gems-kernel/source/THIRDPARTY/xnu/bsd/netinet6/nd6_prproxy.c

1507 lines
42 KiB
C
Raw Normal View History

2024-06-03 11:29:39 -05:00
/*
* Copyright (c) 2011-2020 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* Prefix-based Neighbor Discovery Proxy
*
* When an interface is marked with the ND6_IFF_PROXY_PREFIXES flag, all
* of current and future non-scoped on-link prefixes configured on the
* interface will be shared with the scoped variant of such prefixes on
* other interfaces. This allows for one or more prefixes to be shared
* across multiple links, with full support for Duplicate Addres Detection,
* Address Resolution and Neighbor Unreachability Detection.
*
* A non-scoped prefix may be configured statically, or dynamically via
* Router Advertisement. An interface is said to be an "upstream" interface
* when it is marked with ND6_IFF_PROXY_PREFIXES and has at least one prefix
* that is non-scoped (global, not scoped.) Such prefixes are marked with
* the NDPRF_PRPROXY flag.
*
* A scoped prefix typically gets configured by way of adding an address
* to a "downstream" interface, when the added address is part of an existing
* prefix that is allowed to be shared (i.e. NDPRF_PRPROXY prefixes.) Unlike
* non-scoped prefixes, however, scoped prefixes will never be marked with
* the NDPRF_PRPROXY flag.
*
* The setting of NDPRF_PRPROXY depends on whether the prefix is on-link;
* an off-link prefix on an interface marked with ND6_IFF_PROXY_PREFIXES
* will not cause NDPRF_PRPROXY to be set (it will only happen when that
* prefix goes on-link.) Likewise, a previously on-link prefix that has
* transitioned to off-link will cause its NDPRF_PRPROXY flag to be cleared.
*
* Prefix proxying relies on IPv6 Scoped Routing to be in effect, as it would
* otherwise be impossible to install scoped prefix route entries in the
* routing table. By default, such cloning prefix routes will generate cloned
* routes that are scoped according to their interfaces. Because prefix
* proxying is essentially creating a larger network comprised of multiple
* links sharing a prefix, we need to treat the cloned routes as if they
* weren't scoped route entries. This requires marking such cloning prefix
* routes with the RTF_PROXY flag, which serves as an indication that the
* route entry (and its clones) are part of a proxied prefix, and that the
* entries are non-scoped.
*
* In order to handle solicited-node destined ND packets (Address Resolution,
* Neighbor Unreachability Detection), prefix proxying also requires that the
* "upstream" and "downstream" interfaces be configured for all-multicast mode.
*
* The setting and clearing of RTF_PROXY flag, as well as the entering and
* exiting of all-multicast mode on those interfaces happen when a prefix
* transitions between on-link and off-link (vice versa.)
*
* Note that this is not a strict implementation of RFC 4389, but rather a
* derivative based on similar concept. In particular, we only proxy NS and
* NA packets; RA packets are never proxied. Care should be taken to enable
* prefix proxying only on non-looping network topology.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/errno.h>
#include <sys/syslog.h>
#include <sys/sysctl.h>
#include <sys/mcache.h>
#include <sys/protosw.h>
#include <kern/queue.h>
#include <kern/zalloc.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_types.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_var.h>
#include <netinet6/in6_var.h>
#include <netinet/ip6.h>
#include <netinet6/ip6_var.h>
#include <netinet/icmp6.h>
#include <netinet6/nd6.h>
#include <netinet6/scope6_var.h>
struct nd6_prproxy_prelist {
SLIST_ENTRY(nd6_prproxy_prelist) ndprl_le;
struct nd_prefix *ndprl_pr; /* prefix */
struct nd_prefix *ndprl_up; /* non-NULL for upstream */
struct ifnet *ndprl_fwd_ifp; /* outgoing interface */
boolean_t ndprl_sol; /* unicast solicitor? */
struct in6_addr ndprl_sol_saddr; /* solicitor's address */
};
/*
* Soliciting node (source) record.
*/
struct nd6_prproxy_solsrc {
TAILQ_ENTRY(nd6_prproxy_solsrc) solsrc_tqe;
struct in6_addr solsrc_saddr; /* soliciting (src) address */
struct ifnet *solsrc_ifp; /* iface where NS arrived on */
};
/*
* Solicited node (target) record.
*/
struct nd6_prproxy_soltgt {
RB_ENTRY(nd6_prproxy_soltgt) soltgt_link; /* RB tree links */
struct soltgt_key_s {
struct in6_addr taddr; /* solicited (tgt) address */
} soltgt_key;
u_int64_t soltgt_expire; /* expiration time */
u_int32_t soltgt_cnt; /* total # of solicitors */
TAILQ_HEAD(, nd6_prproxy_solsrc) soltgt_q;
};
SLIST_HEAD(nd6_prproxy_prelist_head, nd6_prproxy_prelist);
static void nd6_prproxy_prelist_setroute(boolean_t enable,
struct nd6_prproxy_prelist_head *, struct nd6_prproxy_prelist_head *);
static struct nd6_prproxy_prelist *nd6_ndprl_alloc(zalloc_flags_t);
static void nd6_ndprl_free(struct nd6_prproxy_prelist *);
static struct nd6_prproxy_solsrc *nd6_solsrc_alloc(int);
static void nd6_solsrc_free(struct nd6_prproxy_solsrc *);
static boolean_t nd6_solsrc_enq(struct nd_prefix *, struct ifnet *,
struct in6_addr *, struct in6_addr *);
static boolean_t nd6_solsrc_deq(struct nd_prefix *, struct in6_addr *,
struct in6_addr *, struct ifnet **);
static struct nd6_prproxy_soltgt *nd6_soltgt_alloc(int);
static void nd6_soltgt_free(struct nd6_prproxy_soltgt *);
static void nd6_soltgt_prune(struct nd6_prproxy_soltgt *, u_int32_t);
static __inline int soltgt_cmp(const struct nd6_prproxy_soltgt *,
const struct nd6_prproxy_soltgt *);
static void nd6_prproxy_sols_purge(struct nd_prefix *, u_int64_t);
RB_PROTOTYPE_SC_PREV(__private_extern__, prproxy_sols_tree, nd6_prproxy_soltgt,
soltgt_link, soltgt_cmp);
/*
* Time (in seconds) before a target record expires (is idle).
*/
#define ND6_TGT_SOLS_EXPIRE 5
/*
* Maximum number of queued soliciting (source) records per target.
*/
#define ND6_MAX_SRC_SOLS_DEFAULT 4
/*
* Maximum number of queued solicited (target) records per prefix.
