDR_UNSPECIFIED(&sa6_dst->sin6_addr)) {
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* note that src can be NULL when we get notify by local fragmentation.
|
|
*/
|
|
sa6_src = (src == NULL) ?
|
|
sa6_any : *SIN6(src);
|
|
flowinfo = sa6_src.sin6_flowinfo;
|
|
|
|
/*
|
|
* Redirects go to all references to the destination,
|
|
* and use in6_rtchange to invalidate the route cache.
|
|
* Dead host indications: also use in6_rtchange to invalidate
|
|
* the cache, and deliver the error to all the sockets.
|
|
* Otherwise, if we have knowledge of the local port and address,
|
|
* deliver only to that socket.
|
|
*/
|
|
if (PRC_IS_REDIRECT(cmd) || cmd == PRC_HOSTDEAD) {
|
|
fport = 0;
|
|
lport = 0;
|
|
bzero((caddr_t)&sa6_src.sin6_addr, sizeof(sa6_src.sin6_addr));
|
|
|
|
if (cmd != PRC_HOSTDEAD) {
|
|
notify = in6_rtchange;
|
|
}
|
|
}
|
|
errno = inet6ctlerrmap[cmd];
|
|
lck_rw_lock_shared(&pcbinfo->ipi_lock);
|
|
for (inp = LIST_FIRST(head); inp != NULL; inp = ninp) {
|
|
ninp = LIST_NEXT(inp, inp_list);
|
|
|
|
if (!(inp->inp_vflag & INP_IPV6)) {
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If the error designates a new path MTU for a destination
|
|
* and the application (associated with this socket) wanted to
|
|
* know the value, notify. Note that we notify for all
|
|
* disconnected sockets if the corresponding application
|
|
* wanted. This is because some UDP applications keep sending
|
|
* sockets disconnected.
|
|
* XXX: should we avoid to notify the value to TCP sockets?
|
|
*/
|
|
if (cmd == PRC_MSGSIZE && cmdarg != NULL) {
|
|
socket_lock(inp->inp_socket, 1);
|
|
ip6_notify_pmtu(inp, SIN6(dst),
|
|
(u_int32_t *)cmdarg);
|
|
socket_unlock(inp->inp_socket, 1);
|
|
}
|
|
|
|
/*
|
|
* Detect if we should notify the error. If no source and
|
|
* destination ports are specifed, but non-zero flowinfo and
|
|
* local address match, notify the error. This is the case
|
|
* when the error is delivered with an encrypted buffer
|
|
* by ESP. Otherwise, just compare addresses and ports
|
|
* as usual.
|
|
*/
|
|
if (lport == 0 && fport == 0 && flowinfo &&
|
|
inp->inp_socket != NULL &&
|
|
flowinfo == (inp->inp_flow & IPV6_FLOWLABEL_MASK) &&
|
|
in6_are_addr_equal_scoped(&inp->in6p_laddr, &sa6_src.sin6_addr, inp->inp_lifscope, sa6_src.sin6_scope_id)) {
|
|
goto do_notify;
|
|
} else if (!in6_are_addr_equal_scoped(&inp->in6p_faddr, &sa6_dst->sin6_addr,
|
|
inp->inp_fifscope, sa6_dst->sin6_scope_id) || inp->inp_socket == NULL ||
|
|
(lport && inp->inp_lport != lport) ||
|
|
(!IN6_IS_ADDR_UNSPECIFIED(&sa6_src.sin6_addr) &&
|
|
!in6_are_addr_equal_scoped(&inp->in6p_laddr, &sa6_src.sin6_addr, inp->inp_lifscope, sa6_src.sin6_scope_id)) || (fport && inp->inp_fport != fport)) {
|
|
continue;
|
|
}
|
|
|
|
do_notify:
|
|
if (notify) {
|
|
if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) ==
|
|
WNT_STOPUSING) {
|
|
continue;
|
|
}
|
|
socket_lock(inp->inp_socket, 1);
|
|
(*notify)(inp, errno);
|
|
(void) in_pcb_checkstate(inp, WNT_RELEASE, 1);
|
|
socket_unlock(inp->inp_socket, 1);
|
|
}
|
|
}
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
}
|
|
|
|
/*
|
|
* Lookup a PCB based on the local address and port.
