gems-kernel/source/THIRDPARTY/xnu/bsd/kern/kern_sysctl.c
2024-06-03 11:29:39 -05:00

6146 lines
199 KiB
C

/*
* Copyright (c) 2000-2023 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
/*-
* Copyright (c) 1982, 1986, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Mike Karels at Berkeley Software Design, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_sysctl.c 8.4 (Berkeley) 4/14/94
*/
/*
* NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
* support for mandatory and extensible security protections. This notice
* is included in support of clause 2.2 (b) of the Apple Public License,
* Version 2.0.
*/
/*
* DEPRECATED sysctl system call code
*
* Everything in this file is deprecated. Sysctls should be handled
* by the code in kern_newsysctl.c.
* The remaining "case" sections are supposed to be converted into
* SYSCTL_*-style definitions, and as soon as all of them are gone,
* this source file is supposed to die.
*
* DO NOT ADD ANY MORE "case" SECTIONS TO THIS FILE, instead define
* your sysctl with SYSCTL_INT, SYSCTL_PROC etc. in your source file.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/proc_internal.h>
#include <sys/kauth.h>
#include <sys/file_internal.h>
#include <sys/vnode_internal.h>
#include <sys/unistd.h>
#include <sys/buf.h>
#include <sys/ioctl.h>
#include <sys/namei.h>
#include <sys/tty.h>
#include <sys/disklabel.h>
#include <sys/vm.h>
#include <sys/sysctl.h>
#include <sys/user.h>
#include <sys/aio_kern.h>
#include <sys/reboot.h>
#include <sys/memory_maintenance.h>
#include <sys/priv.h>
#include <stdatomic.h>
#include <uuid/uuid.h>
#include <security/audit/audit.h>
#include <kern/kalloc.h>
#include <machine/smp.h>
#include <machine/atomic.h>
#include <machine/config.h>
#include <mach/machine.h>
#include <mach/mach_host.h>
#include <mach/mach_types.h>
#include <mach/processor_info.h>
#include <mach/vm_param.h>
#include <kern/debug.h>
#include <kern/mach_param.h>
#include <kern/task.h>
#include <kern/thread.h>
#include <kern/thread_group.h>
#include <kern/processor.h>
#include <kern/cpu_number.h>
#include <kern/sched_prim.h>
#include <kern/workload_config.h>
#include <kern/iotrace.h>
#include <vm/vm_kern.h>
#include <vm/vm_map.h>
#include <mach/host_info.h>
#include <mach/exclaves.h>
#include <kern/hvg_hypercall.h>
#include <kdp/sk_core.h>
#if DEVELOPMENT || DEBUG
#include <kern/ext_paniclog.h>
#endif
#include <sys/mount_internal.h>
#include <sys/kdebug.h>
#include <sys/kern_debug.h>
#include <sys/kern_sysctl.h>
#include <sys/variant_internal.h>
#include <IOKit/IOPlatformExpert.h>
#include <pexpert/pexpert.h>
#include <machine/machine_routines.h>
#include <machine/exec.h>
#include <nfs/nfs_conf.h>
#include <vm/vm_protos.h>
#include <vm/vm_pageout.h>
#include <vm/vm_compressor_algorithms.h>
#include <sys/imgsrc.h>
#include <kern/timer_call.h>
#include <sys/codesign.h>
#include <IOKit/IOBSD.h>
#if CONFIG_CSR
#include <sys/csr.h>
#endif
#if defined(__i386__) || defined(__x86_64__)
#include <i386/cpuid.h>
#endif
#if CONFIG_FREEZE
#include <sys/kern_memorystatus.h>
#endif
#if KPERF
#include <kperf/kperf.h>
#endif
#if HYPERVISOR
#include <kern/hv_support.h>
#endif
#include <corecrypto/ccsha2.h>
/*
* deliberately setting max requests to really high number
* so that runaway settings do not cause MALLOC overflows
*/
#define AIO_MAX_REQUESTS (128 * CONFIG_AIO_MAX)
extern int aio_max_requests;
extern int aio_max_requests_per_process;
extern int aio_worker_threads;
extern int lowpri_IO_window_msecs;
extern int lowpri_IO_delay_msecs;
#if DEVELOPMENT || DEBUG
extern int nx_enabled;
#endif
extern int speculative_reads_disabled;
extern unsigned int speculative_prefetch_max;
extern unsigned int speculative_prefetch_max_iosize;
extern unsigned int preheat_max_bytes;
extern unsigned int preheat_min_bytes;
extern long numvnodes;
extern long freevnodes;
extern long num_recycledvnodes;
extern uuid_string_t bootsessionuuid_string;
extern unsigned int vm_max_delayed_work_limit;
extern unsigned int vm_max_batch;
extern unsigned int vm_page_free_min;
extern unsigned int vm_page_free_target;
extern unsigned int vm_page_free_reserved;
#if (DEVELOPMENT || DEBUG)
extern uint32_t vm_page_creation_throttled_hard;
extern uint32_t vm_page_creation_throttled_soft;
#endif /* DEVELOPMENT || DEBUG */
#if DEVELOPMENT || DEBUG
extern bool bootarg_hide_process_traced;
#endif
/*
* Conditionally allow dtrace to see these functions for debugging purposes.
*/
#ifdef STATIC
#undef STATIC
#endif
#if 0
#define STATIC
#else
#define STATIC static
#endif
extern boolean_t mach_timer_coalescing_enabled;
extern uint64_t timer_deadline_tracking_bin_1, timer_deadline_tracking_bin_2;
STATIC void
fill_user32_eproc(proc_t, struct user32_eproc *__restrict);
STATIC void
fill_user32_externproc(proc_t, struct user32_extern_proc *__restrict);
STATIC void
fill_user64_eproc(proc_t, struct user64_eproc *__restrict);
STATIC void
fill_user64_proc(proc_t, struct user64_kinfo_proc *__restrict);
STATIC void
fill_user64_externproc(proc_t, struct user64_extern_proc *__restrict);
STATIC void
fill_user32_proc(proc_t, struct user32_kinfo_proc *__restrict);
#if CONFIG_NETBOOT
extern int
netboot_root(void);
#endif
int
sysctl_procargs(int *name, u_int namelen, user_addr_t where,
size_t *sizep, proc_t cur_proc);
STATIC int
sysctl_procargsx(int *name, u_int namelen, user_addr_t where, size_t *sizep,
proc_t cur_proc, int argc_yes);
int
sysctl_struct(user_addr_t oldp, size_t *oldlenp, user_addr_t newp,
size_t newlen, void *sp, int len);
STATIC int sysdoproc_filt_KERN_PROC_PID(proc_t p, void * arg);
STATIC int sysdoproc_filt_KERN_PROC_PGRP(proc_t p, void * arg);
STATIC int sysdoproc_filt_KERN_PROC_TTY(proc_t p, void * arg);
STATIC int sysdoproc_filt_KERN_PROC_UID(proc_t p, void * arg);
STATIC int sysdoproc_filt_KERN_PROC_RUID(proc_t p, void * arg);
int sysdoproc_callback(proc_t p, void *arg);
#if CONFIG_THREAD_GROUPS && (DEVELOPMENT || DEBUG)
STATIC int sysctl_get_thread_group_id SYSCTL_HANDLER_ARGS;
#endif
/* forward declarations for non-static STATIC */
STATIC void fill_loadavg64(struct loadavg *la, struct user64_loadavg *la64);
STATIC void fill_loadavg32(struct loadavg *la, struct user32_loadavg *la32);
STATIC int sysctl_handle_kern_threadname(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
STATIC int sysctl_sched_stats(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
STATIC int sysctl_sched_stats_enable(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
#if COUNT_SYSCALLS
STATIC int sysctl_docountsyscalls SYSCTL_HANDLER_ARGS;
#endif /* COUNT_SYSCALLS */
#if defined(XNU_TARGET_OS_OSX)
STATIC int sysctl_doprocargs SYSCTL_HANDLER_ARGS;
#endif /* defined(XNU_TARGET_OS_OSX) */
STATIC int sysctl_doprocargs2 SYSCTL_HANDLER_ARGS;
STATIC int sysctl_prochandle SYSCTL_HANDLER_ARGS;
STATIC int sysctl_aiomax(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
STATIC int sysctl_aioprocmax(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
STATIC int sysctl_aiothreads(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
STATIC int sysctl_maxproc(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
STATIC int sysctl_osversion(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
STATIC int sysctl_sysctl_bootargs(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
STATIC int sysctl_maxvnodes(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
STATIC int sysctl_securelvl(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
STATIC int sysctl_domainname(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
STATIC int sysctl_hostname(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
STATIC int sysctl_procname(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
STATIC int sysctl_boottime(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
STATIC int sysctl_bootuuid(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
STATIC int sysctl_symfile(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
#if CONFIG_NETBOOT
STATIC int sysctl_netboot(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
#endif
#ifdef CONFIG_IMGSRC_ACCESS
STATIC int sysctl_imgsrcdev(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
#endif
STATIC int sysctl_usrstack(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
STATIC int sysctl_usrstack64(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
#if CONFIG_COREDUMP
STATIC int sysctl_coredump(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
STATIC int sysctl_suid_coredump(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
#endif
STATIC int sysctl_delayterm(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
STATIC int sysctl_rage_vnode(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
STATIC int sysctl_kern_check_openevt(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
#if DEVELOPMENT || DEBUG
STATIC int sysctl_nx(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
#endif
STATIC int sysctl_loadavg(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
STATIC int sysctl_vm_toggle_address_reuse(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
STATIC int sysctl_swapusage(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
STATIC int fetch_process_cputype( proc_t cur_proc, int *name, u_int namelen, cpu_type_t *cputype);
STATIC int sysctl_sysctl_native(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
STATIC int sysctl_sysctl_cputype(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
STATIC int sysctl_safeboot(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
STATIC int sysctl_singleuser(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
STATIC int sysctl_minimalboot(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
STATIC int sysctl_slide(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
#ifdef CONFIG_XNUPOST
#include <tests/xnupost.h>
STATIC int sysctl_debug_test_oslog_ctl(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
STATIC int sysctl_debug_test_stackshot_mutex_owner(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
STATIC int sysctl_debug_test_stackshot_rwlck_owner(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req);
#endif
extern void IORegistrySetOSBuildVersion(char * build_version);
extern int IOParseWorkloadConfig(workload_config_ctx_t *ctx, const char * buffer, size_t size);
extern int IOUnparseWorkloadConfig(char *buffer, size_t *size);
STATIC void
fill_loadavg64(struct loadavg *la, struct user64_loadavg *la64)
{
la64->ldavg[0] = la->ldavg[0];
la64->ldavg[1] = la->ldavg[1];
la64->ldavg[2] = la->ldavg[2];
la64->fscale = (user64_long_t)la->fscale;
}
STATIC void
fill_loadavg32(struct loadavg *la, struct user32_loadavg *la32)
{
la32->ldavg[0] = la->ldavg[0];
la32->ldavg[1] = la->ldavg[1];
la32->ldavg[2] = la->ldavg[2];
la32->fscale = (user32_long_t)la->fscale;
}
#if COUNT_SYSCALLS
extern int do_count_syscalls;
#endif
#ifdef INSECURE
int securelevel = -1;
#else
int securelevel;
#endif
STATIC int
sysctl_handle_kern_threadname( __unused struct sysctl_oid *oidp, __unused void *arg1,
__unused int arg2, struct sysctl_req *req)
{
int error;
struct uthread *ut = current_uthread();
user_addr_t oldp = 0, newp = 0;
size_t *oldlenp = NULL;
size_t newlen = 0;
oldp = req->oldptr;
oldlenp = &(req->oldlen);
newp = req->newptr;
newlen = req->newlen;
/* We want the current length, and maybe the string itself */
if (oldlenp) {
/* if we have no thread name yet tell'em we want MAXTHREADNAMESIZE - 1 */
size_t currlen = MAXTHREADNAMESIZE - 1;
if (ut->pth_name) {
/* use length of current thread name */
currlen = strlen(ut->pth_name);
}
if (oldp) {
if (*oldlenp < currlen) {
return ENOMEM;
}
/* NOTE - we do not copy the NULL terminator */
if (ut->pth_name) {
error = copyout(ut->pth_name, oldp, currlen);
if (error) {
return error;
}
}
}
/* return length of thread name minus NULL terminator (just like strlen) */
req->oldidx = currlen;
}
/* We want to set the name to something */
if (newp) {
if (newlen > (MAXTHREADNAMESIZE - 1)) {
return ENAMETOOLONG;
}
if (!ut->pth_name) {
char *tmp_pth_name = (char *)kalloc_data(MAXTHREADNAMESIZE,
Z_WAITOK | Z_ZERO);
if (!tmp_pth_name) {
return ENOMEM;
}
if (!OSCompareAndSwapPtr(NULL, tmp_pth_name, &ut->pth_name)) {
kfree_data(tmp_pth_name, MAXTHREADNAMESIZE);
return EBUSY;
}
} else {
kernel_debug_string_simple(TRACE_STRING_THREADNAME_PREV, ut->pth_name);
bzero(ut->pth_name, MAXTHREADNAMESIZE);
}
error = copyin(newp, ut->pth_name, newlen);
if (error) {
return error;
}
kernel_debug_string_simple(TRACE_STRING_THREADNAME, ut->pth_name);
}
return 0;
}
SYSCTL_PROC(_kern, KERN_THREADNAME, threadname, CTLFLAG_ANYBODY | CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, sysctl_handle_kern_threadname, "A", "");
#define WORKLOAD_CONFIG_MAX_SIZE (128 * 1024 * 1024)
/* Called locked - sysctl defined without CTLFLAG_LOCKED. */
static int
sysctl_workload_config SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
char *plist_blob = NULL;
kern_return_t ret = KERN_FAILURE;
int error = -1;
/* Only allow reading of workload config on non-RELEASE kernels. */
#if DEVELOPMENT || DEBUG
const size_t buf_size = req->oldlen;
if (!req->oldptr) {
/* Just looking for the size to allocate. */
size_t size = 0;
ret = IOUnparseWorkloadConfig(NULL, &size);
if (ret != KERN_SUCCESS) {
return ENOMEM;
}
error = SYSCTL_OUT(req, NULL, size);
if (error) {
return error;
}
} else {
if (buf_size > (WORKLOAD_CONFIG_MAX_SIZE - 1) ||
buf_size == 0) {
return EINVAL;
}
plist_blob = kalloc_data(buf_size, Z_WAITOK | Z_ZERO);
if (!plist_blob) {
return ENOMEM;
}
size_t size = buf_size;
ret = IOUnparseWorkloadConfig(plist_blob, &size);
if (ret != KERN_SUCCESS) {
kfree_data(plist_blob, buf_size);
return ENOMEM;
}
error = SYSCTL_OUT(req, plist_blob, MIN(buf_size, size));
/* If the buffer was too small to fit the entire config. */
if (buf_size < size) {
error = ENOMEM;
}
kfree_data(plist_blob, buf_size);
if (error) {
return error;
}
}
#endif /* DEVELOPMENT || DEBUG */
if (req->newptr) {
size_t newlen = req->newlen;
if (newlen > (WORKLOAD_CONFIG_MAX_SIZE - 1)) {
return EINVAL;
}
workload_config_ctx_t *ctx = NULL;
/*
* Only allow workload_config_boot to be loaded once at boot by launchd.