*/
#define ND6_MAX_TGT_SOLS_DEFAULT 8
static u_int32_t nd6_max_tgt_sols = ND6_MAX_TGT_SOLS_DEFAULT;
static u_int32_t nd6_max_src_sols = ND6_MAX_SRC_SOLS_DEFAULT;
static KALLOC_TYPE_DEFINE(ndprl_zone,
struct nd6_prproxy_prelist, NET_KT_DEFAULT); /* nd6_prproxy_prelist zone */
static KALLOC_TYPE_DEFINE(solsrc_zone,
struct nd6_prproxy_solsrc, NET_KT_DEFAULT); /* nd6_prproxy_solsrc zone */
static KALLOC_TYPE_DEFINE(soltgt_zone,
struct nd6_prproxy_soltgt, NET_KT_DEFAULT); /* nd6_prproxy_soltgt zone */
/* The following is protected by ndpr_lock */
RB_GENERATE_PREV(prproxy_sols_tree, nd6_prproxy_soltgt,
soltgt_link, soltgt_cmp);
/* The following is protected by proxy6_lock (for updates) */
u_int32_t nd6_prproxy;
SYSCTL_DECL(_net_inet6_icmp6);
SYSCTL_UINT(_net_inet6_icmp6, OID_AUTO, nd6_maxsolstgt,
CTLFLAG_RW | CTLFLAG_LOCKED, &nd6_max_tgt_sols, ND6_MAX_TGT_SOLS_DEFAULT,
"maximum number of outstanding solicited targets per prefix");
SYSCTL_UINT(_net_inet6_icmp6, OID_AUTO, nd6_maxproxiedsol,
CTLFLAG_RW | CTLFLAG_LOCKED, &nd6_max_src_sols, ND6_MAX_SRC_SOLS_DEFAULT,
"maximum number of outstanding solicitations per target");
SYSCTL_UINT(_net_inet6_icmp6, OID_AUTO, prproxy_cnt,
CTLFLAG_RD | CTLFLAG_LOCKED, &nd6_prproxy, 0,
"total number of proxied prefixes");
static struct nd6_prproxy_prelist *
nd6_ndprl_alloc(zalloc_flags_t how)
{
return zalloc_flags(ndprl_zone, how | Z_ZERO);
}
static void
nd6_ndprl_free(struct nd6_prproxy_prelist *ndprl)
{
zfree(ndprl_zone, ndprl);
}
/*
* Apply routing function on the affected upstream and downstream prefixes,
* i.e. either set or clear RTF_PROXY on the cloning prefix route; all route
* entries that were cloned off these prefixes will be blown away. Caller
* must have acquired proxy6_lock and must not be holding nd6_mutex.
*/
static void
nd6_prproxy_prelist_setroute(boolean_t enable,
struct nd6_prproxy_prelist_head *up_head,
struct nd6_prproxy_prelist_head *down_head)
{
struct nd6_prproxy_prelist *up, *down, *ndprl_tmp;
struct nd_prefix *pr;
LCK_MTX_ASSERT(&proxy6_lock, LCK_MTX_ASSERT_OWNED);
LCK_MTX_ASSERT(nd6_mutex, LCK_MTX_ASSERT_NOTOWNED);
SLIST_FOREACH_SAFE(up, up_head, ndprl_le, ndprl_tmp) {
struct rtentry *rt;
boolean_t prproxy, set_allmulti = FALSE;
int allmulti_sw = FALSE;
struct ifnet *ifp = NULL;
SLIST_REMOVE(up_head, up, nd6_prproxy_prelist, ndprl_le);
pr = up->ndprl_pr;
VERIFY(up->ndprl_up == NULL);
NDPR_LOCK(pr);
ifp = pr->ndpr_ifp;
prproxy = (pr->ndpr_stateflags & NDPRF_PRPROXY);
VERIFY(!prproxy || ((pr->ndpr_stateflags & NDPRF_ONLINK) &&
!(pr->ndpr_stateflags & NDPRF_IFSCOPE)));
nd6_prproxy_sols_reap(pr);
VERIFY(pr->ndpr_prproxy_sols_cnt == 0);
VERIFY(RB_EMPTY(&pr->ndpr_prproxy_sols));
if (enable && pr->ndpr_allmulti_cnt == 0) {
nd6_prproxy++;
pr->ndpr_allmulti_cnt++;
set_allmulti = TRUE;
allmulti_sw = TRUE;
} else if (!enable && pr->ndpr_allmulti_cnt > 0) {
nd6_prproxy--;
pr->ndpr_allmulti_cnt--;
set_allmulti = TRUE;
allmulti_sw = FALSE;
}
if ((rt = pr->ndpr_rt) != NULL) {
if ((enable && prproxy) || (!enable && !prproxy)) {
RT_ADDREF(rt);
} else {
rt = NULL;
}
NDPR_UNLOCK(pr);
} else {
NDPR_UNLOCK(pr);
}
/* Call the following ioctl after releasing NDPR lock */
if (set_allmulti && ifp != NULL) {
if_allmulti(ifp, allmulti_sw);
}
NDPR_REMREF(pr);
if (rt != NULL) {
rt_set_proxy(rt, enable);
rtfree(rt);
}
nd6_ndprl_free(up);
}
SLIST_FOREACH_SAFE(down, down_head, ndprl_le, ndprl_tmp) {
struct nd_prefix *pr_up;
struct rtentry *rt;
boolean_t prproxy, set_allmulti = FALSE;
int allmulti_sw = FALSE;
struct ifnet *ifp = NULL;
SLIST_REMOVE(down_head, down, nd6_prproxy_prelist, ndprl_le);
pr = down->ndprl_pr;
pr_up = down->ndprl_up;
VERIFY(pr_up != NULL);
NDPR_LOCK(pr_up);
ifp = pr->ndpr_ifp;
prproxy = (pr_up->ndpr_stateflags & NDPRF_PRPROXY);
VERIFY(!prproxy || ((pr_up->ndpr_stateflags & NDPRF_ONLINK) &&
!(pr_up->ndpr_stateflags & NDPRF_IFSCOPE)));
NDPR_UNLOCK(pr_up);
NDPR_LOCK(pr);
if (enable && pr->ndpr_allmulti_cnt == 0) {
pr->ndpr_allmulti_cnt++;
set_allmulti = TRUE;
allmulti_sw = TRUE;
} else if (!enable && pr->ndpr_allmulti_cnt > 0) {
pr->ndpr_allmulti_cnt--;
set_allmulti = TRUE;
allmulti_sw = FALSE;
}
if ((rt = pr->ndpr_rt) != NULL) {
if ((enable && prproxy) || (!enable && !prproxy)) {
RT_ADDREF(rt);
} else {
rt = NULL;
}
NDPR_UNLOCK(pr);
} else {
NDPR_UNLOCK(pr);
}
if (set_allmulti && ifp != NULL) {
if_allmulti(ifp, allmulti_sw);
}
NDPR_REMREF(pr);
NDPR_REMREF(pr_up);
if (rt != NULL) {
rt_set_proxy(rt, enable);
rtfree(rt);
}
nd6_ndprl_free(down);
}
}
/*
* Enable/disable prefix proxying on an interface; typically called
* as part of handling SIOCSIFINFO_FLAGS[SETROUTERMODE_IN6]
*/
int
nd6_if_prproxy(struct ifnet *ifp, boolean_t enable)
{
SLIST_HEAD(, nd6_prproxy_prelist) up_head;
SLIST_HEAD(, nd6_prproxy_prelist) down_head;
struct nd6_prproxy_prelist *up, *down;
struct nd_prefix *pr;
/* Can't be enabled if we are an advertising router on the interface */
ifnet_lock_shared(ifp);
if (enable && (ifp->if_ipv6_router_mode == IPV6_ROUTER_MODE_EXCLUSIVE)) {
ifnet_lock_done(ifp);
return EBUSY;
}
ifnet_lock_done(ifp);
SLIST_INIT(&up_head);
SLIST_INIT(&down_head);
/*
* Serialize the clearing/setting of NDPRF_PRPROXY.