|
|
*/
|
|
struct inpcb *
|
|
in6_pcblookup_local(struct inpcbinfo *pcbinfo, struct in6_addr *laddr,
|
|
u_int lport_arg, uint32_t ifscope, int wild_okay)
|
|
{
|
|
struct inpcb *inp;
|
|
int matchwild = 3, wildcard;
|
|
uint16_t lport = (uint16_t)lport_arg;
|
|
struct inpcbporthead *porthash;
|
|
struct inpcb *match = NULL;
|
|
struct inpcbport *phd;
|
|
|
|
if (!wild_okay) {
|
|
struct inpcbhead *head;
|
|
/*
|
|
* Look for an unconnected (wildcard foreign addr) PCB that
|
|
* matches the local address and port we're looking for.
|
|
*/
|
|
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0,
|
|
pcbinfo->ipi_hashmask)];
|
|
LIST_FOREACH(inp, head, inp_hash) {
|
|
if (!(inp->inp_vflag & INP_IPV6)) {
|
|
continue;
|
|
}
|
|
if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr) &&
|
|
in6_are_addr_equal_scoped(&inp->in6p_laddr, laddr, inp->inp_lifscope, ifscope) &&
|
|
inp->inp_lport == lport) {
|
|
/*
|
|
* Found.
|
|
*/
|
|
return inp;
|
|
}
|
|
}
|
|
/*
|
|
* Not found.
|
|
*/
|
|
return NULL;
|
|
}
|
|
/*
|
|
* Best fit PCB lookup.
|
|
*
|
|
* First see if this local port is in use by looking on the
|
|
* port hash list.
|
|
*/
|
|
porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
|
|
pcbinfo->ipi_porthashmask)];
|
|
LIST_FOREACH(phd, porthash, phd_hash) {
|
|
if (phd->phd_port == lport) {
|
|
break;
|
|
}
|
|
}
|
|
if (phd != NULL) {
|
|
/*
|
|
* Port is in use by one or more PCBs. Look for best
|
|
* fit.
|
|
*/
|
|
LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
|
|
wildcard = 0;
|
|
if (!(inp->inp_vflag & INP_IPV6)) {
|
|
continue;
|
|
}
|
|
if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) {
|
|
wildcard++;
|
|
}
|
|
if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) {
|
|
if (IN6_IS_ADDR_UNSPECIFIED(laddr)) {
|
|
wildcard++;
|
|
} else if (!in6_are_addr_equal_scoped(
|
|
&inp->in6p_laddr, laddr, inp->inp_lifscope, ifscope)) {
|
|
continue;
|
|
}
|
|
} else {
|
|
if (!IN6_IS_ADDR_UNSPECIFIED(laddr)) {
|
|
wildcard++;
|
|
}
|
|
}
|
|
if (wildcard < matchwild) {
|
|
match = inp;
|
|
matchwild = wildcard;
|
|
if (matchwild == 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return match;
|
|
}
|
|
|
|
/*
|
|
* Check for alternatives when higher level complains
|
|
* about service problems. For now, invalidate cached
|
|
* routing information. If the route was created dynamically
|
|
* (by a redirect), time to try a default gateway again.
|
|
*/
|
|
void
|
|
in6_losing(struct inpcb *in6p)
|
|
{
|
|
struct rtentry *rt;
|
|
|
|
if ((rt = in6p->in6p_route.ro_rt) != NULL) {
|
|
RT_LOCK(rt);
|
|
if (rt->rt_flags & RTF_DYNAMIC) {
|
|
/*
|
|
* Prevent another thread from modifying rt_key,
|
|
* rt_gateway via rt_setgate() after the rt_lock
|
|
* is dropped by marking the route as defunct.
|
|
*/
|
|
rt->rt_flags |= RTF_CONDEMNED;
|
|
RT_UNLOCK(rt);
|
|
(void) rtrequest(RTM_DELETE, rt_key(rt),
|
|
rt->rt_gateway, rt_mask(rt), rt->rt_flags, NULL);
|
|
} else {
|
|
RT_UNLOCK(rt);
|
|
}
|
|
/*
|
|
* A new route can be allocated
|
|
* the next time output is attempted.