*/
if (current_proc() == initproc &&
!workload_config_initialized(&workload_config_boot)) {
ctx = &workload_config_boot;
} else {
#if DEVELOPMENT || DEBUG
/*
* Use the devel config context otherwise. If a devel config has been
* initialized it will be used for lookups in place of the boot config.
*/
ctx = &workload_config_devel;
if (workload_config_initialized(ctx)) {
workload_config_free(ctx);
}
/* The devel context can be explicitly cleared by an empty string. */
if (newlen == 1) {
return 0;
}
#else
return EINVAL;
#endif
}
plist_blob = kalloc_data(newlen + 1, Z_WAITOK | Z_ZERO);
if (!plist_blob) {
return ENOMEM;
}
error = copyin(req->newptr, plist_blob, newlen);
if (error) {
kfree_data(plist_blob, newlen + 1);
return error;
}
plist_blob[newlen] = '\0';
ret = IOParseWorkloadConfig(ctx, plist_blob, newlen + 1);
kfree_data(plist_blob, newlen + 1);
return ret == KERN_SUCCESS ? 0 : EINVAL;
}
return 0;
}
SYSCTL_PROC(_kern, OID_AUTO, workload_config, CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MASKED,
0, 0, sysctl_workload_config, "A", "global workgroup configuration plist load/unload");
#define BSD_HOST 1
STATIC int
sysctl_sched_stats(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
host_basic_info_data_t hinfo;
kern_return_t kret;
uint32_t size;
uint32_t buf_size = 0;
int changed;
mach_msg_type_number_t count = HOST_BASIC_INFO_COUNT;
struct _processor_statistics_np *buf;
int error;
kret = host_info((host_t)BSD_HOST, HOST_BASIC_INFO, (host_info_t)&hinfo, &count);
if (kret != KERN_SUCCESS) {
return EINVAL;
}
size = sizeof(struct _processor_statistics_np) * (hinfo.logical_cpu_max + 2); /* One for RT Queue, One for Fair Share Queue */
if (req->oldlen < size) {
return EINVAL;
}
buf_size = size;
buf = (struct _processor_statistics_np *)kalloc_data(buf_size, Z_ZERO | Z_WAITOK);
kret = get_sched_statistics(buf, &size);
if (kret != KERN_SUCCESS) {
error = EINVAL;
goto out;
}
error = sysctl_io_opaque(req, buf, size, &changed);
if (error) {
goto out;
}
if (changed) {
panic("Sched info changed?!");
}
out:
kfree_data(buf, buf_size);
return error;
}
SYSCTL_PROC(_kern, OID_AUTO, sched_stats, CTLFLAG_LOCKED, 0, 0, sysctl_sched_stats, "-", "");
STATIC int
sysctl_sched_stats_enable(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, __unused struct sysctl_req *req)
{
boolean_t active;
int res;
if (req->newlen != sizeof(active)) {
return EINVAL;
}
res = copyin(req->newptr, &active, sizeof(active));
if (res != 0) {
return res;
}
return set_sched_stats_active(active);
}
SYSCTL_PROC(_kern, OID_AUTO, sched_stats_enable, CTLFLAG_LOCKED | CTLFLAG_WR, 0, 0, sysctl_sched_stats_enable, "-", "");
extern uint32_t sched_debug_flags;
SYSCTL_INT(_debug, OID_AUTO, sched, CTLFLAG_RW | CTLFLAG_LOCKED, &sched_debug_flags, 0, "scheduler debug");
#if (DEBUG || DEVELOPMENT)
extern boolean_t doprnt_hide_pointers;
SYSCTL_INT(_debug, OID_AUTO, hide_kernel_pointers, CTLFLAG_RW | CTLFLAG_LOCKED, &doprnt_hide_pointers, 0, "hide kernel pointers from log");
#endif
extern int get_kernel_symfile(proc_t, char **);
#if COUNT_SYSCALLS
#define KERN_COUNT_SYSCALLS (KERN_OSTYPE + 1000)
extern const unsigned int nsysent;
extern int syscalls_log[];
extern const char *syscallnames[];
STATIC int
sysctl_docountsyscalls SYSCTL_HANDLER_ARGS
{
__unused int cmd = oidp->oid_arg2; /* subcommand*/
__unused int *name = arg1; /* oid element argument vector */
__unused int namelen = arg2; /* number of oid element arguments */
int error, changed;
int tmp;
/* valid values passed in:
* = 0 means don't keep called counts for each bsd syscall
* > 0 means keep called counts for each bsd syscall
* = 2 means dump current counts to the system log
* = 3 means reset all counts
* for example, to dump current counts:
* sysctl -w kern.count_calls=2
*/
error = sysctl_io_number(req, do_count_syscalls,
sizeof(do_count_syscalls), &tmp, &changed);
if (error != 0 || !changed) {
return error;
}
if (tmp == 1) {
do_count_syscalls = 1;
} else if (tmp == 0 || tmp == 2 || tmp == 3) {
for (int i = 0; i < nsysent; i++) {
if (syscalls_log[i] != 0) {
if (tmp == 2) {
printf("%d calls - name %s \n", syscalls_log[i], syscallnames[i]);
} else {
syscalls_log[i] = 0;
}
}
}
do_count_syscalls = (tmp != 0);
}
return error;
}
SYSCTL_PROC(_kern, KERN_COUNT_SYSCALLS, count_syscalls, CTLTYPE_NODE | CTLFLAG_RD | CTLFLAG_LOCKED,
0, /* Pointer argument (arg1) */
0, /* Integer argument (arg2) */
sysctl_docountsyscalls, /* Handler function */
NULL, /* Data pointer */
"");
#endif /* COUNT_SYSCALLS */
/*
* The following sysctl_* functions should not be used
* any more, as they can only cope with callers in
* user mode: Use new-style
* sysctl_io_number()
* sysctl_io_string()
* sysctl_io_opaque()
* instead.
*/
STATIC int
sysdoproc_filt_KERN_PROC_PID(proc_t p, void * arg)
{
if (proc_getpid(p) != (pid_t)*(int*)arg) {
return 0;
} else {
return 1;
}
}
STATIC int
sysdoproc_filt_KERN_PROC_PGRP(proc_t p, void * arg)
{
if (p->p_pgrpid != (pid_t)*(int*)arg) {
return 0;
} else {
return 1;
}
}
STATIC int
sysdoproc_filt_KERN_PROC_TTY(proc_t p, void * arg)
{
struct pgrp *pg;
dev_t dev = NODEV;
if ((p->p_flag & P_CONTROLT) && (pg = proc_pgrp(p, NULL)) != PGRP_NULL) {
dev = os_atomic_load(&pg->pg_session->s_ttydev, relaxed);
pgrp_rele(pg);
}
return dev != NODEV && dev == (dev_t)*(int *)arg;
}
STATIC int
sysdoproc_filt_KERN_PROC_UID(proc_t p, void * arg)
{
uid_t uid;
smr_proc_task_enter();
uid = kauth_cred_getuid(proc_ucred_smr(p));
smr_proc_task_leave();
if (uid != (uid_t)*(int*)arg) {
return 0;
} else {
return 1;
}
}
STATIC int
sysdoproc_filt_KERN_PROC_RUID(proc_t p, void * arg)
{
uid_t ruid;
smr_proc_task_enter();
ruid = kauth_cred_getruid(proc_ucred_smr(p));
smr_proc_task_leave();
if (ruid != (uid_t)*(int*)arg) {
return 0;
} else {
return 1;
}
}
/*
* try over estimating by 5 procs
*/
#define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
struct sysdoproc_args {
size_t buflen;
void *kprocp;
boolean_t is_64_bit;
user_addr_t dp;
size_t needed;
unsigned int sizeof_kproc;
int *errorp;
int uidcheck;
int ruidcheck;
int ttycheck;
int uidval;
};
int
sysdoproc_callback(proc_t p, void *arg)
{
struct sysdoproc_args *args = arg;
if (args->buflen >= args->sizeof_kproc) {
if ((args->ruidcheck != 0) && (sysdoproc_filt_KERN_PROC_RUID(p, &args->uidval) == 0)) {
return PROC_RETURNED;
}
if ((args->uidcheck != 0) && (sysdoproc_filt_KERN_PROC_UID(p, &args->uidval) == 0)) {
return PROC_RETURNED;
}
if ((args->ttycheck != 0) && (sysdoproc_filt_KERN_PROC_TTY(p, &args->uidval) == 0)) {
return PROC_RETURNED;
}
bzero(args->kprocp, args->sizeof_kproc);
if (args->is_64_bit) {
fill_user64_proc(p, args->kprocp);
} else {
fill_user32_proc(p, args->kprocp);
}
int error = copyout(args->kprocp, args->dp, args->sizeof_kproc);
if (error) {
*args->errorp = error;
return PROC_RETURNED_DONE;
}
args->dp += args->sizeof_kproc;
args->buflen -= args->sizeof_kproc;
}
args->needed += args->sizeof_kproc;
return PROC_RETURNED;
}
SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD | CTLFLAG_LOCKED, 0, "");
STATIC int
sysctl_prochandle SYSCTL_HANDLER_ARGS
{
int cmd = oidp->oid_arg2; /* subcommand for multiple nodes */
int *name = arg1; /* oid element argument vector */
int namelen = arg2; /* number of oid element arguments */
user_addr_t where = req->oldptr;/* user buffer copy out address */
user_addr_t dp = where;
size_t needed = 0;
size_t buflen = where != USER_ADDR_NULL ? req->oldlen : 0;
int error = 0;
boolean_t is_64_bit = proc_is64bit(current_proc());
struct user32_kinfo_proc user32_kproc;
struct user64_kinfo_proc user_kproc;
int sizeof_kproc;
void *kprocp;
int (*filterfn)(proc_t, void *) = 0;
struct sysdoproc_args args;
int uidcheck = 0;
int ruidcheck = 0;
int ttycheck = 0;
if (namelen != 1 && !(namelen == 0 && cmd == KERN_PROC_ALL)) {
return EINVAL;
}
if (is_64_bit) {
sizeof_kproc = sizeof(user_kproc);
kprocp = &user_kproc;
} else {
sizeof_kproc = sizeof(user32_kproc);
kprocp = &user32_kproc;
}
switch (cmd) {
case KERN_PROC_PID:
filterfn = sysdoproc_filt_KERN_PROC_PID;
break;
case KERN_PROC_PGRP:
filterfn = sysdoproc_filt_KERN_PROC_PGRP;
break;
case KERN_PROC_TTY:
ttycheck = 1;
break;
case KERN_PROC_UID:
uidcheck = 1;
break;
case KERN_PROC_RUID:
ruidcheck = 1;
break;
case KERN_PROC_ALL:
break;
default:
/* must be kern.proc.<unknown> */
return ENOTSUP;
}
error = 0;
args.buflen = buflen;
args.kprocp = kprocp;
args.is_64_bit = is_64_bit;
args.dp = dp;
args.needed = needed;
args.errorp = &error;
args.uidcheck = uidcheck;
args.ruidcheck = ruidcheck;
args.ttycheck = ttycheck;
args.sizeof_kproc = sizeof_kproc;
if (namelen) {
args.uidval = name[0];
}
proc_iterate((PROC_ALLPROCLIST | PROC_ZOMBPROCLIST),
sysdoproc_callback, &args, filterfn, name);
if (error) {
return error;
}
dp = args.dp;
needed = args.needed;
if (where != USER_ADDR_NULL) {
req->oldlen = dp - where;
if (needed > req->oldlen) {
return ENOMEM;
}
} else {
needed += KERN_PROCSLOP;
req->oldlen = needed;
}
/* adjust index so we return the right required/consumed amount */
req->oldidx += req->oldlen;
return 0;
}
/*
* We specify the subcommand code for multiple nodes as the 'req->arg2' value
* in the sysctl declaration itself, which comes into the handler function
* as 'oidp->oid_arg2'.
*
* For these particular sysctls, since they have well known OIDs, we could
* have just obtained it from the '((int *)arg1)[0]' parameter, but that would
* not demonstrate how to handle multiple sysctls that used OID_AUTO instead
* of a well known value with a common handler function. This is desirable,
* because we want well known values to "go away" at some future date.
*
* It should be noted that the value of '((int *)arg1)[1]' is used for many
* an integer parameter to the subcommand for many of these sysctls; we'd
* rather have used '((int *)arg1)[0]' for that, or even better, an element
* in a structure passed in as the the 'newp' argument to sysctlbyname(3),
* and then use leaf-node permissions enforcement, but that would have
* necessitated modifying user space code to correspond to the interface
* change, and we are striving for binary backward compatibility here; even
* though these are SPI, and not intended for use by user space applications
* which are not themselves system tools or libraries, some applications
* have erroneously used them.