*/
lck_mtx_lock(&proxy6_lock);
/*
* First build a list of upstream prefixes on this interface for
* which we need to enable/disable prefix proxy functionality.
*/
lck_mtx_lock(nd6_mutex);
for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
NDPR_LOCK(pr);
if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr) ||
(!enable && !(pr->ndpr_stateflags & NDPRF_PRPROXY)) ||
(enable && (pr->ndpr_stateflags & NDPRF_PRPROXY)) ||
(pr->ndpr_stateflags & NDPRF_IFSCOPE) ||
pr->ndpr_ifp != ifp) {
NDPR_UNLOCK(pr);
continue;
}
/*
* At present, in order for the prefix to be eligible
* as a proxying/proxied prefix, we require that the
* prefix route entry be marked as a cloning route with
* RTF_PROXY; i.e. nd6_need_cache() needs to return
* true for the interface type.
*/
if (enable && (pr->ndpr_stateflags & NDPRF_ONLINK) &&
nd6_need_cache(ifp)) {
pr->ndpr_stateflags |= NDPRF_PRPROXY;
NDPR_ADDREF(pr);
NDPR_UNLOCK(pr);
} else if (!enable) {
pr->ndpr_stateflags &= ~NDPRF_PRPROXY;
NDPR_ADDREF(pr);
NDPR_UNLOCK(pr);
} else {
NDPR_UNLOCK(pr);
pr = NULL; /* don't go further */
}
if (pr == NULL) {
break;
}
up = nd6_ndprl_alloc(Z_WAITOK);
if (up == NULL) {
NDPR_REMREF(pr);
continue;
}
up->ndprl_pr = pr; /* keep reference from above */
SLIST_INSERT_HEAD(&up_head, up, ndprl_le);
}
/*
* Now build a list of matching (scoped) downstream prefixes on other
* interfaces which need to be enabled/disabled accordingly. Note that
* the NDPRF_PRPROXY is never set/cleared on the downstream prefixes.
*/
SLIST_FOREACH(up, &up_head, ndprl_le) {
struct nd_prefix *fwd;
struct in6_addr pr_addr;
uint32_t pr_ifscope;
u_char pr_len;
pr = up->ndprl_pr;
NDPR_LOCK(pr);
bcopy(&pr->ndpr_prefix.sin6_addr, &pr_addr, sizeof(pr_addr));
pr_len = pr->ndpr_plen;
pr_ifscope = pr->ndpr_prefix.sin6_scope_id;
NDPR_UNLOCK(pr);
for (fwd = nd_prefix.lh_first; fwd; fwd = fwd->ndpr_next) {
NDPR_LOCK(fwd);
if (!(fwd->ndpr_stateflags & NDPRF_ONLINK) ||
!(fwd->ndpr_stateflags & NDPRF_IFSCOPE) ||
fwd->ndpr_plen != pr_len ||
!in6_are_prefix_equal(&fwd->ndpr_prefix.sin6_addr, fwd->ndpr_prefix.sin6_scope_id,
&pr_addr, pr_ifscope, pr_len)) {
NDPR_UNLOCK(fwd);
continue;
}
NDPR_UNLOCK(fwd);
down = nd6_ndprl_alloc(Z_WAITOK);
if (down == NULL) {
continue;
}
NDPR_ADDREF(fwd);
down->ndprl_pr = fwd;
NDPR_ADDREF(pr);
down->ndprl_up = pr;
SLIST_INSERT_HEAD(&down_head, down, ndprl_le);
}
}
lck_mtx_unlock(nd6_mutex);
/*
* Apply routing function on prefixes; callee will free resources.
*/
nd6_prproxy_prelist_setroute(enable,
(struct nd6_prproxy_prelist_head *)&up_head,
(struct nd6_prproxy_prelist_head *)&down_head);
VERIFY(SLIST_EMPTY(&up_head));
VERIFY(SLIST_EMPTY(&down_head));
lck_mtx_unlock(&proxy6_lock);
return 0;
}
/*
* Called from the input path to determine whether the packet is destined
* to a proxied node; if so, mark the mbuf with PKTFF_PROXY_DST so that
* icmp6_input() knows that this is not to be delivered to socket(s).
*/
boolean_t
nd6_prproxy_isours(struct mbuf *m, struct ip6_hdr *ip6, struct route_in6 *ro6,
unsigned int ifscope)
{
struct rtentry *rt;
boolean_t ours = FALSE;
if (ip6->ip6_hlim != IPV6_MAXHLIM || ip6->ip6_nxt != IPPROTO_ICMPV6) {
goto done;
}
if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst) ||
IN6_IS_ADDR_MC_LINKLOCAL(&ip6->ip6_dst)) {
VERIFY(ro6 == NULL);
ours = TRUE;
goto done;
} else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
goto done;
}
if (ro6 == NULL) {
goto done;
}
if ((rt = ro6->ro_rt) != NULL) {
RT_LOCK(rt);
}
if (ROUTE_UNUSABLE(ro6)) {
if (rt != NULL) {
RT_UNLOCK(rt);
}
ROUTE_RELEASE(ro6);
/* Caller must have ensured this condition (not srcrt) */
VERIFY(in6_are_addr_equal_scoped(&ip6->ip6_dst,
&ro6->ro_dst.sin6_addr, ip6_input_getdstifscope(m), ro6->ro_dst.sin6_scope_id));
rtalloc_scoped_ign((struct route *)ro6, RTF_PRCLONING, ifscope);
if ((rt = ro6->ro_rt) == NULL) {
goto done;
}
RT_LOCK(rt);
}
ours = (rt->rt_flags & RTF_PROXY) ? TRUE : FALSE;
RT_UNLOCK(rt);
done:
if (ours) {
m->m_pkthdr.pkt_flags |= PKTF_PROXY_DST;
}
return ours;
}
/*
* Called from the input path to determine whether or not the proxy
* route entry is pointing to the correct interface, and to perform
* the necessary route fixups otherwise.
*/
void
nd6_proxy_find_fwdroute(struct ifnet *ifp, struct route_in6 *ro6)
{
struct in6_addr *dst6 = &ro6->ro_dst.sin6_addr;
uint32_t dst_ifscope = ro6->ro_dst.sin6_scope_id;
struct ifnet *fwd_ifp = NULL;
struct nd_prefix *pr;
struct rtentry *rt;
if ((rt = ro6->ro_rt) != NULL) {
RT_LOCK(rt);
if (!(rt->rt_flags & RTF_PROXY) || rt->rt_ifp == ifp) {
nd6log2(debug, "%s: found incorrect prefix "
"proxy route for dst %s on %s\n", if_name(ifp),
ip6_sprintf(dst6),
if_name(rt->rt_ifp));
RT_UNLOCK(rt);
/* look it up below */
} else {
RT_UNLOCK(rt);
/*
* The route is already marked with RTF_PRPROXY and
* it isn't pointing back to the inbound interface;
* optimistically return (see notes below).