|
|
*/
|
|
}
|
|
ROUTE_RELEASE(&in6p->in6p_route);
|
|
}
|
|
|
|
/*
|
|
* After a routing change, flush old routing
|
|
* and allocate a (hopefully) better one.
|
|
*/
|
|
void
|
|
in6_rtchange(struct inpcb *inp, int errno)
|
|
{
|
|
#pragma unused(errno)
|
|
/*
|
|
* A new route can be allocated the next time
|
|
* output is attempted.
|
|
*/
|
|
ROUTE_RELEASE(&inp->in6p_route);
|
|
}
|
|
|
|
/*
|
|
* Check if PCB exists hash list. Also returns uid and gid of socket
|
|
*/
|
|
int
|
|
in6_pcblookup_hash_exists(struct inpcbinfo *pcbinfo, struct in6_addr *faddr,
|
|
u_int fport_arg, uint32_t fifscope, struct in6_addr *laddr, u_int lport_arg, uint32_t lifscope, int wildcard,
|
|
uid_t *uid, gid_t *gid, struct ifnet *ifp, bool relaxed)
|
|
{
|
|
struct inpcbhead *head;
|
|
struct inpcb *inp;
|
|
uint16_t fport = (uint16_t)fport_arg, lport = (uint16_t)lport_arg;
|
|
int found;
|
|
|
|
*uid = UID_MAX;
|
|
*gid = GID_MAX;
|
|
|
|
lck_rw_lock_shared(&pcbinfo->ipi_lock);
|
|
|
|
/*
|
|
* First look for an exact match.
|
|
*/
|
|
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr->s6_addr32[3] /* XXX */,
|
|
lport, fport, pcbinfo->ipi_hashmask)];
|
|
LIST_FOREACH(inp, head, inp_hash) {
|
|
if (!(inp->inp_vflag & INP_IPV6)) {
|
|
continue;
|
|
}
|
|
|
|
if (inp_restricted_recv(inp, ifp)) {
|
|
continue;
|
|
}
|
|
|
|
#if NECP
|
|
if (!necp_socket_is_allowed_to_recv_on_interface(inp, ifp)) {
|
|
continue;
|
|
}
|
|
#endif /* NECP */
|
|
|
|
if (((in6_are_addr_equal_scoped(&inp->in6p_faddr, faddr, inp->inp_fifscope, fifscope) &&
|
|
in6_are_addr_equal_scoped(&inp->in6p_laddr, laddr, inp->inp_lifscope, lifscope)) ||
|
|
(relaxed &&
|
|
IN6_ARE_ADDR_EQUAL(&inp->in6p_faddr, faddr) &&
|
|
IN6_ARE_ADDR_EQUAL(&inp->in6p_laddr, laddr))) &&
|
|
inp->inp_fport == fport &&
|
|
inp->inp_lport == lport) {
|
|
if ((found = (inp->inp_socket != NULL))) {
|
|
/*
|
|
* Found. Check if pcb is still valid
|
|
*/
|
|
*uid = kauth_cred_getuid(
|
|
inp->inp_socket->so_cred);
|
|
*gid = kauth_cred_getgid(
|
|
inp->inp_socket->so_cred);
|
|
}
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
return found;
|
|
}
|
|
}
|
|
if (wildcard) {
|
|
struct inpcb *local_wild = NULL;
|
|
|
|
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0,
|
|
pcbinfo->ipi_hashmask)];
|
|
LIST_FOREACH(inp, head, inp_hash) {
|
|
if (!(inp->inp_vflag & INP_IPV6)) {
|
|
continue;
|
|
}
|
|
|
|
if (inp_restricted_recv(inp, ifp)) {
|
|
continue;
|
|
}
|
|
|
|
#if NECP
|
|
if (!necp_socket_is_allowed_to_recv_on_interface(inp, ifp)) {
|
|
continue;
|
|
}
|
|
#endif /* NECP */
|
|
|
|
if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr) &&
|
|
inp->inp_lport == lport) {
|
|
if (in6_are_addr_equal_scoped(&inp->in6p_laddr,
|
|
laddr, inp->inp_lifscope, lifscope) ||
|
|
(relaxed && IN6_ARE_ADDR_EQUAL(&inp->in6p_laddr, laddr))) {
|
|
found = (inp->inp_socket != NULL);
|
|
if (found) {
|
|
*uid = kauth_cred_getuid(
|
|
inp->inp_socket->so_cred);
|
|
*gid = kauth_cred_getgid(
|
|
inp->inp_socket->so_cred);
|
|
}
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
return found;
|
|
} else if (IN6_IS_ADDR_UNSPECIFIED(
|
|
&inp->in6p_laddr)) {
|
|
local_wild = inp;
|
|
}
|
|
}
|
|
}
|
|
if (local_wild) {
|
|
if ((found = (local_wild->inp_socket != NULL))) {
|
|
*uid = kauth_cred_getuid(
|
|
local_wild->inp_socket->so_cred);
|
|
*gid = kauth_cred_getgid(
|
|
local_wild->inp_socket->so_cred);
|
|
}
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
return found;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Not found.