*/
SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLTYPE_NODE | CTLFLAG_RD | CTLFLAG_LOCKED,
0, /* Pointer argument (arg1) */
KERN_PROC_ALL, /* Integer argument (arg2) */
sysctl_prochandle, /* Handler function */
NULL, /* Data is size variant on ILP32/LP64 */
"");
SYSCTL_PROC(_kern_proc, KERN_PROC_PID, pid, CTLTYPE_NODE | CTLFLAG_RD | CTLFLAG_LOCKED,
0, /* Pointer argument (arg1) */
KERN_PROC_PID, /* Integer argument (arg2) */
sysctl_prochandle, /* Handler function */
NULL, /* Data is size variant on ILP32/LP64 */
"");
SYSCTL_PROC(_kern_proc, KERN_PROC_TTY, tty, CTLTYPE_NODE | CTLFLAG_RD | CTLFLAG_LOCKED,
0, /* Pointer argument (arg1) */
KERN_PROC_TTY, /* Integer argument (arg2) */
sysctl_prochandle, /* Handler function */
NULL, /* Data is size variant on ILP32/LP64 */
"");
SYSCTL_PROC(_kern_proc, KERN_PROC_PGRP, pgrp, CTLTYPE_NODE | CTLFLAG_RD | CTLFLAG_LOCKED,
0, /* Pointer argument (arg1) */
KERN_PROC_PGRP, /* Integer argument (arg2) */
sysctl_prochandle, /* Handler function */
NULL, /* Data is size variant on ILP32/LP64 */
"");
SYSCTL_PROC(_kern_proc, KERN_PROC_UID, uid, CTLTYPE_NODE | CTLFLAG_RD | CTLFLAG_LOCKED,
0, /* Pointer argument (arg1) */
KERN_PROC_UID, /* Integer argument (arg2) */
sysctl_prochandle, /* Handler function */
NULL, /* Data is size variant on ILP32/LP64 */
"");
SYSCTL_PROC(_kern_proc, KERN_PROC_RUID, ruid, CTLTYPE_NODE | CTLFLAG_RD | CTLFLAG_LOCKED,
0, /* Pointer argument (arg1) */
KERN_PROC_RUID, /* Integer argument (arg2) */
sysctl_prochandle, /* Handler function */
NULL, /* Data is size variant on ILP32/LP64 */
"");
SYSCTL_PROC(_kern_proc, KERN_PROC_LCID, lcid, CTLTYPE_NODE | CTLFLAG_RD | CTLFLAG_LOCKED,
0, /* Pointer argument (arg1) */
KERN_PROC_LCID, /* Integer argument (arg2) */
sysctl_prochandle, /* Handler function */
NULL, /* Data is size variant on ILP32/LP64 */
"");
/*
* Fill in non-zero fields of an eproc structure for the specified process.
*/
STATIC void
fill_user32_eproc(proc_t p, struct user32_eproc *__restrict ep)
{
struct pgrp *pg;
struct session *sessp;
kauth_cred_t my_cred;
pg = proc_pgrp(p, &sessp);
if (pg != PGRP_NULL) {
ep->e_pgid = p->p_pgrpid;
ep->e_jobc = pg->pg_jobc;
if (sessp->s_ttyvp) {
ep->e_flag = EPROC_CTTY;
}
}
ep->e_ppid = p->p_ppid;
smr_proc_task_enter();
my_cred = proc_ucred_smr(p);
/* A fake historical pcred */
ep->e_pcred.p_ruid = kauth_cred_getruid(my_cred);
ep->e_pcred.p_svuid = kauth_cred_getsvuid(my_cred);
ep->e_pcred.p_rgid = kauth_cred_getrgid(my_cred);
ep->e_pcred.p_svgid = kauth_cred_getsvgid(my_cred);
/* A fake historical *kauth_cred_t */
unsigned long refcnt = os_atomic_load(&my_cred->cr_ref, relaxed);
ep->e_ucred.cr_ref = (uint32_t)MIN(refcnt, UINT32_MAX);
ep->e_ucred.cr_uid = kauth_cred_getuid(my_cred);
ep->e_ucred.cr_ngroups = (short)posix_cred_get(my_cred)->cr_ngroups;
bcopy(posix_cred_get(my_cred)->cr_groups,
ep->e_ucred.cr_groups, NGROUPS * sizeof(gid_t));
my_cred = NOCRED;
smr_proc_task_leave();
ep->e_tdev = NODEV;
if (pg != PGRP_NULL) {
if (p->p_flag & P_CONTROLT) {
session_lock(sessp);
ep->e_tdev = os_atomic_load(&sessp->s_ttydev, relaxed);
ep->e_tpgid = sessp->s_ttypgrpid;
session_unlock(sessp);
}
if (SESS_LEADER(p, sessp)) {
ep->e_flag |= EPROC_SLEADER;
}
pgrp_rele(pg);
}
}
/*
* Fill in non-zero fields of an LP64 eproc structure for the specified process.
*/
STATIC void
fill_user64_eproc(proc_t p, struct user64_eproc *__restrict ep)
{
struct pgrp *pg;
struct session *sessp;
kauth_cred_t my_cred;
pg = proc_pgrp(p, &sessp);
if (pg != PGRP_NULL) {
ep->e_pgid = p->p_pgrpid;
ep->e_jobc = pg->pg_jobc;
if (sessp->s_ttyvp) {
ep->e_flag = EPROC_CTTY;
}
}
ep->e_ppid = p->p_ppid;
smr_proc_task_enter();
my_cred = proc_ucred_smr(p);
/* A fake historical pcred */
ep->e_pcred.p_ruid = kauth_cred_getruid(my_cred);
ep->e_pcred.p_svuid = kauth_cred_getsvuid(my_cred);
ep->e_pcred.p_rgid = kauth_cred_getrgid(my_cred);
ep->e_pcred.p_svgid = kauth_cred_getsvgid(my_cred);
/* A fake historical *kauth_cred_t */
unsigned long refcnt = os_atomic_load(&my_cred->cr_ref, relaxed);
ep->e_ucred.cr_ref = (uint32_t)MIN(refcnt, UINT32_MAX);
ep->e_ucred.cr_uid = kauth_cred_getuid(my_cred);
ep->e_ucred.cr_ngroups = (short)posix_cred_get(my_cred)->cr_ngroups;
bcopy(posix_cred_get(my_cred)->cr_groups,
ep->e_ucred.cr_groups, NGROUPS * sizeof(gid_t));
my_cred = NOCRED;
smr_proc_task_leave();
ep->e_tdev = NODEV;
if (pg != PGRP_NULL) {
if (p->p_flag & P_CONTROLT) {
session_lock(sessp);
ep->e_tdev = os_atomic_load(&sessp->s_ttydev, relaxed);
ep->e_tpgid = sessp->s_ttypgrpid;
session_unlock(sessp);
}
if (SESS_LEADER(p, sessp)) {
ep->e_flag |= EPROC_SLEADER;
}
pgrp_rele(pg);
}
}
/*
* Fill in an eproc structure for the specified process.
* bzeroed by our caller, so only set non-zero fields.
*/
STATIC void
fill_user32_externproc(proc_t p, struct user32_extern_proc *__restrict exp)
{
exp->p_starttime.tv_sec = (user32_time_t)p->p_start.tv_sec;
exp->p_starttime.tv_usec = p->p_start.tv_usec;
exp->p_flag = p->p_flag;
#if DEVELOPMENT || DEBUG
if (p->p_lflag & P_LTRACED && !bootarg_hide_process_traced) {
#else
if (p->p_lflag & P_LTRACED) {
#endif
exp->p_flag |= P_TRACED;
}
if (p->p_lflag & P_LPPWAIT) {
exp->p_flag |= P_PPWAIT;
}
if (p->p_lflag & P_LEXIT) {
exp->p_flag |= P_WEXIT;
}
exp->p_stat = p->p_stat;
exp->p_pid = proc_getpid(p);
#if DEVELOPMENT || DEBUG
if (bootarg_hide_process_traced) {
exp->p_oppid = 0;
} else
#endif
{
exp->p_oppid = p->p_oppid;
}
/* Mach related */
exp->p_debugger = p->p_debugger;
exp->sigwait = p->sigwait;
/* scheduling */
#ifdef _PROC_HAS_SCHEDINFO_
exp->p_estcpu = p->p_estcpu;
exp->p_pctcpu = p->p_pctcpu;
exp->p_slptime = p->p_slptime;
#endif
exp->p_realtimer.it_interval.tv_sec =
(user32_time_t)p->p_realtimer.it_interval.tv_sec;
exp->p_realtimer.it_interval.tv_usec =
(__int32_t)p->p_realtimer.it_interval.tv_usec;
exp->p_realtimer.it_value.tv_sec =
(user32_time_t)p->p_realtimer.it_value.tv_sec;
exp->p_realtimer.it_value.tv_usec =
(__int32_t)p->p_realtimer.it_value.tv_usec;
exp->p_rtime.tv_sec = (user32_time_t)p->p_rtime.tv_sec;
exp->p_rtime.tv_usec = (__int32_t)p->p_rtime.tv_usec;
exp->p_sigignore = p->p_sigignore;
exp->p_sigcatch = p->p_sigcatch;
exp->p_priority = p->p_priority;
exp->p_nice = p->p_nice;
bcopy(&p->p_comm, &exp->p_comm, MAXCOMLEN);
exp->p_xstat = (u_short)MIN(p->p_xstat, USHRT_MAX);
exp->p_acflag = p->p_acflag;
}
/*
* Fill in an LP64 version of extern_proc structure for the specified process.
*/
STATIC void
fill_user64_externproc(proc_t p, struct user64_extern_proc *__restrict exp)
{
exp->p_starttime.tv_sec = p->p_start.tv_sec;
exp->p_starttime.tv_usec = p->p_start.tv_usec;
exp->p_flag = p->p_flag;
#if DEVELOPMENT || DEBUG
if (p->p_lflag & P_LTRACED && !bootarg_hide_process_traced) {
#else
if (p->p_lflag & P_LTRACED) {
#endif
exp->p_flag |= P_TRACED;
}
if (p->p_lflag & P_LPPWAIT) {
exp->p_flag |= P_PPWAIT;
}
if (p->p_lflag & P_LEXIT) {
exp->p_flag |= P_WEXIT;
}
exp->p_stat = p->p_stat;
exp->p_pid = proc_getpid(p);
#if DEVELOPMENT || DEBUG
if (bootarg_hide_process_traced) {
exp->p_oppid = 0;
} else
#endif
{
exp->p_oppid = p->p_oppid;
}
/* Mach related */
exp->p_debugger = p->p_debugger;
exp->sigwait = p->sigwait;
/* scheduling */
#ifdef _PROC_HAS_SCHEDINFO_
exp->p_estcpu = p->p_estcpu;
exp->p_pctcpu = p->p_pctcpu;
exp->p_slptime = p->p_slptime;
#endif
exp->p_realtimer.it_interval.tv_sec = p->p_realtimer.it_interval.tv_sec;
exp->p_realtimer.it_interval.tv_usec = p->p_realtimer.it_interval.tv_usec;
exp->p_realtimer.it_value.tv_sec = p->p_realtimer.it_value.tv_sec;
exp->p_realtimer.it_value.tv_usec = p->p_realtimer.it_value.tv_usec;
exp->p_rtime.tv_sec = p->p_rtime.tv_sec;
exp->p_rtime.tv_usec = p->p_rtime.tv_usec;
exp->p_sigignore = p->p_sigignore;
exp->p_sigcatch = p->p_sigcatch;
exp->p_priority = p->p_priority;
exp->p_nice = p->p_nice;
bcopy(&p->p_comm, &exp->p_comm, MAXCOMLEN);
exp->p_xstat = (u_short)MIN(p->p_xstat, USHRT_MAX);
exp->p_acflag = p->p_acflag;
}
STATIC void
fill_user32_proc(proc_t p, struct user32_kinfo_proc *__restrict kp)
{
/* on a 64 bit kernel, 32 bit users get some truncated information */
fill_user32_externproc(p, &kp->kp_proc);
fill_user32_eproc(p, &kp->kp_eproc);
}
STATIC void
fill_user64_proc(proc_t p, struct user64_kinfo_proc *__restrict kp)
{
fill_user64_externproc(p, &kp->kp_proc);
fill_user64_eproc(p, &kp->kp_eproc);
}
#if defined(XNU_TARGET_OS_OSX)
/*
* Return the top *sizep bytes of the user stack, or the entire area of the
* user stack down through the saved exec_path, whichever is smaller.
*/
STATIC int
sysctl_doprocargs SYSCTL_HANDLER_ARGS
{
__unused int cmd = oidp->oid_arg2; /* subcommand*/
int *name = arg1; /* oid element argument vector */
int namelen = arg2; /* number of oid element arguments */
user_addr_t oldp = req->oldptr; /* user buffer copy out address */
size_t *oldlenp = &req->oldlen; /* user buffer copy out size */
// user_addr_t newp = req->newptr; /* user buffer copy in address */
// size_t newlen = req->newlen; /* user buffer copy in size */
int error;
error = sysctl_procargsx( name, namelen, oldp, oldlenp, current_proc(), 0);
/* adjust index so we return the right required/consumed amount */
if (!error) {
req->oldidx += req->oldlen;
}
return error;
}
SYSCTL_PROC(_kern, KERN_PROCARGS, procargs, CTLTYPE_NODE | CTLFLAG_RD | CTLFLAG_LOCKED,
0, /* Pointer argument (arg1) */
0, /* Integer argument (arg2) */
sysctl_doprocargs, /* Handler function */
NULL, /* Data pointer */
"");
#endif /* defined(XNU_TARGET_OS_OSX) */
STATIC int
sysctl_doprocargs2 SYSCTL_HANDLER_ARGS
{
__unused int cmd = oidp->oid_arg2; /* subcommand*/
int *name = arg1; /* oid element argument vector */
int namelen = arg2; /* number of oid element arguments */
user_addr_t oldp = req->oldptr; /* user buffer copy out address */
size_t *oldlenp = &req->oldlen; /* user buffer copy out size */
// user_addr_t newp = req->newptr; /* user buffer copy in address */
// size_t newlen = req->newlen; /* user buffer copy in size */
int error;
error = sysctl_procargsx( name, namelen, oldp, oldlenp, current_proc(), 1);
/* adjust index so we return the right required/consumed amount */
if (!error) {
req->oldidx += req->oldlen;
}
return error;
}
SYSCTL_PROC(_kern, KERN_PROCARGS2, procargs2, CTLTYPE_NODE | CTLFLAG_RD | CTLFLAG_LOCKED,
0, /* Pointer argument (arg1) */
0, /* Integer argument (arg2) */
sysctl_doprocargs2, /* Handler function */
NULL, /* Data pointer */
"");
#define SYSCTL_PROCARGS_READ_ENVVARS_ENTITLEMENT "com.apple.private.read-environment-variables"
STATIC int
sysctl_procargsx(int *name, u_int namelen, user_addr_t where,
size_t *sizep, proc_t cur_proc, int argc_yes)
{
assert(sizep != NULL);
proc_t p = NULL;
size_t buflen = where != USER_ADDR_NULL ? *sizep : 0;
int error = 0;
struct _vm_map *proc_map = NULL;
struct task * task;
vm_map_copy_t tmp = NULL;
user_addr_t arg_addr;
size_t arg_size;
caddr_t data;
size_t argslen = 0;
size_t size = 0;
vm_offset_t copy_start = 0, copy_end;
vm_offset_t smallbuffer_start;
kern_return_t ret;
int pid;
uid_t uid;
int argc = -1;
size_t argvsize;
size_t remaining;
size_t current_arg_index;
size_t current_arg_len;
const char * current_arg;
bool omit_env_vars = true;
user_addr_t user_stack;
vm_map_offset_t effective_page_mask;
if (namelen < 1) {
error = EINVAL;
goto finish;
}
if (argc_yes) {
buflen -= sizeof(int); /* reserve first word to return argc */
}
/* we only care about buflen when where (oldp from sysctl) is not NULL. */
/* when where (oldp from sysctl) is NULL and sizep (oldlenp from sysctl */
/* is not NULL then the caller wants us to return the length needed to */
/* hold the data we would return */
if (where != USER_ADDR_NULL && (buflen <= 0 || buflen > ARG_MAX)) {
error = EINVAL;
goto finish;
}
/*
* Lookup process by pid
*/
pid = name[0];
p = proc_find(pid);
if (p == NULL) {
error = EINVAL;
goto finish;
}
/* Allow reading environment variables if any of the following are true:
* - kernel is DEVELOPMENT || DEBUG
* - target process is same as current_proc()
* - target process is not cs_restricted
* - SIP is off
* - caller has an entitlement
*/
#if DEVELOPMENT || DEBUG
omit_env_vars = false;
#endif
if (p == current_proc() ||
!cs_restricted(p) ||
#if CONFIG_CSR
csr_check(CSR_ALLOW_UNRESTRICTED_DTRACE) == 0 ||
#endif
IOCurrentTaskHasEntitlement(SYSCTL_PROCARGS_READ_ENVVARS_ENTITLEMENT)
) {
omit_env_vars = false;
}
/*
* Copy the top N bytes of the stack.