*/
return;
}
}
/*
* Find out where we should forward this packet to, by searching
* for another interface that is proxying for the prefix. Our
* current implementation assumes that the proxied prefix is shared
* to no more than one downstream interfaces (typically a bridge
* interface).
*/
lck_mtx_lock(nd6_mutex);
for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
struct in6_addr pr_addr;
struct nd_prefix *fwd;
uint32_t pr_ifscope = pr->ndpr_prefix.sin6_scope_id;
u_char pr_len;
NDPR_LOCK(pr);
if (!(pr->ndpr_stateflags & NDPRF_ONLINK) ||
!(pr->ndpr_stateflags & NDPRF_PRPROXY) ||
!in6_are_masked_addr_scope_equal(&pr->ndpr_prefix.sin6_addr, pr_ifscope,
dst6, dst_ifscope, &pr->ndpr_mask)) {
NDPR_UNLOCK(pr);
continue;
}
VERIFY(!(pr->ndpr_stateflags & NDPRF_IFSCOPE));
bcopy(&pr->ndpr_prefix.sin6_addr, &pr_addr, sizeof(pr_addr));
pr_len = pr->ndpr_plen;
NDPR_UNLOCK(pr);
for (fwd = nd_prefix.lh_first; fwd; fwd = fwd->ndpr_next) {
NDPR_LOCK(fwd);
if (!(fwd->ndpr_stateflags & NDPRF_ONLINK) ||
fwd->ndpr_ifp == ifp ||
fwd->ndpr_plen != pr_len ||
!in6_are_prefix_equal(&fwd->ndpr_prefix.sin6_addr, fwd->ndpr_prefix.sin6_scope_id,
&pr_addr, pr_ifscope, pr_len)) {
NDPR_UNLOCK(fwd);
continue;
}
fwd_ifp = fwd->ndpr_ifp;
NDPR_UNLOCK(fwd);
break;
}
break;
}
lck_mtx_unlock(nd6_mutex);
lck_mtx_lock(rnh_lock);
ROUTE_RELEASE_LOCKED(ro6);
/*
* Lookup a forwarding route; delete the route if it's incorrect,
* or return to caller if the correct one got created prior to
* our acquiring the rnh_lock.
*/
if ((rt = rtalloc1_scoped_locked(SA(&ro6->ro_dst), 0,
RTF_CLONING | RTF_PRCLONING, IFSCOPE_NONE)) != NULL) {
RT_LOCK(rt);
if (rt->rt_ifp != fwd_ifp || !(rt->rt_flags & RTF_PROXY)) {
rt->rt_flags |= RTF_CONDEMNED;
RT_UNLOCK(rt);
(void) rtrequest_locked(RTM_DELETE, rt_key(rt),
rt->rt_gateway, rt_mask(rt), rt->rt_flags, NULL);
rtfree_locked(rt);
rt = NULL;
} else {
nd6log2(debug, "%s: found prefix proxy route "
"for dst %s\n", if_name(rt->rt_ifp),
ip6_sprintf(dst6));
RT_UNLOCK(rt);
ro6->ro_rt = rt; /* refcnt held by rtalloc1 */
lck_mtx_unlock(rnh_lock);
return;
}
}
VERIFY(rt == NULL && ro6->ro_rt == NULL);
/*
* Clone a route from the correct parent prefix route and return it.
*/
if (fwd_ifp != NULL && (rt = rtalloc1_scoped_locked(SA(&ro6->ro_dst), 1,
RTF_PRCLONING, fwd_ifp->if_index)) != NULL) {
RT_LOCK(rt);
if (!(rt->rt_flags & RTF_PROXY)) {
RT_UNLOCK(rt);
rtfree_locked(rt);
rt = NULL;
} else {
nd6log2(debug, "%s: allocated prefix proxy "
"route for dst %s\n", if_name(rt->rt_ifp),
ip6_sprintf(dst6));
RT_UNLOCK(rt);
ro6->ro_rt = rt; /* refcnt held by rtalloc1 */
}
}
VERIFY(rt != NULL || ro6->ro_rt == NULL);
if (fwd_ifp == NULL || rt == NULL) {
nd6log2(error, "%s: failed to find forwarding prefix "
"proxy entry for dst %s\n", if_name(ifp),
ip6_sprintf(dst6));
}
lck_mtx_unlock(rnh_lock);
}
/*
* Called when a prefix transitions between on-link and off-link. Perform
* routing (RTF_PROXY) and interface (all-multicast) related operations on
* the affected prefixes.
*/
void
nd6_prproxy_prelist_update(struct nd_prefix *pr_cur, struct nd_prefix *pr_up)
{
SLIST_HEAD(, nd6_prproxy_prelist) up_head;
SLIST_HEAD(, nd6_prproxy_prelist) down_head;
struct nd6_prproxy_prelist *up, *down;
struct nd_prefix *pr;
struct in6_addr pr_addr;
boolean_t enable;
u_char pr_len;
uint32_t pr_ifscope;
SLIST_INIT(&up_head);
SLIST_INIT(&down_head);
VERIFY(pr_cur != NULL);
LCK_MTX_ASSERT(&proxy6_lock, LCK_MTX_ASSERT_OWNED);
/*
* Upstream prefix. If caller did not specify one, search for one
* based on the information in current prefix. Caller is expected
* to have held an extra reference for the passed-in prefixes.
*/
lck_mtx_lock(nd6_mutex);
if (pr_up == NULL) {
NDPR_LOCK(pr_cur);
bcopy(&pr_cur->ndpr_prefix.sin6_addr, &pr_addr,
sizeof(pr_addr));
pr_len = pr_cur->ndpr_plen;
pr_ifscope = pr_cur->ndpr_prefix.sin6_scope_id;
NDPR_UNLOCK(pr_cur);
for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
NDPR_LOCK(pr);
if (!(pr->ndpr_stateflags & NDPRF_ONLINK) ||
!(pr->ndpr_stateflags & NDPRF_PRPROXY) ||
pr->ndpr_plen != pr_len ||
!in6_are_prefix_equal(&pr->ndpr_prefix.sin6_addr, pr->ndpr_prefix.sin6_scope_id,
&pr_addr, pr_ifscope, pr_len)) {
NDPR_UNLOCK(pr);
continue;
}
NDPR_UNLOCK(pr);
break;
}
if ((pr_up = pr) == NULL) {
lck_mtx_unlock(nd6_mutex);
goto done;
}
NDPR_LOCK(pr_up);
} else {
NDPR_LOCK(pr_up);
bcopy(&pr_up->ndpr_prefix.sin6_addr, &pr_addr,
sizeof(pr_addr));
pr_ifscope = pr_up->ndpr_prefix.sin6_scope_id;
pr_len = pr_up->ndpr_plen;
}
NDPR_LOCK_ASSERT_HELD(pr_up);
/*
* Upstream prefix could be offlink by now; therefore we cannot
* assert that NDPRF_PRPROXY is set; however, we can insist that
* it must not be a scoped prefix.