|
|
*/
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Lookup PCB in hash list.
|
|
*/
|
|
struct inpcb *
|
|
in6_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in6_addr *faddr,
|
|
u_int fport_arg, uint32_t fifscope, struct in6_addr *laddr, u_int lport_arg, uint32_t lifscope, int wildcard,
|
|
struct ifnet *ifp)
|
|
{
|
|
struct inpcbhead *head;
|
|
struct inpcb *inp;
|
|
uint16_t fport = (uint16_t)fport_arg, lport = (uint16_t)lport_arg;
|
|
|
|
lck_rw_lock_shared(&pcbinfo->ipi_lock);
|
|
|
|
/*
|
|
* First look for an exact match.
|
|
*/
|
|
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr->s6_addr32[3] /* XXX */,
|
|
lport, fport, pcbinfo->ipi_hashmask)];
|
|
LIST_FOREACH(inp, head, inp_hash) {
|
|
if (!(inp->inp_vflag & INP_IPV6)) {
|
|
continue;
|
|
}
|
|
|
|
if (inp_restricted_recv(inp, ifp)) {
|
|
continue;
|
|
}
|
|
|
|
#if NECP
|
|
if (!necp_socket_is_allowed_to_recv_on_interface(inp, ifp)) {
|
|
continue;
|
|
}
|
|
#endif /* NECP */
|
|
|
|
if (in6_are_addr_equal_scoped(&inp->in6p_faddr, faddr, inp->inp_fifscope, fifscope) &&
|
|
in6_are_addr_equal_scoped(&inp->in6p_laddr, laddr, inp->inp_lifscope, lifscope) &&
|
|
inp->inp_fport == fport &&
|
|
inp->inp_lport == lport) {
|
|
/*
|
|
* Found. Check if pcb is still valid
|
|
*/
|
|
if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) !=
|
|
WNT_STOPUSING) {
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
return inp;
|
|
} else {
|
|
/* it's there but dead, say it isn't found */
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
return NULL;
|
|
}
|
|
}
|
|
}
|
|
if (wildcard) {
|
|
struct inpcb *local_wild = NULL;
|
|
|
|
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0,
|
|
pcbinfo->ipi_hashmask)];
|
|
LIST_FOREACH(inp, head, inp_hash) {
|
|
if (!(inp->inp_vflag & INP_IPV6)) {
|
|
continue;
|
|
}
|
|
|
|
if (inp_restricted_recv(inp, ifp)) {
|
|
continue;
|
|
}
|
|
|
|
#if NECP
|
|
if (!necp_socket_is_allowed_to_recv_on_interface(inp, ifp)) {
|
|
continue;
|
|
}
|
|
#endif /* NECP */
|
|
|
|
if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr) &&
|
|
inp->inp_lport == lport) {
|
|
if (in6_are_addr_equal_scoped(&inp->in6p_laddr,
|
|
laddr, inp->inp_lifscope, lifscope)) {
|
|
if (in_pcb_checkstate(inp, WNT_ACQUIRE,
|
|
0) != WNT_STOPUSING) {
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
return inp;
|
|
} else {
|
|
/* dead; say it isn't found */
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
return NULL;
|
|
}
|
|
} else if (IN6_IS_ADDR_UNSPECIFIED(
|
|
&inp->in6p_laddr)) {
|
|
local_wild = inp;
|
|
}
|
|
}
|
|
}
|
|
if (local_wild && in_pcb_checkstate(local_wild,
|
|
WNT_ACQUIRE, 0) != WNT_STOPUSING) {
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
return local_wild;
|
|
} else {
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Not found.