* On all machines we have so far, the stack grows
* downwards.
*
* If the user expects no more than N bytes of
* argument list, use that as a guess for the
* size.
*/
if (!p->user_stack) {
error = EINVAL;
goto finish;
}
/* save off argc, argslen, user_stack before releasing the proc */
argc = p->p_argc;
argslen = p->p_argslen;
user_stack = p->user_stack;
/*
* When these sysctls were introduced, the first string in the strings
* section was just the bare path of the executable. However, for security
* reasons we now prefix this string with executable_path= so it can be
* parsed getenv style. To avoid binary compatability issues with exising
* callers of this sysctl, we strip it off here.
* (rdar://problem/13746466)
*/
#define EXECUTABLE_KEY "executable_path="
argslen -= strlen(EXECUTABLE_KEY);
if (where == USER_ADDR_NULL && !omit_env_vars) {
/* caller only wants to know length of proc args data.
* If we don't need to omit environment variables, we can skip
* copying the target process stack */
goto calculate_size;
}
smr_proc_task_enter();
uid = kauth_cred_getuid(proc_ucred_smr(p));
smr_proc_task_leave();
if ((uid != kauth_cred_getuid(kauth_cred_get()))
&& suser(kauth_cred_get(), &cur_proc->p_acflag)) {
error = EINVAL;
goto finish;
}
/*
* Before we can block (any VM code), make another
* reference to the map to keep it alive. We do
* that by getting a reference on the task itself.
*/
task = proc_task(p);
if (task == NULL) {
error = EINVAL;
goto finish;
}
/*
* Once we have a task reference we can convert that into a
* map reference, which we will use in the calls below. The
* task/process may change its map after we take this reference
* (see execve), but the worst that will happen then is a return
* of stale info (which is always a possibility).
*/
task_reference(task);
proc_rele(p);
p = NULL;
proc_map = get_task_map_reference(task);
task_deallocate(task);
if (proc_map == NULL) {
error = EINVAL;
goto finish;
}
effective_page_mask = vm_map_page_mask(proc_map);
arg_size = vm_map_round_page(argslen, effective_page_mask);
arg_addr = user_stack - arg_size;
ret = kmem_alloc(kernel_map, &copy_start, arg_size,
KMA_DATA | KMA_ZERO, VM_KERN_MEMORY_BSD);
if (ret != KERN_SUCCESS) {
error = ENOMEM;
goto finish;
}
copy_end = copy_start + arg_size;
if (vm_map_copyin(proc_map, (vm_map_address_t)arg_addr,
(vm_map_size_t)arg_size, FALSE, &tmp) != KERN_SUCCESS) {
error = EIO;
goto finish;
}
/*
* Now that we've done the copyin from the process'
* map, we can release the reference to it.
*/
vm_map_deallocate(proc_map);
proc_map = NULL;
if (vm_map_copy_overwrite(kernel_map,
(vm_map_address_t)copy_start,
tmp, (vm_map_size_t) arg_size, FALSE) != KERN_SUCCESS) {
error = EIO;
goto finish;
}
/* tmp was consumed */
tmp = NULL;
if (omit_env_vars) {
argvsize = 0;
/* Iterate over everything in argv, plus one for the bare executable path */
for (current_arg_index = 0; current_arg_index < argc + 1 && argvsize < argslen; ++current_arg_index) {
current_arg = (const char *)(copy_end - argslen) + argvsize;
remaining = argslen - argvsize;
current_arg_len = strnlen(current_arg, remaining);
if (current_arg_len < remaining) {
/* We have space for the null terminator */
current_arg_len += 1;
if (current_arg_index == 0) {
/* The bare executable path may have multiple null bytes after it for alignment */
while (current_arg_len < remaining && current_arg[current_arg_len] == 0) {
current_arg_len += 1;
}
}
}
argvsize += current_arg_len;
}
assert(argvsize <= argslen);
/* Adjust argslen and copy_end to make the copyout range extend to the end of argv */
copy_end = copy_end - argslen + argvsize;
argslen = argvsize;
}
if (where == USER_ADDR_NULL) {
/* Skip copyout */
goto calculate_size;
}
if (buflen >= argslen) {
data = (caddr_t) (copy_end - argslen);
size = argslen;
} else {
/*
* Before rdar://25397314, this function contained incorrect logic when buflen is less
* than argslen. The problem was that it copied in `buflen` bytes from the end of the target
* process user stack into the beginning of a buffer of size round_page(buflen), and then
* copied out `buflen` bytes from the end of this buffer. The effect of this was that
* the caller of this sysctl would get zeros at the end of their buffer.
*
* To preserve this behavior, bzero everything from copy_end-round_page(buflen)+buflen to the
* end of the buffer. This emulates copying in only `buflen` bytes.
*
*
* In the old code:
*
* copy_start .... size: round_page(buflen) .... copy_end
* [---copied in data (size: buflen)---|--- zeros ----------]
* ^
* data = copy_end - buflen
*
*
* In the new code:
* copy_start .... size: round_page(p->argslen) .... full copy_end
* ^ ....................... p->argslen ...............................^
* ^ ^ truncated copy_end ^
* ^ ^ ^ ^
* ^ ................ argslen ........................ ^
* ^ ^ ^ ^
* [-------copied in data (size: round_page(p->argslen))-------:----env vars---]
* ^ ^
* ^ data = copy_end - buflen
* smallbuffer_start = max(copy_end - round_page(buflen), copy_start)
*
*
* Full copy_end: copy_end calculated from copy_start + round_page(p->argslen)
* Truncated copy_end: copy_end after truncation to remove environment variables.
*
* If environment variables were omitted, then we use the truncated copy_end, otherwise
* we use full copy_end.
*
* smallbuffer_start: represents where copy_start would be in the old code.
* data: The beginning of the region we copyout
*/
smallbuffer_start = copy_end - vm_map_round_page(buflen, effective_page_mask);
if (smallbuffer_start < copy_start) {
smallbuffer_start = copy_start;
}
bzero((void *)(smallbuffer_start + buflen), copy_end - (smallbuffer_start + buflen));
data = (caddr_t) (copy_end - buflen);
size = buflen;
}
if (argc_yes) {
/* Put processes argc as the first word in the copyout buffer */
suword(where, argc);
error = copyout(data, (where + sizeof(int)), size);
size += sizeof(int);
} else {
error = copyout(data, where, size);
/*
* Make the old PROCARGS work to return the executable's path
* But, only if there is enough space in the provided buffer
*
* on entry: data [possibily] points to the beginning of the path
*
* Note: we keep all pointers&sizes aligned to word boundries
*/
if ((!error) && (buflen > 0 && (u_int)buflen > size)) {
int binPath_sz, alignedBinPath_sz = 0;
int extraSpaceNeeded, addThis;
user_addr_t placeHere;
char * str = (char *) data;
size_t max_len = size;
/* Some apps are really bad about messing up their stacks
* So, we have to be extra careful about getting the length
* of the executing binary. If we encounter an error, we bail.
*/
/* Limit ourselves to PATH_MAX paths */
if (max_len > PATH_MAX) {
max_len = PATH_MAX;
}
binPath_sz = 0;
while ((binPath_sz < max_len - 1) && (*str++ != 0)) {
binPath_sz++;
}
/* If we have a NUL terminator, copy it, too */
if (binPath_sz < max_len - 1) {
binPath_sz += 1;
}
/* Pre-Flight the space requiremnts */
/* Account for the padding that fills out binPath to the next word */
alignedBinPath_sz += (binPath_sz & (sizeof(int) - 1)) ? (sizeof(int) - (binPath_sz & (sizeof(int) - 1))) : 0;
placeHere = where + size;
/* Account for the bytes needed to keep placeHere word aligned */
addThis = (placeHere & (sizeof(int) - 1)) ? (sizeof(int) - (placeHere & (sizeof(int) - 1))) : 0;
/* Add up all the space that is needed */
extraSpaceNeeded = alignedBinPath_sz + addThis + binPath_sz + (4 * sizeof(int));
/* is there is room to tack on argv[0]? */
if ((buflen & ~(sizeof(int) - 1)) >= (size + extraSpaceNeeded)) {
placeHere += addThis;
suword(placeHere, 0);
placeHere += sizeof(int);
suword(placeHere, 0xBFFF0000);
placeHere += sizeof(int);
suword(placeHere, 0);
placeHere += sizeof(int);
error = copyout(data, placeHere, binPath_sz);
if (!error) {
placeHere += binPath_sz;
suword(placeHere, 0);
size += extraSpaceNeeded;
}
}
}
}
calculate_size:
/* Size has already been calculated for the where != NULL case */
if (where == USER_ADDR_NULL) {
size = argslen;
if (argc_yes) {
size += sizeof(int);
} else {
/*
* old PROCARGS will return the executable's path and plus some
* extra space for work alignment and data tags
*/
size += PATH_MAX + (6 * sizeof(int));
}
size += (size & (sizeof(int) - 1)) ? (sizeof(int) - (size & (sizeof(int) - 1))) : 0;
}
*sizep = size;
finish:
if (p != NULL) {
proc_rele(p);
}
if (tmp != NULL) {
vm_map_copy_discard(tmp);
}
if (proc_map != NULL) {
vm_map_deallocate(proc_map);
}
if (copy_start != (vm_offset_t) 0) {
kmem_free(kernel_map, copy_start, arg_size);
}
return error;
}
/*
* Max number of concurrent aio requests
*/
STATIC int
sysctl_aiomax
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int new_value, changed;
int error = sysctl_io_number(req, aio_max_requests, sizeof(int), &new_value, &changed);
if (changed) {
/* make sure the system-wide limit is greater than the per process limit */
if (new_value >= aio_max_requests_per_process && new_value <= AIO_MAX_REQUESTS) {
aio_max_requests = new_value;
} else {
error = EINVAL;
}
}
return error;
}
/*
* Max number of concurrent aio requests per process
*/
STATIC int
sysctl_aioprocmax
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int new_value, changed;
int error = sysctl_io_number(req, aio_max_requests_per_process, sizeof(int), &new_value, &changed);
if (changed) {
/* make sure per process limit is less than the system-wide limit */
if (new_value <= aio_max_requests && new_value >= AIO_LISTIO_MAX) {
aio_max_requests_per_process = new_value;
} else {
error = EINVAL;
}
}
return error;
}
/*
* Max number of async IO worker threads
*/
STATIC int
sysctl_aiothreads
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int new_value, changed;
int error = sysctl_io_number(req, aio_worker_threads, sizeof(int), &new_value, &changed);
if (changed) {
/* we only allow an increase in the number of worker threads */
if (new_value > aio_worker_threads) {
_aio_create_worker_threads((new_value - aio_worker_threads));
aio_worker_threads = new_value;
} else {
error = EINVAL;
}
}
return error;
}
/*
* System-wide limit on the max number of processes
*/
STATIC int
sysctl_maxproc
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int new_value, changed;
int error = sysctl_io_number(req, maxproc, sizeof(int), &new_value, &changed);
if (changed) {
AUDIT_ARG(value32, new_value);
/* make sure the system-wide limit is less than the configured hard
* limit set at kernel compilation */
if (new_value <= hard_maxproc && new_value > 0) {
maxproc = new_value;
} else {
error = EINVAL;
}
}
return error;
}
extern int sched_enable_smt;
STATIC int
sysctl_sched_enable_smt
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int new_value, changed;
int error = sysctl_io_number(req, sched_enable_smt, sizeof(int), &new_value, &changed);
if (error) {
return error;
}
kern_return_t kret = KERN_SUCCESS;
if (changed) {
AUDIT_ARG(value32, new_value);
if (new_value == 0) {
sched_enable_smt = 0;
kret = enable_smt_processors(false);
} else {
sched_enable_smt = 1;
kret = enable_smt_processors(true);
}
}
switch (kret) {
case KERN_SUCCESS:
error = 0;
break;
case KERN_INVALID_ARGUMENT:
error = EINVAL;
break;
case KERN_FAILURE:
error = EBUSY;
break;
default:
error = ENOENT;
break;
}
return error;
}
SYSCTL_STRING(_kern, KERN_OSTYPE, ostype,
CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED,
ostype, 0, "");
SYSCTL_STRING(_kern, KERN_OSRELEASE, osrelease,
CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED,
osrelease, 0, "");
SYSCTL_INT(_kern, KERN_OSREV, osrevision,
CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED,
(int *)NULL, BSD, "");
SYSCTL_STRING(_kern, KERN_VERSION, version,
CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED,
version, 0, "");
SYSCTL_STRING(_kern, OID_AUTO, uuid,
CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED,
&kernel_uuid_string[0], 0, "");
SYSCTL_STRING(_kern, OID_AUTO, osbuildconfig,
CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED | CTLFLAG_MASKED,
&osbuild_config[0], 0, "");
#if DEBUG
#ifndef DKPR
#define DKPR 1
#endif
#endif
#if DKPR
int debug_kprint_syscall = 0;
char debug_kprint_syscall_process[MAXCOMLEN + 1];
/* Thread safe: bits and string value are not used to reclaim state */
SYSCTL_INT(_debug, OID_AUTO, kprint_syscall,
CTLFLAG_RW | CTLFLAG_LOCKED, &debug_kprint_syscall, 0, "kprintf syscall tracing");
SYSCTL_STRING(_debug, OID_AUTO, kprint_syscall_process,
CTLFLAG_RW | CTLFLAG_LOCKED, debug_kprint_syscall_process, sizeof(debug_kprint_syscall_process),
"name of process for kprintf syscall tracing");
int
debug_kprint_current_process(const char **namep)
{
struct proc *p = current_proc();
if (p == NULL) {
return 0;
}
if (debug_kprint_syscall_process[0]) {
/* user asked to scope tracing to a particular process name */
if (0 == strncmp(debug_kprint_syscall_process,
p->p_comm, sizeof(debug_kprint_syscall_process))) {
/* no value in telling the user that we traced what they asked */
if (namep) {
*namep = NULL;
}
return 1;
} else {
return 0;
}
}
/* trace all processes. Tell user what we traced */
if (namep) {
*namep = p->p_comm;
}
return 1;
}
#endif
/* PR-5293665: need to use a callback function for kern.osversion to set
* osversion in IORegistry */
STATIC int
sysctl_osversion(__unused struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req)
{
int rval = 0;
rval = sysctl_handle_string(oidp, arg1, arg2, req);
if (req->newptr) {
IORegistrySetOSBuildVersion((char *)arg1);
}
return rval;
}
SYSCTL_PROC(_kern, KERN_OSVERSION, osversion,
CTLFLAG_RW | CTLFLAG_KERN | CTLTYPE_STRING | CTLFLAG_LOCKED,
osversion, 256 /* OSVERSIZE*/,
sysctl_osversion, "A", "");
static bool
_already_set_or_not_launchd(struct sysctl_req *req, char *val)
{
if (req->newptr != 0) {
/*
* Can only ever be set by launchd, and only once at boot.