*/
VERIFY(!(pr_up->ndpr_stateflags & NDPRF_IFSCOPE));
enable = (pr_up->ndpr_stateflags & NDPRF_PRPROXY);
NDPR_UNLOCK(pr_up);
up = nd6_ndprl_alloc(Z_WAITOK);
if (up == NULL) {
lck_mtx_unlock(nd6_mutex);
goto done;
}
NDPR_ADDREF(pr_up);
up->ndprl_pr = pr_up;
SLIST_INSERT_HEAD(&up_head, up, ndprl_le);
/*
* Now build a list of matching (scoped) downstream prefixes on other
* interfaces which need to be enabled/disabled accordingly. Note that
* the NDPRF_PRPROXY is never set/cleared on the downstream prefixes.
*/
for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
NDPR_LOCK(pr);
if (!(pr->ndpr_stateflags & NDPRF_ONLINK) ||
!(pr->ndpr_stateflags & NDPRF_IFSCOPE) ||
pr->ndpr_plen != pr_len ||
!in6_are_prefix_equal(&pr->ndpr_prefix.sin6_addr, pr->ndpr_prefix.sin6_scope_id,
&pr_addr, pr_ifscope, pr_len)) {
NDPR_UNLOCK(pr);
continue;
}
NDPR_UNLOCK(pr);
down = nd6_ndprl_alloc(Z_WAITOK);
if (down == NULL) {
continue;
}
NDPR_ADDREF(pr);
down->ndprl_pr = pr;
NDPR_ADDREF(pr_up);
down->ndprl_up = pr_up;
SLIST_INSERT_HEAD(&down_head, down, ndprl_le);
}
lck_mtx_unlock(nd6_mutex);
/*
* Apply routing function on prefixes; callee will free resources.
*/
nd6_prproxy_prelist_setroute(enable,
(struct nd6_prproxy_prelist_head *)&up_head,
(struct nd6_prproxy_prelist_head *)&down_head);
done:
VERIFY(SLIST_EMPTY(&up_head));
VERIFY(SLIST_EMPTY(&down_head));
}
/*
* Given an interface address, determine whether or not the address
* is part of of a proxied prefix.
*/
boolean_t
nd6_prproxy_ifaddr(struct in6_ifaddr *ia)
{
struct nd_prefix *pr;
struct in6_addr addr;
u_int32_t pr_len;
uint32_t pr_scope_id;
boolean_t proxied = FALSE;
LCK_MTX_ASSERT(nd6_mutex, LCK_MTX_ASSERT_NOTOWNED);
IFA_LOCK(&ia->ia_ifa);
bcopy(&ia->ia_addr.sin6_addr, &addr, sizeof(addr));
pr_len = ia->ia_plen;
pr_scope_id = IA6_SIN6_SCOPE(ia);
IFA_UNLOCK(&ia->ia_ifa);
lck_mtx_lock(nd6_mutex);
for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
NDPR_LOCK(pr);
if ((pr->ndpr_stateflags & NDPRF_ONLINK) &&
(pr->ndpr_stateflags & NDPRF_PRPROXY) &&
in6_are_prefix_equal(&pr->ndpr_prefix.sin6_addr, pr->ndpr_prefix.sin6_scope_id,
&addr, pr_scope_id, pr_len)) {
NDPR_UNLOCK(pr);
proxied = TRUE;
break;
}
NDPR_UNLOCK(pr);
}
lck_mtx_unlock(nd6_mutex);
return proxied;
}
/*
* Perform automatic proxy function with NS output.
*
* If the target address matches a global prefix obtained from a router
* advertisement received on an interface with the ND6_IFF_PROXY_PREFIXES
* flag set, then we send solicitations for the target address to all other
* interfaces where a matching prefix is currently on-link, in addition to
* the original interface.
*/
void
nd6_prproxy_ns_output(struct ifnet *ifp, struct ifnet *exclifp,
struct in6_addr *daddr, struct in6_addr *taddr, struct llinfo_nd6 *ln)
{
SLIST_HEAD(, nd6_prproxy_prelist) ndprl_head;
struct nd6_prproxy_prelist *ndprl, *ndprl_tmp;
struct nd_prefix *pr, *fwd;
struct ifnet *fwd_ifp;
struct in6_addr pr_addr;
u_char pr_len;
uint32_t pr_scope_id;
uint32_t taddr_ifscope = ifp->if_index;
/*
* Ignore excluded interface if it's the same as the original;
* we always send a NS on the original interface down below.
*/
if (exclifp != NULL && exclifp == ifp) {
exclifp = NULL;
}
if (exclifp == NULL) {
nd6log2(debug, "%s: sending NS who has %s on ALL\n",
if_name(ifp), ip6_sprintf(taddr));
} else {
nd6log2(debug, "%s: sending NS who has %s on ALL "
"(except %s)\n", if_name(ifp),
ip6_sprintf(taddr), if_name(exclifp));
}
SLIST_INIT(&ndprl_head);
lck_mtx_lock(nd6_mutex);
for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
NDPR_LOCK(pr);
pr_scope_id = pr->ndpr_prefix.sin6_scope_id;
if (!(pr->ndpr_stateflags & NDPRF_ONLINK) ||
!(pr->ndpr_stateflags & NDPRF_PRPROXY) ||
!in6_are_masked_addr_scope_equal(&pr->ndpr_prefix.sin6_addr, pr_scope_id,
taddr, taddr_ifscope, &pr->ndpr_mask)) {
NDPR_UNLOCK(pr);
continue;
}
VERIFY(!(pr->ndpr_stateflags & NDPRF_IFSCOPE));
bcopy(&pr->ndpr_prefix.sin6_addr, &pr_addr, sizeof(pr_addr));
pr_len = pr->ndpr_plen;
NDPR_UNLOCK(pr);
for (fwd = nd_prefix.lh_first; fwd; fwd = fwd->ndpr_next) {
NDPR_LOCK(fwd);
if (!(fwd->ndpr_stateflags & NDPRF_ONLINK) ||
fwd->ndpr_ifp == ifp || fwd->ndpr_ifp == exclifp ||
fwd->ndpr_plen != pr_len ||
!in6_are_prefix_equal(&fwd->ndpr_prefix.sin6_addr, fwd->ndpr_prefix.sin6_scope_id,
&pr_addr, pr_scope_id, pr_len)) {
NDPR_UNLOCK(fwd);
continue;
}
fwd_ifp = fwd->ndpr_ifp;
NDPR_UNLOCK(fwd);
ndprl = nd6_ndprl_alloc(Z_WAITOK);
if (ndprl == NULL) {
continue;
}
NDPR_ADDREF(fwd);
ndprl->ndprl_pr = fwd;
ndprl->ndprl_fwd_ifp = fwd_ifp;
SLIST_INSERT_HEAD(&ndprl_head, ndprl, ndprl_le);
}
break;
}
lck_mtx_unlock(nd6_mutex);
SLIST_FOREACH_SAFE(ndprl, &ndprl_head, ndprl_le, ndprl_tmp) {
SLIST_REMOVE(&ndprl_head, ndprl, nd6_prproxy_prelist, ndprl_le);
pr = ndprl->ndprl_pr;
fwd_ifp = ndprl->ndprl_fwd_ifp;
if ((fwd_ifp->if_eflags & IFEF_IPV6_ND6ALT) != 0) {
NDPR_REMREF(pr);
nd6_ndprl_free(ndprl);
continue;
}
NDPR_LOCK(pr);
if (pr->ndpr_stateflags & NDPRF_ONLINK) {
NDPR_UNLOCK(pr);
nd6log2(debug,
"%s: Sending cloned NS who has %s, originally "
"on %s\n", if_name(fwd_ifp),
ip6_sprintf(taddr), if_name(ifp));
nd6_ns_output(fwd_ifp, daddr, taddr, NULL, NULL);
} else {
NDPR_UNLOCK(pr);
}
NDPR_REMREF(pr);
nd6_ndprl_free(ndprl);
}
VERIFY(SLIST_EMPTY(&ndprl_head));
nd6_ns_output(ifp, daddr, taddr, ln, NULL);
}
/*
* Perform automatic proxy function with NS input.