|
|
*/
|
|
lck_rw_done(&pcbinfo->ipi_lock);
|
|
return NULL;
|
|
}
|
|
|
|
void
|
|
init_sin6(struct sockaddr_in6 *sin6, struct mbuf *m)
|
|
{
|
|
struct ip6_hdr *ip;
|
|
|
|
ip = mtod(m, struct ip6_hdr *);
|
|
SOCKADDR_ZERO(sin6, sizeof(*sin6));
|
|
sin6->sin6_len = sizeof(*sin6);
|
|
sin6->sin6_family = AF_INET6;
|
|
sin6->sin6_addr = ip->ip6_src;
|
|
if (IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr)) {
|
|
if (in6_embedded_scope) {
|
|
sin6->sin6_addr.s6_addr16[1] = 0;
|
|
}
|
|
if ((m->m_pkthdr.pkt_flags & (PKTF_LOOP | PKTF_IFAINFO)) ==
|
|
(PKTF_LOOP | PKTF_IFAINFO)) {
|
|
sin6->sin6_scope_id = m->m_pkthdr.src_ifindex;
|
|
} else if (m->m_pkthdr.rcvif != NULL) {
|
|
sin6->sin6_scope_id = m->m_pkthdr.rcvif->if_index;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The following routines implement this scheme:
|
|
*
|
|
* Callers of ip6_output() that intend to cache the route in the inpcb pass
|
|
* a local copy of the struct route to ip6_output(). Using a local copy of
|
|
* the cached route significantly simplifies things as IP no longer has to
|
|
* worry about having exclusive access to the passed in struct route, since
|
|
* it's defined in the caller's stack; in essence, this allows for a lock-
|
|
* less operation when updating the struct route at the IP level and below,
|
|
* whenever necessary. The scheme works as follows:
|
|
*
|
|
* Prior to dropping the socket's lock and calling ip6_output(), the caller
|
|
* copies the struct route from the inpcb into its stack, and adds a reference
|
|
* to the cached route entry, if there was any. The socket's lock is then
|
|
* dropped and ip6_output() is called with a pointer to the copy of struct
|
|
* route defined on the stack (not to the one in the inpcb.)
|
|
*
|
|
* Upon returning from ip6_output(), the caller then acquires the socket's
|
|
* lock and synchronizes the cache; if there is no route cached in the inpcb,
|
|
* it copies the local copy of struct route (which may or may not contain any
|
|
* route) back into the cache; otherwise, if the inpcb has a route cached in
|
|
* it, the one in the local copy will be freed, if there's any. Trashing the
|
|
* cached route in the inpcb can be avoided because ip6_output() is single-
|
|
* threaded per-PCB (i.e. multiple transmits on a PCB are always serialized
|
|
* by the socket/transport layer.)
|
|
*/
|
|
void
|
|
in6p_route_copyout(struct inpcb *inp, struct route_in6 *dst)
|
|
{
|
|
struct route_in6 *src = &inp->in6p_route;
|
|
|
|
socket_lock_assert_owned(inp->inp_socket);
|
|
|
|
/* Minor sanity check */
|
|
if (src->ro_rt != NULL && rt_key(src->ro_rt)->sa_family != AF_INET6) {
|
|
panic("%s: wrong or corrupted route: %p", __func__, src);
|
|
}
|
|
|
|
route_copyout((struct route *)dst, (struct route *)src, sizeof(*dst));
|
|
}
|
|
|
|
void
|
|
in6p_route_copyin(struct inpcb *inp, struct route_in6 *src)
|
|
{
|
|
struct route_in6 *dst = &inp->in6p_route;
|
|
|
|
socket_lock_assert_owned(inp->inp_socket);
|
|
|
|
/* Minor sanity check */
|
|
if (src->ro_rt != NULL && rt_key(src->ro_rt)->sa_family != AF_INET6) {
|
|
panic("%s: wrong or corrupted route: %p", __func__, src);
|
|
}
|
|
|
|
route_copyin((struct route *)src, (struct route *)dst, sizeof(*src));
|
|
}
|