*/
if (proc_getpid(req->p) != 1 || val[0] != '\0') {
return true;
}
}
return false;
}
#define kRootsInstalledReadWriteEntitlement "com.apple.private.roots-installed-read-write"
#define kRootsInstalledReadOnlyEntitlement "com.apple.private.roots-installed-read-only"
uint64_t roots_installed = 0;
static int
sysctl_roots_installed
(__unused struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req)
{
int error = 0;
if (req->newptr != 0) {
/* a ReadWrite entitlement is required for updating this syscl
* meanwhile, only allow write once
*/
if (!IOCurrentTaskHasEntitlement(kRootsInstalledReadWriteEntitlement) || (roots_installed != 0)) {
return EPERM;
}
} else {
/* for reader of this sysctl, need either ReadWrite or ReadOnly entitlement */
if (!IOCurrentTaskHasEntitlement(kRootsInstalledReadWriteEntitlement) &&
!IOCurrentTaskHasEntitlement(kRootsInstalledReadOnlyEntitlement)) {
return EPERM;
}
}
error = sysctl_handle_quad(oidp, arg1, arg2, req);
return error;
}
SYSCTL_PROC(_kern, OID_AUTO, roots_installed,
CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_LOCKED,
&roots_installed, sizeof(roots_installed),
sysctl_roots_installed, "Q", "");
#if XNU_TARGET_OS_OSX
static int
sysctl_system_version_compat
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int oldval = (task_has_system_version_compat_enabled(current_task()));
int new_value = 0, changed = 0;
int error = sysctl_io_number(req, oldval, sizeof(int), &new_value, &changed);
if (changed) {
task_set_system_version_compat_enabled(current_task(), (new_value));
}
return error;
}
SYSCTL_PROC(_kern, OID_AUTO, system_version_compat,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_LOCKED,
0, 0, sysctl_system_version_compat, "A", "");
char osproductversioncompat[48] = { '\0' };
static int
sysctl_osproductversioncompat(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req)
{
if (_already_set_or_not_launchd(req, osproductversioncompat)) {
return EPERM;
}
return sysctl_handle_string(oidp, arg1, arg2, req);
}
SYSCTL_PROC(_kern, OID_AUTO, osproductversioncompat,
CTLFLAG_RW | CTLFLAG_KERN | CTLTYPE_STRING | CTLFLAG_LOCKED,
osproductversioncompat, sizeof(osproductversioncompat),
sysctl_osproductversioncompat, "A", "The ProductVersion from SystemVersionCompat.plist");
#endif
char osproductversion[48] = { '\0' };
static char iossupportversion_string[48] = { '\0' };
static int
sysctl_osproductversion(__unused struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req)
{
if (_already_set_or_not_launchd(req, osproductversion)) {
return EPERM;
}
#if XNU_TARGET_OS_OSX
if (task_has_system_version_compat_enabled(current_task()) && (osproductversioncompat[0] != '\0')) {
return sysctl_handle_string(oidp, osproductversioncompat, arg2, req);
} else {
return sysctl_handle_string(oidp, arg1, arg2, req);
}
#else
return sysctl_handle_string(oidp, arg1, arg2, req);
#endif
}
#if XNU_TARGET_OS_OSX
static_assert(sizeof(osproductversioncompat) == sizeof(osproductversion),
"osproductversion size matches osproductversioncompat size");
#endif
SYSCTL_PROC(_kern, OID_AUTO, osproductversion,
CTLFLAG_RW | CTLFLAG_KERN | CTLTYPE_STRING | CTLFLAG_LOCKED,
osproductversion, sizeof(osproductversion),
sysctl_osproductversion, "A", "The ProductVersion from SystemVersion.plist");
char osreleasetype[48] = { '\0' };
STATIC int
sysctl_osreleasetype(__unused struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req)
{
if (_already_set_or_not_launchd(req, osreleasetype)) {
return EPERM;
}
return sysctl_handle_string(oidp, arg1, arg2, req);
}
void reset_osreleasetype(void);
void
reset_osreleasetype(void)
{
memset(osreleasetype, 0, sizeof(osreleasetype));
}
SYSCTL_PROC(_kern, OID_AUTO, osreleasetype,
CTLFLAG_RW | CTLFLAG_KERN | CTLTYPE_STRING | CTLFLAG_LOCKED,
osreleasetype, sizeof(osreleasetype),
sysctl_osreleasetype, "A", "The ReleaseType from SystemVersion.plist");
STATIC int
sysctl_iossupportversion(__unused struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req)
{
if (_already_set_or_not_launchd(req, iossupportversion_string)) {
return EPERM;
}
return sysctl_handle_string(oidp, arg1, arg2, req);
}
SYSCTL_PROC(_kern, OID_AUTO, iossupportversion,
CTLFLAG_RW | CTLFLAG_KERN | CTLTYPE_STRING | CTLFLAG_LOCKED,
iossupportversion_string, sizeof(iossupportversion_string),
sysctl_iossupportversion, "A", "The iOSSupportVersion from SystemVersion.plist");
static uint64_t osvariant_status = 0;
STATIC int
sysctl_osvariant_status(__unused struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req)
{
if (req->newptr != 0) {
/*
* Can only ever be set by launchd, and only once.
* Reset by usrctl() -> reset_osvariant_status() during
* userspace reboot, since userspace could reboot into
* a different variant.
*/
if (proc_getpid(req->p) != 1 || osvariant_status != 0) {
return EPERM;
}
}
int err = sysctl_handle_quad(oidp, arg1, arg2, req);
reset_debug_syscall_rejection_mode();
return err;
}
SYSCTL_PROC(_kern, OID_AUTO, osvariant_status,
CTLFLAG_RW | CTLTYPE_QUAD | CTLFLAG_LOCKED | CTLFLAG_MASKED,
&osvariant_status, sizeof(osvariant_status),
sysctl_osvariant_status, "Q", "Opaque flags used to cache OS variant information");
static bool
_os_variant_check_disabled(enum os_variant_property property)
{
return (osvariant_status >> (32 + property)) & 0x1;
}
static bool
_os_variant_has(enum os_variant_status_flags_positions p)
{
return ((osvariant_status >> (p * OS_VARIANT_STATUS_BIT_WIDTH)) & OS_VARIANT_STATUS_MASK) == OS_VARIANT_S_YES;
}
bool
os_variant_has_internal_diagnostics(__unused const char *subsystem)
{
if (_os_variant_check_disabled(OS_VARIANT_PROPERTY_DIAGNOSTICS)) {
return false;
}
#if XNU_TARGET_OS_OSX
return _os_variant_has(OS_VARIANT_SFP_INTERNAL_CONTENT) || _os_variant_has(OS_VARIANT_SFP_INTERNAL_DIAGS_PROFILE);
#else
return _os_variant_has(OS_VARIANT_SFP_INTERNAL_RELEASE_TYPE);
#endif /* XNU_TARGET_OS_OSX */
}
void reset_osvariant_status(void);
void
reset_osvariant_status(void)
{
osvariant_status = 0;
reset_debug_syscall_rejection_mode();
}
extern void commpage_update_dyld_flags(uint64_t);
TUNABLE_WRITEABLE(uint64_t, dyld_flags, "dyld_flags", 0);
STATIC int
sysctl_dyld_flags(__unused struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req)
{
/*
* Can only ever be set by launchd, possibly several times
* as dyld may change its mind after a userspace reboot.
*/
if (req->newptr != 0 && proc_getpid(req->p) != 1) {
return EPERM;
}
int res = sysctl_handle_quad(oidp, arg1, arg2, req);
if (req->newptr && res == 0) {
commpage_update_dyld_flags(dyld_flags);
}
return res;
}
SYSCTL_PROC(_kern, OID_AUTO, dyld_flags,
CTLFLAG_RW | CTLTYPE_QUAD | CTLFLAG_LOCKED | CTLFLAG_MASKED,
&dyld_flags, sizeof(dyld_flags),
sysctl_dyld_flags, "Q", "Opaque flags used to cache dyld system-wide configuration");
#if defined(XNU_TARGET_OS_BRIDGE)
char macosproductversion[MACOS_VERS_LEN] = { '\0' };
SYSCTL_STRING(_kern, OID_AUTO, macosproductversion,
CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED,
&macosproductversion[0], MACOS_VERS_LEN, "The currently running macOS ProductVersion (from SystemVersion.plist on macOS)");
char macosversion[MACOS_VERS_LEN] = { '\0' };
SYSCTL_STRING(_kern, OID_AUTO, macosversion,
CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED,
&macosversion[0], MACOS_VERS_LEN, "The currently running macOS build version");
#endif
STATIC int
sysctl_sysctl_bootargs
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int error;
char buf[BOOT_LINE_LENGTH];
strlcpy(buf, PE_boot_args(), BOOT_LINE_LENGTH);
error = sysctl_io_string(req, buf, BOOT_LINE_LENGTH, 0, NULL);
return error;
}
SYSCTL_PROC(_kern, OID_AUTO, bootargs,
CTLFLAG_LOCKED | CTLFLAG_RD | CTLFLAG_KERN | CTLTYPE_STRING,
NULL, 0,
sysctl_sysctl_bootargs, "A", "bootargs");
STATIC int
sysctl_kernelcacheuuid(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req)
{
int rval = ENOENT;
if (kernelcache_uuid_valid) {
rval = sysctl_handle_string(oidp, arg1, arg2, req);
}
return rval;
}
SYSCTL_PROC(_kern, OID_AUTO, kernelcacheuuid,
CTLFLAG_RD | CTLFLAG_KERN | CTLTYPE_STRING | CTLFLAG_LOCKED,
kernelcache_uuid_string, sizeof(kernelcache_uuid_string),
sysctl_kernelcacheuuid, "A", "");
STATIC int
sysctl_systemfilesetuuid(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req)
{
int rval = ENOENT;
if (pageablekc_uuid_valid) {
rval = sysctl_handle_string(oidp, arg1, arg2, req);
}
return rval;
}
SYSCTL_PROC(_kern, OID_AUTO, systemfilesetuuid,
CTLFLAG_RD | CTLFLAG_KERN | CTLTYPE_STRING | CTLFLAG_LOCKED,
pageablekc_uuid_string, sizeof(pageablekc_uuid_string),
sysctl_systemfilesetuuid, "A", "");
STATIC int
sysctl_auxiliaryfilesetuuid(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req)
{
int rval = ENOENT;
if (auxkc_uuid_valid) {
rval = sysctl_handle_string(oidp, arg1, arg2, req);
}
return rval;
}
SYSCTL_PROC(_kern, OID_AUTO, auxiliaryfilesetuuid,
CTLFLAG_RD | CTLFLAG_KERN | CTLTYPE_STRING | CTLFLAG_LOCKED,
auxkc_uuid_string, sizeof(auxkc_uuid_string),
sysctl_auxiliaryfilesetuuid, "A", "");
STATIC int
sysctl_filesetuuid(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int rval = ENOENT;
kc_format_t kcformat;
kernel_mach_header_t *mh;
void *uuid = NULL;
unsigned long uuidlen = 0;
uuid_string_t uuid_str;
if (!PE_get_primary_kc_format(&kcformat) || kcformat != KCFormatFileset) {
return rval;
}
mh = (kernel_mach_header_t *)PE_get_kc_header(KCKindPrimary);
uuid = getuuidfromheader(mh, &uuidlen);
if ((uuid != NULL) && (uuidlen == sizeof(uuid_t))) {
uuid_unparse_upper(*(uuid_t *)uuid, uuid_str);
rval = sysctl_io_string(req, (char *)uuid_str, sizeof(uuid_str), 0, NULL);
}
return rval;
}
SYSCTL_PROC(_kern, OID_AUTO, filesetuuid,
CTLFLAG_RD | CTLFLAG_KERN | CTLTYPE_STRING | CTLFLAG_LOCKED,
NULL, 0,
sysctl_filesetuuid, "A", "");
SYSCTL_INT(_kern, KERN_MAXFILES, maxfiles,
CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED,
&maxfiles, 0, "");
SYSCTL_INT(_kern, KERN_ARGMAX, argmax,
CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED,
(int *)NULL, ARG_MAX, "");
SYSCTL_INT(_kern, KERN_POSIX1, posix1version,
CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED,
(int *)NULL, _POSIX_VERSION, "");
SYSCTL_INT(_kern, KERN_NGROUPS, ngroups,
CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED,
(int *)NULL, NGROUPS_MAX, "");
SYSCTL_INT(_kern, KERN_JOB_CONTROL, job_control,
CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED,
(int *)NULL, 1, "");
#if 1 /* _POSIX_SAVED_IDS from <unistd.h> */
SYSCTL_INT(_kern, KERN_SAVED_IDS, saved_ids,
CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED,
(int *)NULL, 1, "");
#else
SYSCTL_INT(_kern, KERN_SAVED_IDS, saved_ids,
CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED,
NULL, 0, "");
#endif
SYSCTL_INT(_kern, OID_AUTO, num_files,
CTLFLAG_RD | CTLFLAG_LOCKED,
&nfiles, 0, "");
SYSCTL_COMPAT_INT(_kern, OID_AUTO, num_vnodes,
CTLFLAG_RD | CTLFLAG_LOCKED,
&numvnodes, 0, "");
SYSCTL_INT(_kern, OID_AUTO, num_tasks,
CTLFLAG_RD | CTLFLAG_LOCKED,
&task_max, 0, "");
SYSCTL_INT(_kern, OID_AUTO, num_threads,
CTLFLAG_RD | CTLFLAG_LOCKED,
&thread_max, 0, "");
SYSCTL_INT(_kern, OID_AUTO, num_taskthreads,
CTLFLAG_RD | CTLFLAG_LOCKED,
&task_threadmax, 0, "");
SYSCTL_LONG(_kern, OID_AUTO, num_recycledvnodes,
CTLFLAG_RD | CTLFLAG_LOCKED,
&num_recycledvnodes, "");
SYSCTL_COMPAT_INT(_kern, OID_AUTO, free_vnodes,
CTLFLAG_RD | CTLFLAG_LOCKED,
&freevnodes, 0, "");
STATIC int
sysctl_maxvnodes(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int oldval = desiredvnodes;
int error = sysctl_io_number(req, desiredvnodes, sizeof(int), &desiredvnodes, NULL);
if (oldval != desiredvnodes) {
resize_namecache(desiredvnodes);
}
return error;
}
SYSCTL_INT(_kern, OID_AUTO, namecache_disabled,
CTLFLAG_RW | CTLFLAG_LOCKED,
&nc_disabled, 0, "");
SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0, sysctl_maxvnodes, "I", "");
SYSCTL_PROC(_kern, KERN_MAXPROC, maxproc,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0, sysctl_maxproc, "I", "");
SYSCTL_PROC(_kern, KERN_AIOMAX, aiomax,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0, sysctl_aiomax, "I", "");
SYSCTL_PROC(_kern, KERN_AIOPROCMAX, aioprocmax,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0, sysctl_aioprocmax, "I", "");
SYSCTL_PROC(_kern, KERN_AIOTHREADS, aiothreads,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0, sysctl_aiothreads, "I", "");
SYSCTL_PROC(_kern, OID_AUTO, sched_enable_smt,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_KERN,
0, 0, sysctl_sched_enable_smt, "I", "");
extern int sched_allow_NO_SMT_threads;
SYSCTL_INT(_kern, OID_AUTO, sched_allow_NO_SMT_threads,
CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&sched_allow_NO_SMT_threads, 0, "");
extern int sched_avoid_cpu0;
SYSCTL_INT(_kern, OID_AUTO, sched_rt_avoid_cpu0,
CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&sched_avoid_cpu0, 0, "If 1, choose cpu0 after all other primaries; if 2, choose cpu0 and cpu1 last, after all other cpus including secondaries");
#if (DEVELOPMENT || DEBUG)
static int
sysctl_kern_max_unsafe_rt_quanta(__unused struct sysctl_oid *oidp,
__unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
extern void sched_set_max_unsafe_rt_quanta(int);
extern int max_unsafe_rt_quanta;
int new_value, changed;
int old_value = max_unsafe_rt_quanta;
int error = sysctl_io_number(req, old_value, sizeof(int), &new_value,
&changed);
if (changed) {
sched_set_max_unsafe_rt_quanta(new_value);
}
return error;
}
SYSCTL_PROC(_kern, OID_AUTO, max_unsafe_rt_quanta,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0, sysctl_kern_max_unsafe_rt_quanta, "I",
"Number of quanta to allow a realtime "
"thread to run before being penalized");
static int
sysctl_kern_max_unsafe_fixed_quanta(__unused struct sysctl_oid *oidp,
__unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
extern void sched_set_max_unsafe_fixed_quanta(int);
extern int max_unsafe_fixed_quanta;
int new_value, changed;
int old_value = max_unsafe_fixed_quanta;
int error = sysctl_io_number(req, old_value, sizeof(int), &new_value,
&changed);
if (changed) {
sched_set_max_unsafe_fixed_quanta(new_value);
}
return error;
}
SYSCTL_PROC(_kern, OID_AUTO, max_unsafe_fixed_quanta,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0, sysctl_kern_max_unsafe_fixed_quanta, "I",
"Number of quanta to allow a fixed sched mode "
"thread to run before being penalized");
static int
sysctl_kern_quantum_us(__unused struct sysctl_oid *oidp, __unused void *arg1,
__unused int arg2, struct sysctl_req *req)
{
extern uint64_t sysctl_get_quantum_us(void);
const uint64_t quantum_us = sysctl_get_quantum_us();
return sysctl_io_number(req, quantum_us, sizeof(quantum_us), NULL, NULL);
}
SYSCTL_PROC(_kern, OID_AUTO, quantum_us,
CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED,
0, 0, sysctl_kern_quantum_us, "Q",
"Length of scheduling quantum in microseconds");
extern int smt_sched_bonus_16ths;
SYSCTL_INT(_kern, OID_AUTO, smt_sched_bonus_16ths,
CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&smt_sched_bonus_16ths, 0, "");
extern int smt_timeshare_enabled;
SYSCTL_INT(_kern, OID_AUTO, sched_smt_timeshare_enable,
CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&smt_timeshare_enabled, 0, "");
extern int sched_smt_balance;
SYSCTL_INT(_kern, OID_AUTO, sched_smt_balance,
CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&sched_smt_balance, 0, "");
extern int sched_allow_rt_smt;
SYSCTL_INT(_kern, OID_AUTO, sched_allow_rt_smt,
CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&sched_allow_rt_smt, 0, "");
extern int sched_allow_rt_steal;
SYSCTL_INT(_kern, OID_AUTO, sched_allow_rt_steal,
CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&sched_allow_rt_steal, 0, "");
extern int sched_backup_cpu_timeout_count;
SYSCTL_INT(_kern, OID_AUTO, sched_backup_cpu_timeout_count,
CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&sched_backup_cpu_timeout_count, 0, "The maximum number of 10us delays before allowing a backup cpu to select a thread");
#if __arm64__
/* Scheduler perfcontrol callouts sysctls */
SYSCTL_DECL(_kern_perfcontrol_callout);
SYSCTL_NODE(_kern, OID_AUTO, perfcontrol_callout, CTLFLAG_RW | CTLFLAG_LOCKED, 0,
"scheduler perfcontrol callouts");
extern int perfcontrol_callout_stats_enabled;
SYSCTL_INT(_kern_perfcontrol_callout, OID_AUTO, stats_enabled,
CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&perfcontrol_callout_stats_enabled, 0, "");
extern uint64_t perfcontrol_callout_stat_avg(perfcontrol_callout_type_t type,
perfcontrol_callout_stat_t stat);
/* On-Core Callout */
STATIC int
sysctl_perfcontrol_callout_stat
(__unused struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req)
{
perfcontrol_callout_stat_t stat = (perfcontrol_callout_stat_t)arg1;
perfcontrol_callout_type_t type = (perfcontrol_callout_type_t)arg2;
return sysctl_io_number(req, (int)perfcontrol_callout_stat_avg(type, stat),
sizeof(int), NULL, NULL);
}
SYSCTL_PROC(_kern_perfcontrol_callout, OID_AUTO, oncore_instr,
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED,
(void *)PERFCONTROL_STAT_INSTRS, PERFCONTROL_CALLOUT_ON_CORE,
sysctl_perfcontrol_callout_stat, "I", "");
SYSCTL_PROC(_kern_perfcontrol_callout, OID_AUTO, oncore_cycles,
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED,
(void *)PERFCONTROL_STAT_CYCLES, PERFCONTROL_CALLOUT_ON_CORE,
sysctl_perfcontrol_callout_stat, "I", "");
SYSCTL_PROC(_kern_perfcontrol_callout, OID_AUTO, offcore_instr,
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED,
(void *)PERFCONTROL_STAT_INSTRS, PERFCONTROL_CALLOUT_OFF_CORE,
sysctl_perfcontrol_callout_stat, "I", "");
SYSCTL_PROC(_kern_perfcontrol_callout, OID_AUTO, offcore_cycles,
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED,
(void *)PERFCONTROL_STAT_CYCLES, PERFCONTROL_CALLOUT_OFF_CORE,
sysctl_perfcontrol_callout_stat, "I", "");
SYSCTL_PROC(_kern_perfcontrol_callout, OID_AUTO, context_instr,
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED,
(void *)PERFCONTROL_STAT_INSTRS, PERFCONTROL_CALLOUT_CONTEXT,
sysctl_perfcontrol_callout_stat, "I", "");
SYSCTL_PROC(_kern_perfcontrol_callout, OID_AUTO, context_cycles,
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED,
(void *)PERFCONTROL_STAT_CYCLES, PERFCONTROL_CALLOUT_CONTEXT,
sysctl_perfcontrol_callout_stat, "I", "");
SYSCTL_PROC(_kern_perfcontrol_callout, OID_AUTO, update_instr,
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED,
(void *)PERFCONTROL_STAT_INSTRS, PERFCONTROL_CALLOUT_STATE_UPDATE,
sysctl_perfcontrol_callout_stat, "I", "");
SYSCTL_PROC(_kern_perfcontrol_callout, OID_AUTO, update_cycles,
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED,
(void *)PERFCONTROL_STAT_CYCLES, PERFCONTROL_CALLOUT_STATE_UPDATE,
sysctl_perfcontrol_callout_stat, "I", "");
#if __AMP__
extern int sched_amp_idle_steal;
SYSCTL_INT(_kern, OID_AUTO, sched_amp_idle_steal,
CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&sched_amp_idle_steal, 0, "");
extern int sched_amp_spill_steal;
SYSCTL_INT(_kern, OID_AUTO, sched_amp_spill_steal,
CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&sched_amp_spill_steal, 0, "");
extern int sched_amp_spill_count;
SYSCTL_INT(_kern, OID_AUTO, sched_amp_spill_count,
CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&sched_amp_spill_count, 0, "");
extern int sched_amp_spill_deferred_ipi;
SYSCTL_INT(_kern, OID_AUTO, sched_amp_spill_deferred_ipi,
CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&sched_amp_spill_deferred_ipi, 0, "");
extern int sched_amp_pcores_preempt_immediate_ipi;
SYSCTL_INT(_kern, OID_AUTO, sched_amp_pcores_preempt_immediate_ipi,
CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&sched_amp_pcores_preempt_immediate_ipi, 0, "");
#endif /* __AMP__ */
#endif /* __arm64__ */
#if __arm64__
extern int legacy_footprint_entitlement_mode;
SYSCTL_INT(_kern, OID_AUTO, legacy_footprint_entitlement_mode,
CTLFLAG_KERN | CTLFLAG_RD | CTLFLAG_LOCKED,
&legacy_footprint_entitlement_mode, 0, "");
#endif /* __arm64__ */
/*
* Realtime threads are ordered by highest priority first then,
* for threads of the same priority, by earliest deadline first.
* But if sched_rt_runq_strict_priority is false (the default),
* a lower priority thread with an earlier deadline will be preferred
* over a higher priority thread with a later deadline, as long as
* both threads' computations will fit before the later deadline.