*
* If the target address matches a global prefix obtained from a router
* advertisement received on an interface with the ND6_IFF_PROXY_PREFIXES
* flag set, then we send solicitations for the target address to all other
* interfaces where a matching prefix is currently on-link.
*/
void
nd6_prproxy_ns_input(struct ifnet *ifp, struct in6_addr *saddr,
char *lladdr, int lladdrlen, struct in6_addr *daddr,
struct in6_addr *taddr, uint8_t *nonce)
{
SLIST_HEAD(, nd6_prproxy_prelist) ndprl_head;
struct nd6_prproxy_prelist *ndprl, *ndprl_tmp;
struct nd_prefix *pr, *fwd;
struct ifnet *fwd_ifp;
struct in6_addr pr_addr;
u_char pr_len;
boolean_t solrec = FALSE;
uint32_t pr_scope_id;
uint32_t taddr_ifscope = ifp->if_index;
SLIST_INIT(&ndprl_head);
lck_mtx_lock(nd6_mutex);
for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
NDPR_LOCK(pr);
pr_scope_id = pr->ndpr_prefix.sin6_scope_id;
if (!(pr->ndpr_stateflags & NDPRF_ONLINK) ||
!(pr->ndpr_stateflags & NDPRF_PRPROXY) ||
!in6_are_masked_addr_scope_equal(&pr->ndpr_prefix.sin6_addr, pr_scope_id,
taddr, taddr_ifscope, &pr->ndpr_mask)) {
NDPR_UNLOCK(pr);
continue;
}
VERIFY(!(pr->ndpr_stateflags & NDPRF_IFSCOPE));
bcopy(&pr->ndpr_prefix.sin6_addr, &pr_addr, sizeof(pr_addr));
pr_len = pr->ndpr_plen;
/*
* If this is a NS for NUD/AR, record it so that we know
* how to forward the NA reply later on (if/when it arrives.)
* Give up if we fail to save the NS info.
*/
if ((solrec = !IN6_IS_ADDR_UNSPECIFIED(saddr)) &&
!nd6_solsrc_enq(pr, ifp, saddr, taddr)) {
NDPR_UNLOCK(pr);
solrec = FALSE;
break; /* bail out */
} else {
NDPR_UNLOCK(pr);
}
for (fwd = nd_prefix.lh_first; fwd; fwd = fwd->ndpr_next) {
NDPR_LOCK(fwd);
if (!(fwd->ndpr_stateflags & NDPRF_ONLINK) ||
fwd->ndpr_ifp == ifp ||
fwd->ndpr_plen != pr_len ||
!in6_are_prefix_equal(&fwd->ndpr_prefix.sin6_addr, fwd->ndpr_prefix.sin6_scope_id,
&pr_addr, pr_scope_id, pr_len)) {
NDPR_UNLOCK(fwd);
continue;
}
fwd_ifp = fwd->ndpr_ifp;
NDPR_UNLOCK(fwd);
ndprl = nd6_ndprl_alloc(Z_WAITOK);
if (ndprl == NULL) {
continue;
}
NDPR_ADDREF(fwd);
ndprl->ndprl_pr = fwd;
ndprl->ndprl_fwd_ifp = fwd_ifp;
ndprl->ndprl_sol = solrec;
SLIST_INSERT_HEAD(&ndprl_head, ndprl, ndprl_le);
}
break;
}
lck_mtx_unlock(nd6_mutex);
/*
* If this is a recorded solicitation (NS for NUD/AR), create
* or update the neighbor cache entry for the soliciting node.
* Later on, when the NA reply arrives, we will need this cache
* entry in order to send the NA back to the original solicitor.
* Without a neighbor cache entry, we'd end up with an endless
* cycle of NS ping-pong between the us (the proxy) and the node
* which is soliciting for the address.
*/
if (solrec) {
VERIFY(!IN6_IS_ADDR_UNSPECIFIED(saddr));
nd6_cache_lladdr(ifp, saddr, lladdr, lladdrlen,
ND_NEIGHBOR_SOLICIT, 0, NULL);
}
SLIST_FOREACH_SAFE(ndprl, &ndprl_head, ndprl_le, ndprl_tmp) {
SLIST_REMOVE(&ndprl_head, ndprl, nd6_prproxy_prelist, ndprl_le);
pr = ndprl->ndprl_pr;
fwd_ifp = ndprl->ndprl_fwd_ifp;
if ((fwd_ifp->if_eflags & IFEF_IPV6_ND6ALT) != 0) {
NDPR_REMREF(pr);
nd6_ndprl_free(ndprl);
continue;
}
NDPR_LOCK(pr);
if (pr->ndpr_stateflags & NDPRF_ONLINK) {
NDPR_UNLOCK(pr);
nd6log2(debug,
"%s: Forwarding NS (%s) from %s to %s who "
"has %s, originally on %s\n", if_name(fwd_ifp),
ndprl->ndprl_sol ? "NUD/AR" :
"DAD", ip6_sprintf(saddr), ip6_sprintf(daddr),
ip6_sprintf(taddr), if_name(ifp));
nd6_ns_output(fwd_ifp, ndprl->ndprl_sol ? taddr : NULL,
taddr, NULL, nonce);
} else {
NDPR_UNLOCK(pr);
}
NDPR_REMREF(pr);
nd6_ndprl_free(ndprl);
}
VERIFY(SLIST_EMPTY(&ndprl_head));
}
/*
* Perform automatic proxy function with NA input.
*
* If the target address matches a global prefix obtained from a router
* advertisement received on an interface with the ND6_IFF_PROXY_PREFIXES flag
* set, then we send neighbor advertisements for the target address on all
* other interfaces where a matching prefix is currently on link.