*/
extern int sched_rt_runq_strict_priority;
SYSCTL_INT(_kern, OID_AUTO, sched_rt_runq_strict_priority,
CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&sched_rt_runq_strict_priority, 0, "");
static int
sysctl_kern_sched_rt_n_backup_processors(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int new_value, changed;
int old_value = sched_get_rt_n_backup_processors();
int error = sysctl_io_number(req, old_value, sizeof(int), &new_value, &changed);
if (changed) {
sched_set_rt_n_backup_processors(new_value);
}
return error;
}
SYSCTL_PROC(_kern, OID_AUTO, sched_rt_n_backup_processors,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0, sysctl_kern_sched_rt_n_backup_processors, "I", "");
static int
sysctl_kern_sched_rt_deadline_epsilon_us(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int new_value, changed;
int old_value = sched_get_rt_deadline_epsilon();
int error = sysctl_io_number(req, old_value, sizeof(int), &new_value, &changed);
if (changed) {
sched_set_rt_deadline_epsilon(new_value);
}
return error;
}
SYSCTL_PROC(_kern, OID_AUTO, sched_rt_deadline_epsilon_us,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0, sysctl_kern_sched_rt_deadline_epsilon_us, "I", "");
extern int sched_idle_delay_cpuid;
SYSCTL_INT(_kern, OID_AUTO, sched_idle_delay_cpuid,
CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&sched_idle_delay_cpuid, 0, "This cpuid will be delayed by 500us on exiting idle, to simulate interrupt or preemption delays when testing the scheduler");
static int
sysctl_kern_sched_powered_cores(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int new_value, changed;
int old_value = sched_get_powered_cores();
int error = sysctl_io_number(req, old_value, sizeof(int), &new_value, &changed);
if (changed) {
sched_set_powered_cores(new_value);
}
return error;
}
SYSCTL_PROC(_kern, OID_AUTO, sched_powered_cores,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0, sysctl_kern_sched_powered_cores, "I", "");
#endif /* (DEVELOPMENT || DEBUG) */
extern uint64_t perfcontrol_requested_recommended_cores;
SYSCTL_QUAD(_kern, OID_AUTO, sched_recommended_cores,
CTLFLAG_KERN | CTLFLAG_RD | CTLFLAG_LOCKED,
&perfcontrol_requested_recommended_cores, "");
static int
sysctl_kern_suspend_cluster_powerdown(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int new_value, changed;
int old_value = get_cluster_powerdown_user_suspended();
int error = sysctl_io_number(req, old_value, sizeof(int), &new_value, &changed);
if (!error && changed) {
if (new_value > 0) {
error = suspend_cluster_powerdown_from_user();
} else {
error = resume_cluster_powerdown_from_user();
}
if (error) {
error = EALREADY;
}
}
return error;
}
SYSCTL_PROC(_kern, OID_AUTO, suspend_cluster_powerdown,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0, sysctl_kern_suspend_cluster_powerdown, "I", "");
STATIC int
sysctl_securelvl
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int new_value, changed;
int error = sysctl_io_number(req, securelevel, sizeof(int), &new_value, &changed);
if (changed) {
if (!(new_value < securelevel && proc_getpid(req->p) != 1)) {
proc_list_lock();
securelevel = new_value;
proc_list_unlock();
} else {
error = EPERM;
}
}
return error;
}
SYSCTL_PROC(_kern, KERN_SECURELVL, securelevel,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0, sysctl_securelvl, "I", "");
STATIC int
sysctl_domainname
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int error, changed;
char tmpname[MAXHOSTNAMELEN] = {};
lck_mtx_lock(&domainname_lock);
strlcpy(tmpname, domainname, sizeof(tmpname));
lck_mtx_unlock(&domainname_lock);
error = sysctl_io_string(req, tmpname, sizeof(tmpname), 0, &changed);
if (!error && changed) {
lck_mtx_lock(&domainname_lock);
strlcpy(domainname, tmpname, sizeof(domainname));
lck_mtx_unlock(&domainname_lock);
}
return error;
}
SYSCTL_PROC(_kern, KERN_DOMAINNAME, nisdomainname,
CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0, sysctl_domainname, "A", "");
SYSCTL_COMPAT_INT(_kern, KERN_HOSTID, hostid,
CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED,
&hostid, 0, "");
STATIC int
sysctl_hostname
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int error, changed;
char tmpname[MAXHOSTNAMELEN] = {};
const char * name;
#if XNU_TARGET_OS_OSX
name = hostname;
#else /* XNU_TARGET_OS_OSX */
#define ENTITLEMENT_USER_ASSIGNED_DEVICE_NAME \
"com.apple.developer.device-information.user-assigned-device-name"
if (csproc_get_platform_binary(current_proc()) ||
IOCurrentTaskHasEntitlement(ENTITLEMENT_USER_ASSIGNED_DEVICE_NAME)) {
name = hostname;
} else {
/* Deny writes if we don't pass entitlement check */
if (req->newptr) {
return EPERM;
}
name = "localhost";
}
#endif /* ! XNU_TARGET_OS_OSX */
lck_mtx_lock(&hostname_lock);
strlcpy(tmpname, name, sizeof(tmpname));
lck_mtx_unlock(&hostname_lock);
error = sysctl_io_string(req, tmpname, sizeof(tmpname), 1, &changed);
if (!error && changed) {
lck_mtx_lock(&hostname_lock);
strlcpy(hostname, tmpname, sizeof(hostname));
lck_mtx_unlock(&hostname_lock);
}
return error;
}
SYSCTL_PROC(_kern, KERN_HOSTNAME, hostname,
CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0, sysctl_hostname, "A", "");
STATIC int
sysctl_procname
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
/* Original code allowed writing, I'm copying this, although this all makes
* no sense to me. Besides, this sysctl is never used. */
return sysctl_io_string(req, &req->p->p_name[0], (2 * MAXCOMLEN + 1), 1, NULL);
}
SYSCTL_PROC(_kern, KERN_PROCNAME, procname,
CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_LOCKED,
0, 0, sysctl_procname, "A", "");
SYSCTL_INT(_kern, KERN_SPECULATIVE_READS, speculative_reads_disabled,
CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED,
&speculative_reads_disabled, 0, "");
SYSCTL_UINT(_kern, OID_AUTO, preheat_max_bytes,
CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED,
&preheat_max_bytes, 0, "");
SYSCTL_UINT(_kern, OID_AUTO, preheat_min_bytes,
CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED,
&preheat_min_bytes, 0, "");
SYSCTL_UINT(_kern, OID_AUTO, speculative_prefetch_max,
CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED,
&speculative_prefetch_max, 0, "");
SYSCTL_UINT(_kern, OID_AUTO, speculative_prefetch_max_iosize,
CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED,
&speculative_prefetch_max_iosize, 0, "");
SYSCTL_UINT(_kern, OID_AUTO, vm_page_free_target,
CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED,
&vm_page_free_target, 0, "");
SYSCTL_UINT(_kern, OID_AUTO, vm_page_free_min,
CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED,
&vm_page_free_min, 0, "");
SYSCTL_UINT(_kern, OID_AUTO, vm_page_free_reserved,
CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED,
&vm_page_free_reserved, 0, "");
SYSCTL_UINT(_kern, OID_AUTO, vm_page_speculative_percentage,
CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED,
&vm_pageout_state.vm_page_speculative_percentage, 0, "");
SYSCTL_UINT(_kern, OID_AUTO, vm_page_speculative_q_age_ms,
CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED,
&vm_pageout_state.vm_page_speculative_q_age_ms, 0, "");
SYSCTL_UINT(_kern, OID_AUTO, vm_max_delayed_work_limit,
CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED,
&vm_max_delayed_work_limit, 0, "");
SYSCTL_UINT(_kern, OID_AUTO, vm_max_batch,
CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED,
&vm_max_batch, 0, "");
SYSCTL_STRING(_kern, OID_AUTO, bootsessionuuid,
CTLFLAG_RD | CTLFLAG_LOCKED,
&bootsessionuuid_string, sizeof(bootsessionuuid_string), "");
STATIC int
sysctl_boottime
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
struct timeval tv;
boottime_timeval(&tv);
struct proc *p = req->p;
if (proc_is64bit(p)) {
struct user64_timeval t = {};
t.tv_sec = tv.tv_sec;
t.tv_usec = tv.tv_usec;
return sysctl_io_opaque(req, &t, sizeof(t), NULL);
} else {
struct user32_timeval t = {};
t.tv_sec = (user32_time_t)tv.tv_sec;
t.tv_usec = tv.tv_usec;
return sysctl_io_opaque(req, &t, sizeof(t), NULL);
}
}
SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime,
CTLTYPE_STRUCT | CTLFLAG_KERN | CTLFLAG_RD | CTLFLAG_LOCKED,
0, 0, sysctl_boottime, "S,timeval", "");
extern bool IOGetBootUUID(char *);
/* non-static: written by imageboot.c */
uuid_string_t fake_bootuuid;
STATIC int
sysctl_bootuuid
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int error = ENOENT;
/* check the first byte to see if the string has been
* populated. this is a uuid_STRING_t, this check would
* not work with a uuid_t.
*/
if (fake_bootuuid[0] != '\0') {
error = sysctl_io_string(req, fake_bootuuid, 0, 0, NULL);
goto out;
}
uuid_string_t uuid_string;
if (IOGetBootUUID(uuid_string)) {
uuid_t boot_uuid;
error = uuid_parse(uuid_string, boot_uuid);
if (!error) {
error = sysctl_io_string(req, __DECONST(char *, uuid_string), 0, 0, NULL);
}
}
out:
return error;
}
SYSCTL_PROC(_kern, OID_AUTO, bootuuid,
CTLTYPE_STRING | CTLFLAG_KERN | CTLFLAG_RD | CTLFLAG_LOCKED,
0, 0, sysctl_bootuuid, "A", "");
extern bool IOGetApfsPrebootUUID(char *);
extern bool IOGetAssociatedApfsVolgroupUUID(char *);
STATIC int
sysctl_apfsprebootuuid
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int error = ENOENT;
uuid_string_t uuid_string;
if (IOGetApfsPrebootUUID(uuid_string)) {
uuid_t apfs_preboot_uuid;
error = uuid_parse(uuid_string, apfs_preboot_uuid);
if (!error) {
error = sysctl_io_string(req, __DECONST(char *, uuid_string), 0, 0, NULL);
}
}
return error;
}
SYSCTL_PROC(_kern, OID_AUTO, apfsprebootuuid,
CTLTYPE_STRING | CTLFLAG_KERN | CTLFLAG_RD | CTLFLAG_LOCKED,
0, 0, sysctl_apfsprebootuuid, "A", "");
STATIC int
sysctl_targetsystemvolgroupuuid
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int error = ENOENT;
uuid_string_t uuid_string;
if (IOGetApfsPrebootUUID(uuid_string)) {
uuid_t apfs_preboot_uuid;
error = uuid_parse(uuid_string, apfs_preboot_uuid);
if (!error) {
error = sysctl_io_string(req, __DECONST(char *, uuid_string), 0, 0, NULL);
}
} else {
/*
* In special boot modes, such as kcgen-mode, the
* apfs-preboot-uuid property will not be set. Instead, a
* different property, associated-volume-group, will be set
* which indicates the UUID of the VolumeGroup containing the
* system volume into which you will boot.
*/
if (IOGetAssociatedApfsVolgroupUUID(uuid_string)) {
uuid_t apfs_preboot_uuid;
error = uuid_parse(uuid_string, apfs_preboot_uuid);
if (!error) {
error = sysctl_io_string(req, __DECONST(char *, uuid_string), 0, 0, NULL);
}
}
}
return error;
}
SYSCTL_PROC(_kern, OID_AUTO, targetsystemvolgroupuuid,
CTLTYPE_STRING | CTLFLAG_KERN | CTLFLAG_RD | CTLFLAG_MASKED | CTLFLAG_LOCKED,
0, 0, sysctl_targetsystemvolgroupuuid, "A", "");
extern bool IOGetBootManifestHash(char *, size_t *);
extern bool IOGetBootObjectsPath(char *);
STATIC int
sysctl_bootobjectspath
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int error = ENOENT;
#if defined(__x86_64__)
/* auth-root-dmg is used for the Intel BaseSystem in some flows,
* e.g. createinstallmedia and as part of upgrading from 10.15 or earlier
* under these scenarios, set_fake_bootuuid will be called when pivoting to
* the new root filesystem. need honor the fake bootuuid.
*/
if (fake_bootuuid[0] != '\0') {
error = sysctl_io_string(req, fake_bootuuid, 0, 0, NULL);
} else {
/* for intel mac, boot objects reside in [preboot volume]/[bootuuid]
* bootuuid and apfsprebootuuid are populated by efiboot and they are alias.
*/
uuid_string_t uuid_string;
if (IOGetBootUUID(uuid_string)) {
uuid_t boot_uuid;
error = uuid_parse(uuid_string, boot_uuid);
if (!error) {
error = sysctl_io_string(req, (char *)uuid_string, 0, 0, NULL);
}
}
}
#else
char boot_obj_path[MAXPATHLEN] = { "\0" };
static const char kAsciiHexChars[] = "0123456789ABCDEF";
unsigned int i, j;
/* Hashed with SHA2-384 or SHA1, boot manifest hash is 48 bytes or 20 bytes
* hence, need a 97 bytes char array for the string.
*/
size_t hash_data_size = CCSHA384_OUTPUT_SIZE;
char hash_data[CCSHA384_OUTPUT_SIZE] = { "\0" };
char boot_manifest_hash[CCSHA384_OUTPUT_SIZE * 2 + 1] = { "\0" };;
/* for Apple Silicon Macs, there is a boot-objects-path under IODeviceTree:/chosen
* and boot objects reside in [preboot volume]/[boot-objects-path]
* for embedded platforms, there would be a boot-manifest-hash under IODeviceTree:/chosen
* and boot objects reside in [preboot volume]/[boot-manifest-hash]
*/
if (IOGetBootObjectsPath(boot_obj_path)) {
error = sysctl_io_string(req, (char *)boot_obj_path, 0, 0, NULL);
} else if (IOGetBootManifestHash(hash_data, &hash_data_size)) {
j = 0;
for (i = 0; i < hash_data_size; ++i) {
char octet = hash_data[i];
boot_manifest_hash[j++] = kAsciiHexChars[((octet & 0xF0) >> 4)];
boot_manifest_hash[j++] = kAsciiHexChars[(octet & 0x0F)];
}
/* make sure string has null termination */
boot_manifest_hash[j] = '\0';
error = sysctl_io_string(req, (char *)boot_manifest_hash, 0, 0, NULL);
}
#endif
return error;
}
SYSCTL_PROC(_kern, OID_AUTO, bootobjectspath,
CTLTYPE_STRING | CTLFLAG_KERN | CTLFLAG_RD | CTLFLAG_LOCKED,
0, 0, sysctl_bootobjectspath, "A", "");
STATIC int
sysctl_symfile
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
char *str;
int error = get_kernel_symfile(req->p, &str);
if (error) {
return error;
}
return sysctl_io_string(req, str, 0, 0, NULL);
}
SYSCTL_PROC(_kern, KERN_SYMFILE, symfile,
CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_LOCKED,
0, 0, sysctl_symfile, "A", "");
#if CONFIG_NETBOOT
STATIC int
sysctl_netboot
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
return sysctl_io_number(req, netboot_root(), sizeof(int), NULL, NULL);
}
SYSCTL_PROC(_kern, KERN_NETBOOT, netboot,
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED,
0, 0, sysctl_netboot, "I", "");
#endif
#ifdef CONFIG_IMGSRC_ACCESS
/*
* Legacy--act as if only one layer of nesting is possible.
*/
STATIC int
sysctl_imgsrcdev
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
vfs_context_t ctx = vfs_context_current();
vnode_t devvp;
int result;
if (!vfs_context_issuser(ctx)) {
return EPERM;
}
if (imgsrc_rootvnodes[0] == NULL) {
return ENOENT;
}
result = vnode_getwithref(imgsrc_rootvnodes[0]);
if (result != 0) {
return result;
}
devvp = vnode_mount(imgsrc_rootvnodes[0])->mnt_devvp;
result = vnode_getwithref(devvp);
if (result != 0) {
goto out;
}
result = sysctl_io_number(req, vnode_specrdev(devvp), sizeof(dev_t), NULL, NULL);
vnode_put(devvp);
out:
vnode_put(imgsrc_rootvnodes[0]);
return result;
}
SYSCTL_PROC(_kern, OID_AUTO, imgsrcdev,
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED,
0, 0, sysctl_imgsrcdev, "I", "");
STATIC int
sysctl_imgsrcinfo
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int error;
struct imgsrc_info info[MAX_IMAGEBOOT_NESTING] = {}; /* 2 for now, no problem */
uint32_t i;
vnode_t rvp, devvp;
if (imgsrc_rootvnodes[0] == NULLVP) {
return ENXIO;
}
for (i = 0; i < MAX_IMAGEBOOT_NESTING; i++) {
/*
* Go get the root vnode.