*/
void
nd6_prproxy_na_input(struct ifnet *ifp, struct in6_addr *saddr,
struct in6_addr *daddr0, struct in6_addr *taddr, int flags)
{
SLIST_HEAD(, nd6_prproxy_prelist) ndprl_head;
struct nd6_prproxy_prelist *ndprl, *ndprl_tmp;
struct nd_prefix *pr;
struct ifnet *fwd_ifp;
struct in6_addr daddr;
uint32_t pr_scope_id;
uint32_t taddr_ifscope = ifp->if_index;
SLIST_INIT(&ndprl_head);
lck_mtx_lock(nd6_mutex);
for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
NDPR_LOCK(pr);
pr_scope_id = pr->ndpr_prefix.sin6_scope_id;
if (!(pr->ndpr_stateflags & NDPRF_ONLINK) ||
!(pr->ndpr_stateflags & NDPRF_PRPROXY) ||
!in6_are_masked_addr_scope_equal(&pr->ndpr_prefix.sin6_addr, pr_scope_id,
taddr, taddr_ifscope, &pr->ndpr_mask)) {
NDPR_UNLOCK(pr);
continue;
}
VERIFY(!(pr->ndpr_stateflags & NDPRF_IFSCOPE));
/*
* If this is a NA for NUD, see if there is a record created
* for the corresponding NS; upon success, we get back the
* interface where the NS originally arrived on, as well as
* the soliciting node's address. Give up if we can't find it.
*/
if (!IN6_IS_ADDR_MULTICAST(daddr0)) {
fwd_ifp = NULL;
bzero(&daddr, sizeof(daddr));
if (!nd6_solsrc_deq(pr, taddr, &daddr, &fwd_ifp)) {
NDPR_UNLOCK(pr);
break; /* bail out */
}
VERIFY(!IN6_IS_ADDR_UNSPECIFIED(&daddr) && fwd_ifp);
NDPR_UNLOCK(pr);
ndprl = nd6_ndprl_alloc(Z_WAITOK);
if (ndprl == NULL) {
break; /* bail out */
}
ndprl->ndprl_fwd_ifp = fwd_ifp;
ndprl->ndprl_sol = TRUE;
ndprl->ndprl_sol_saddr = *(&daddr);
SLIST_INSERT_HEAD(&ndprl_head, ndprl, ndprl_le);
} else {
struct nd_prefix *fwd;
struct in6_addr pr_addr;
u_char pr_len;
bcopy(&pr->ndpr_prefix.sin6_addr, &pr_addr,
sizeof(pr_addr));
pr_len = pr->ndpr_plen;
NDPR_UNLOCK(pr);
for (fwd = nd_prefix.lh_first; fwd;
fwd = fwd->ndpr_next) {
NDPR_LOCK(fwd);
if (!(fwd->ndpr_stateflags & NDPRF_ONLINK) ||
fwd->ndpr_ifp == ifp ||
fwd->ndpr_plen != pr_len ||
!in6_are_prefix_equal(
&fwd->ndpr_prefix.sin6_addr, fwd->ndpr_prefix.sin6_scope_id,
&pr_addr, pr_scope_id, pr_len)) {
NDPR_UNLOCK(fwd);
continue;
}
fwd_ifp = fwd->ndpr_ifp;
NDPR_UNLOCK(fwd);
ndprl = nd6_ndprl_alloc(Z_WAITOK);
if (ndprl == NULL) {
continue;
}
NDPR_ADDREF(fwd);
ndprl->ndprl_pr = fwd;
ndprl->ndprl_fwd_ifp = fwd_ifp;
SLIST_INSERT_HEAD(&ndprl_head, ndprl, ndprl_le);
}
}
break;
}
lck_mtx_unlock(nd6_mutex);
SLIST_FOREACH_SAFE(ndprl, &ndprl_head, ndprl_le, ndprl_tmp) {
boolean_t send_na;
SLIST_REMOVE(&ndprl_head, ndprl, nd6_prproxy_prelist, ndprl_le);
pr = ndprl->ndprl_pr;
fwd_ifp = ndprl->ndprl_fwd_ifp;
if (ndprl->ndprl_sol) {
VERIFY(pr == NULL);
daddr = *(&ndprl->ndprl_sol_saddr);
VERIFY(!IN6_IS_ADDR_UNSPECIFIED(&daddr));
send_na = (in6_setscope(&daddr, fwd_ifp, NULL) == 0);
} else {
VERIFY(pr != NULL);
daddr = *daddr0;
NDPR_LOCK(pr);
send_na = ((pr->ndpr_stateflags & NDPRF_ONLINK) &&
in6_setscope(&daddr, fwd_ifp, NULL) == 0);
NDPR_UNLOCK(pr);
}
if (send_na) {
if (!ndprl->ndprl_sol) {
nd6log2(debug,
"%s: Forwarding NA (DAD) from %s to %s "
"tgt is %s, originally on %s\n",
if_name(fwd_ifp),
ip6_sprintf(saddr), ip6_sprintf(&daddr),
ip6_sprintf(taddr), if_name(ifp));
} else {
nd6log2(debug,
"%s: Forwarding NA (NUD/AR) from %s to "
"%s (was %s) tgt is %s, originally on "
"%s\n", if_name(fwd_ifp),
ip6_sprintf(saddr),
ip6_sprintf(&daddr), ip6_sprintf(daddr0),
ip6_sprintf(taddr), if_name(ifp));
}
nd6_na_output(fwd_ifp, &daddr, taddr, flags, 1, NULL);
}
if (pr != NULL) {
NDPR_REMREF(pr);
}
nd6_ndprl_free(ndprl);
}
VERIFY(SLIST_EMPTY(&ndprl_head));
}
static struct nd6_prproxy_solsrc *
nd6_solsrc_alloc(int how)
{
return zalloc_flags(solsrc_zone, how | Z_ZERO);
}
static void
nd6_solsrc_free(struct nd6_prproxy_solsrc *ssrc)
{
zfree(solsrc_zone, ssrc);
}
static void
nd6_prproxy_sols_purge(struct nd_prefix *pr, u_int64_t max_stgt)
{
struct nd6_prproxy_soltgt *soltgt, *tmp;
u_int64_t expire = (max_stgt > 0) ? net_uptime() : 0;
NDPR_LOCK_ASSERT_HELD(pr);
/* Either trim all or those that have expired or are idle */
RB_FOREACH_SAFE(soltgt, prproxy_sols_tree,
&pr->ndpr_prproxy_sols, tmp) {
VERIFY(pr->ndpr_prproxy_sols_cnt > 0);
if (expire == 0 || soltgt->soltgt_expire <= expire ||
soltgt->soltgt_cnt == 0) {
pr->ndpr_prproxy_sols_cnt--;
RB_REMOVE(prproxy_sols_tree,
&pr->ndpr_prproxy_sols, soltgt);
nd6_soltgt_free(soltgt);
}
}
if (max_stgt == 0 || pr->ndpr_prproxy_sols_cnt < max_stgt) {
VERIFY(max_stgt != 0 || (pr->ndpr_prproxy_sols_cnt == 0 &&
RB_EMPTY(&pr->ndpr_prproxy_sols)));
return;
}
/* Brute force; mercilessly evict entries until we are under limit */
RB_FOREACH_SAFE(soltgt, prproxy_sols_tree,
&pr->ndpr_prproxy_sols, tmp) {
VERIFY(pr->ndpr_prproxy_sols_cnt > 0);
pr->ndpr_prproxy_sols_cnt--;
RB_REMOVE(prproxy_sols_tree, &pr->ndpr_prproxy_sols, soltgt);
nd6_soltgt_free(soltgt);
if (pr->ndpr_prproxy_sols_cnt < max_stgt) {
break;
}
}
}
/*
* Purges all solicitation records on a given prefix.
* Caller is responsible for holding prefix lock.
*/
void
nd6_prproxy_sols_reap(struct nd_prefix *pr)
{
nd6_prproxy_sols_purge(pr, 0);
}
/*
* Purges expired or idle solicitation records on a given prefix.
* Caller is responsible for holding prefix lock.
*/
void
nd6_prproxy_sols_prune(struct nd_prefix *pr, u_int32_t max_stgt)
{
nd6_prproxy_sols_purge(pr, max_stgt);
}
/*
* Enqueue a soliciation record in the target record of a prefix.
*/
static boolean_t
nd6_solsrc_enq(struct nd_prefix *pr, struct ifnet *ifp,
struct in6_addr *saddr, struct in6_addr *taddr)
{
struct nd6_prproxy_soltgt find, *soltgt;
struct nd6_prproxy_solsrc *ssrc;
u_int32_t max_stgt = nd6_max_tgt_sols;
u_int32_t max_ssrc = nd6_max_src_sols;
NDPR_LOCK_ASSERT_HELD(pr);
VERIFY(!(pr->ndpr_stateflags & NDPRF_IFSCOPE));
VERIFY((pr->ndpr_stateflags & (NDPRF_ONLINK | NDPRF_PRPROXY)) ==
(NDPRF_ONLINK | NDPRF_PRPROXY));
VERIFY(!IN6_IS_ADDR_UNSPECIFIED(saddr));
ssrc = nd6_solsrc_alloc(M_WAITOK);
if (ssrc == NULL) {
return FALSE;
}
ssrc->solsrc_saddr = *saddr;
ssrc->solsrc_ifp = ifp;
find.soltgt_key.taddr = *taddr; /* search key */
soltgt = RB_FIND(prproxy_sols_tree, &pr->ndpr_prproxy_sols, &find);
if (soltgt == NULL) {
if (max_stgt != 0 && pr->ndpr_prproxy_sols_cnt >= max_stgt) {
VERIFY(!RB_EMPTY(&pr->ndpr_prproxy_sols));
nd6_prproxy_sols_prune(pr, max_stgt);
VERIFY(pr->ndpr_prproxy_sols_cnt < max_stgt);
}
soltgt = nd6_soltgt_alloc(M_WAITOK);
if (soltgt == NULL) {
nd6_solsrc_free(ssrc);
return FALSE;
}
soltgt->soltgt_key.taddr = *taddr;
VERIFY(soltgt->soltgt_cnt == 0);
VERIFY(TAILQ_EMPTY(&soltgt->soltgt_q));
pr->ndpr_prproxy_sols_cnt++;
VERIFY(pr->ndpr_prproxy_sols_cnt != 0);
RB_INSERT(prproxy_sols_tree, &pr->ndpr_prproxy_sols, soltgt);
}
if (max_ssrc != 0 && soltgt->soltgt_cnt >= max_ssrc) {
VERIFY(!TAILQ_EMPTY(&soltgt->soltgt_q));
nd6_soltgt_prune(soltgt, max_ssrc);
VERIFY(soltgt->soltgt_cnt < max_ssrc);
}
soltgt->soltgt_cnt++;
VERIFY(soltgt->soltgt_cnt != 0);
TAILQ_INSERT_TAIL(&soltgt->soltgt_q, ssrc, solsrc_tqe);
if (soltgt->soltgt_cnt == 1) {
soltgt->soltgt_expire = net_uptime() + ND6_TGT_SOLS_EXPIRE;
}
return TRUE;
}
/*
* Dequeue a solicitation record from a target record of a prefix.
*/
static boolean_t
nd6_solsrc_deq(struct nd_prefix *pr, struct in6_addr *taddr,
struct in6_addr *daddr, struct ifnet **ifp)
{
struct nd6_prproxy_soltgt find, *soltgt;
struct nd6_prproxy_solsrc *ssrc;
NDPR_LOCK_ASSERT_HELD(pr);
VERIFY(!(pr->ndpr_stateflags & NDPRF_IFSCOPE));
VERIFY((pr->ndpr_stateflags & (NDPRF_ONLINK | NDPRF_PRPROXY)) ==
(NDPRF_ONLINK | NDPRF_PRPROXY));
bzero(daddr, sizeof(*daddr));
*ifp = NULL;
find.soltgt_key.taddr = *taddr; /* search key */
soltgt = RB_FIND(prproxy_sols_tree, &pr->ndpr_prproxy_sols, &find);
if (soltgt == NULL || soltgt->soltgt_cnt == 0) {
VERIFY(soltgt == NULL || TAILQ_EMPTY(&soltgt->soltgt_q));
return FALSE;
}
VERIFY(soltgt->soltgt_cnt != 0);
--soltgt->soltgt_cnt;
ssrc = TAILQ_FIRST(&soltgt->soltgt_q);
VERIFY(ssrc != NULL);
TAILQ_REMOVE(&soltgt->soltgt_q, ssrc, solsrc_tqe);
*daddr = *(&ssrc->solsrc_saddr);
*ifp = ssrc->solsrc_ifp;
nd6_solsrc_free(ssrc);
return TRUE;
}
static struct nd6_prproxy_soltgt *
nd6_soltgt_alloc(int how)
{
struct nd6_prproxy_soltgt *soltgt;
soltgt = zalloc_flags(soltgt_zone, how | Z_ZERO);
if (soltgt != NULL) {
TAILQ_INIT(&soltgt->soltgt_q);
}
return soltgt;
}
static void
nd6_soltgt_free(struct nd6_prproxy_soltgt *soltgt)
{
struct nd6_prproxy_solsrc *ssrc, *tssrc;
TAILQ_FOREACH_SAFE(ssrc, &soltgt->soltgt_q, solsrc_tqe, tssrc) {
VERIFY(soltgt->soltgt_cnt > 0);
soltgt->soltgt_cnt--;
TAILQ_REMOVE(&soltgt->soltgt_q, ssrc, solsrc_tqe);
nd6_solsrc_free(ssrc);
}
VERIFY(soltgt->soltgt_cnt == 0);
VERIFY(TAILQ_EMPTY(&soltgt->soltgt_q));
zfree(soltgt_zone, soltgt);
}
static void
nd6_soltgt_prune(struct nd6_prproxy_soltgt *soltgt, u_int32_t max_ssrc)
{
while (soltgt->soltgt_cnt >= max_ssrc) {
struct nd6_prproxy_solsrc *ssrc;
VERIFY(soltgt->soltgt_cnt != 0);
--soltgt->soltgt_cnt;
ssrc = TAILQ_FIRST(&soltgt->soltgt_q);
VERIFY(ssrc != NULL);
TAILQ_REMOVE(&soltgt->soltgt_q, ssrc, solsrc_tqe);
nd6_solsrc_free(ssrc);
}
}
/*
* Solicited target tree comparison function.
*
* An ordered predicate is necessary; bcmp() is not documented to return
* an indication of order, memcmp() is, and is an ISO C99 requirement.
*/
static __inline int
soltgt_cmp(const struct nd6_prproxy_soltgt *a,
const struct nd6_prproxy_soltgt *b)
{
return memcmp(&a->soltgt_key, &b->soltgt_key, sizeof(a->soltgt_key));
}