*/
rvp = imgsrc_rootvnodes[i];
if (rvp == NULLVP) {
break;
}
error = vnode_get(rvp);
if (error != 0) {
return error;
}
/*
* For now, no getting at a non-local volume.
*/
devvp = vnode_mount(rvp)->mnt_devvp;
if (devvp == NULL) {
vnode_put(rvp);
return EINVAL;
}
error = vnode_getwithref(devvp);
if (error != 0) {
vnode_put(rvp);
return error;
}
/*
* Fill in info.
*/
info[i].ii_dev = vnode_specrdev(devvp);
info[i].ii_flags = 0;
info[i].ii_height = i;
bzero(info[i].ii_reserved, sizeof(info[i].ii_reserved));
vnode_put(devvp);
vnode_put(rvp);
}
return sysctl_io_opaque(req, info, i * sizeof(info[0]), NULL);
}
SYSCTL_PROC(_kern, OID_AUTO, imgsrcinfo,
CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_LOCKED,
0, 0, sysctl_imgsrcinfo, "I", "");
#endif /* CONFIG_IMGSRC_ACCESS */
SYSCTL_DECL(_kern_timer);
SYSCTL_NODE(_kern, OID_AUTO, timer, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "timer");
SYSCTL_INT(_kern_timer, OID_AUTO, coalescing_enabled,
CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&mach_timer_coalescing_enabled, 0, "");
SYSCTL_QUAD(_kern_timer, OID_AUTO, deadline_tracking_bin_1,
CTLFLAG_RW | CTLFLAG_LOCKED,
&timer_deadline_tracking_bin_1, "");
SYSCTL_QUAD(_kern_timer, OID_AUTO, deadline_tracking_bin_2,
CTLFLAG_RW | CTLFLAG_LOCKED,
&timer_deadline_tracking_bin_2, "");
SYSCTL_DECL(_kern_timer_longterm);
SYSCTL_NODE(_kern_timer, OID_AUTO, longterm, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "longterm");
/* Must match definition in osfmk/kern/timer_call.c */
enum {
THRESHOLD, QCOUNT,
ENQUEUES, DEQUEUES, ESCALATES, SCANS, PREEMPTS,
LATENCY, LATENCY_MIN, LATENCY_MAX, LONG_TERM_SCAN_LIMIT,
LONG_TERM_SCAN_INTERVAL, LONG_TERM_SCAN_PAUSES,
SCAN_LIMIT, SCAN_INTERVAL, SCAN_PAUSES, SCAN_POSTPONES,
};
extern uint64_t timer_sysctl_get(int);
extern int timer_sysctl_set(int, uint64_t);
STATIC int
sysctl_timer
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int oid = (int)arg1;
uint64_t value = timer_sysctl_get(oid);
uint64_t new_value;
int error;
int changed;
error = sysctl_io_number(req, value, sizeof(value), &new_value, &changed);
if (changed) {
error = timer_sysctl_set(oid, new_value);
}
return error;
}
SYSCTL_PROC(_kern_timer_longterm, OID_AUTO, threshold,
CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED,
(void *) THRESHOLD, 0, sysctl_timer, "Q", "");
SYSCTL_PROC(_kern_timer_longterm, OID_AUTO, scan_limit,
CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED,
(void *) LONG_TERM_SCAN_LIMIT, 0, sysctl_timer, "Q", "");
SYSCTL_PROC(_kern_timer_longterm, OID_AUTO, scan_interval,
CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED,
(void *) LONG_TERM_SCAN_INTERVAL, 0, sysctl_timer, "Q", "");
SYSCTL_PROC(_kern_timer_longterm, OID_AUTO, qlen,
CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED,
(void *) QCOUNT, 0, sysctl_timer, "Q", "");
SYSCTL_PROC(_kern_timer_longterm, OID_AUTO, scan_pauses,
CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED,
(void *) LONG_TERM_SCAN_PAUSES, 0, sysctl_timer, "Q", "");
#if DEBUG
SYSCTL_PROC(_kern_timer_longterm, OID_AUTO, enqueues,
CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED,
(void *) ENQUEUES, 0, sysctl_timer, "Q", "");
SYSCTL_PROC(_kern_timer_longterm, OID_AUTO, dequeues,
CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED,
(void *) DEQUEUES, 0, sysctl_timer, "Q", "");
SYSCTL_PROC(_kern_timer_longterm, OID_AUTO, escalates,
CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED,
(void *) ESCALATES, 0, sysctl_timer, "Q", "");
SYSCTL_PROC(_kern_timer_longterm, OID_AUTO, scans,
CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED,
(void *) SCANS, 0, sysctl_timer, "Q", "");
SYSCTL_PROC(_kern_timer_longterm, OID_AUTO, preempts,
CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED,
(void *) PREEMPTS, 0, sysctl_timer, "Q", "");
SYSCTL_PROC(_kern_timer_longterm, OID_AUTO, latency,
CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED,
(void *) LATENCY, 0, sysctl_timer, "Q", "");
SYSCTL_PROC(_kern_timer_longterm, OID_AUTO, latency_min,
CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED,
(void *) LATENCY_MIN, 0, sysctl_timer, "Q", "");
SYSCTL_PROC(_kern_timer_longterm, OID_AUTO, latency_max,
CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED,
(void *) LATENCY_MAX, 0, sysctl_timer, "Q", "");
#endif /* DEBUG */
SYSCTL_PROC(_kern_timer, OID_AUTO, scan_limit,
CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED,
(void *) SCAN_LIMIT, 0, sysctl_timer, "Q", "");
SYSCTL_PROC(_kern_timer, OID_AUTO, scan_interval,
CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED,
(void *) SCAN_INTERVAL, 0, sysctl_timer, "Q", "");
SYSCTL_PROC(_kern_timer, OID_AUTO, scan_pauses,
CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED,
(void *) SCAN_PAUSES, 0, sysctl_timer, "Q", "");
SYSCTL_PROC(_kern_timer, OID_AUTO, scan_postpones,
CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED,
(void *) SCAN_POSTPONES, 0, sysctl_timer, "Q", "");
STATIC int
sysctl_usrstack
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
return sysctl_io_number(req, (int)req->p->user_stack, sizeof(int), NULL, NULL);
}
SYSCTL_PROC(_kern, KERN_USRSTACK32, usrstack,
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED,
0, 0, sysctl_usrstack, "I", "");
STATIC int
sysctl_usrstack64
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
return sysctl_io_number(req, req->p->user_stack, sizeof(req->p->user_stack), NULL, NULL);
}
SYSCTL_PROC(_kern, KERN_USRSTACK64, usrstack64,
CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED,
0, 0, sysctl_usrstack64, "Q", "");
#if EXCLAVES_COREDUMP
/* secure kernel coredump support. */
extern unsigned int sc_dump_mode;
SYSCTL_UINT(_kern, OID_AUTO, secure_coredump, CTLFLAG_RD, &sc_dump_mode, 0, "secure_coredump");
#endif /* EXCLAVES_COREDUMP */
#if CONFIG_COREDUMP
SYSCTL_STRING(_kern, KERN_COREFILE, corefile,
CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED,
corefilename, sizeof(corefilename), "");
SYSCTL_STRING(_kern, OID_AUTO, drivercorefile,
CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED,
drivercorefilename, sizeof(drivercorefilename), "");
STATIC int
sysctl_coredump
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
#ifdef SECURE_KERNEL
(void)req;
return ENOTSUP;
#else
int new_value, changed;
int error = sysctl_io_number(req, do_coredump, sizeof(int), &new_value, &changed);
if (changed) {
if ((new_value == 0) || (new_value == 1)) {
do_coredump = new_value;
} else {
error = EINVAL;
}
}
return error;
#endif
}
SYSCTL_PROC(_kern, KERN_COREDUMP, coredump,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0, sysctl_coredump, "I", "");
STATIC int
sysctl_suid_coredump
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
#ifdef SECURE_KERNEL
(void)req;
return ENOTSUP;
#else
int new_value, changed;
int error = sysctl_io_number(req, sugid_coredump, sizeof(int), &new_value, &changed);
if (changed) {
if ((new_value == 0) || (new_value == 1)) {
sugid_coredump = new_value;
} else {
error = EINVAL;
}
}
return error;
#endif
}
SYSCTL_PROC(_kern, KERN_SUGID_COREDUMP, sugid_coredump,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0, sysctl_suid_coredump, "I", "");
#endif /* CONFIG_COREDUMP */
STATIC int
sysctl_delayterm
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
struct proc *p = req->p;
int new_value, changed;
int error = sysctl_io_number(req, (req->p->p_lflag & P_LDELAYTERM)? 1: 0, sizeof(int), &new_value, &changed);
if (changed) {
proc_lock(p);
if (new_value) {
req->p->p_lflag |= P_LDELAYTERM;
} else {
req->p->p_lflag &= ~P_LDELAYTERM;
}
proc_unlock(p);
}
return error;
}
SYSCTL_PROC(_kern, KERN_PROCDELAYTERM, delayterm,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0, sysctl_delayterm, "I", "");
STATIC int
sysctl_rage_vnode
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
struct proc *p = req->p;
struct uthread *ut;
int new_value, old_value, changed;
int error;
ut = current_uthread();
if (ut->uu_flag & UT_RAGE_VNODES) {
old_value = KERN_RAGE_THREAD;
} else if (p->p_lflag & P_LRAGE_VNODES) {
old_value = KERN_RAGE_PROC;
} else {
old_value = 0;
}
error = sysctl_io_number(req, old_value, sizeof(int), &new_value, &changed);
if ((error == 0) && (changed != 0)) {
switch (new_value) {
case KERN_RAGE_PROC:
proc_lock(p);
p->p_lflag |= P_LRAGE_VNODES;
proc_unlock(p);
break;
case KERN_UNRAGE_PROC:
proc_lock(p);
p->p_lflag &= ~P_LRAGE_VNODES;
proc_unlock(p);
break;
case KERN_RAGE_THREAD:
ut->uu_flag |= UT_RAGE_VNODES;
break;
case KERN_UNRAGE_THREAD:
ut = current_uthread();
ut->uu_flag &= ~UT_RAGE_VNODES;
break;
}
}
return error;
}
SYSCTL_PROC(_kern, KERN_RAGEVNODE, rage_vnode,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_LOCKED,
0, 0, sysctl_rage_vnode, "I", "");
/* XXX until filecoordinationd fixes a bit of inverted logic. */
STATIC int
sysctl_vfsnspace
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int old_value = 0, new_value, changed;
return sysctl_io_number(req, old_value, sizeof(int), &new_value,
&changed);
}
SYSCTL_PROC(_kern, OID_AUTO, vfsnspace,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_LOCKED,
0, 0, sysctl_vfsnspace, "I", "");
/* XXX move this interface into libproc and remove this sysctl */
STATIC int
sysctl_setthread_cpupercent
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int new_value, old_value;
int error = 0;
kern_return_t kret = KERN_SUCCESS;
uint8_t percent = 0;
int ms_refill = 0;
if (!req->newptr) {
return 0;
}
old_value = 0;
if ((error = sysctl_io_number(req, old_value, sizeof(old_value), &new_value, NULL)) != 0) {
return error;
}
percent = new_value & 0xff; /* low 8 bytes for perent */
ms_refill = (new_value >> 8) & 0xffffff; /* upper 24bytes represent ms refill value */
if (percent > 100) {
return EINVAL;
}
/*
* If the caller is specifying a percentage of 0, this will unset the CPU limit, if present.
*/
kret = percent == 0 ?
thread_set_cpulimit(THREAD_CPULIMIT_DISABLE, 0, 0) :
thread_set_cpulimit(THREAD_CPULIMIT_BLOCK, percent, ms_refill * (int)NSEC_PER_MSEC);
if (kret != 0) {
return EIO;
}
return 0;
}
SYSCTL_PROC(_kern, OID_AUTO, setthread_cpupercent,
CTLTYPE_INT | CTLFLAG_WR | CTLFLAG_ANYBODY,
0, 0, sysctl_setthread_cpupercent, "I", "set thread cpu percentage limit");
STATIC int
sysctl_kern_check_openevt
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
struct proc *p = req->p;
int new_value, old_value, changed;
int error;
if (p->p_flag & P_CHECKOPENEVT) {
old_value = KERN_OPENEVT_PROC;
} else {
old_value = 0;
}
error = sysctl_io_number(req, old_value, sizeof(int), &new_value, &changed);
if ((error == 0) && (changed != 0)) {
switch (new_value) {
case KERN_OPENEVT_PROC:
OSBitOrAtomic(P_CHECKOPENEVT, &p->p_flag);
break;
case KERN_UNOPENEVT_PROC:
OSBitAndAtomic(~((uint32_t)P_CHECKOPENEVT), &p->p_flag);
break;
default:
error = EINVAL;
}
}
return error;
}
SYSCTL_PROC(_kern, KERN_CHECKOPENEVT, check_openevt, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_LOCKED,
0, 0, sysctl_kern_check_openevt, "I", "set the per-process check-open-evt flag");
#if DEVELOPMENT || DEBUG
STATIC int
sysctl_nx
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
#ifdef SECURE_KERNEL
(void)req;
return ENOTSUP;
#else
int new_value, changed;
int error;
error = sysctl_io_number(req, nx_enabled, sizeof(nx_enabled), &new_value, &changed);
if (error) {
return error;
}
if (changed) {
#if defined(__x86_64__)
/*
* Only allow setting if NX is supported on the chip
*/
if (!(cpuid_extfeatures() & CPUID_EXTFEATURE_XD)) {
return ENOTSUP;
}
#endif
nx_enabled = new_value;
}
return error;
#endif /* SECURE_KERNEL */
}
#endif
#if DEVELOPMENT || DEBUG
SYSCTL_PROC(_kern, KERN_NX_PROTECTION, nx,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED,
0, 0, sysctl_nx, "I", "");
#endif
STATIC int
sysctl_loadavg
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
if (proc_is64bit(req->p)) {
struct user64_loadavg loadinfo64 = {};
fill_loadavg64(&averunnable, &loadinfo64);
return sysctl_io_opaque(req, &loadinfo64, sizeof(loadinfo64), NULL);
} else {
struct user32_loadavg loadinfo32 = {};
fill_loadavg32(&averunnable, &loadinfo32);
return sysctl_io_opaque(req, &loadinfo32, sizeof(loadinfo32), NULL);
}
}
SYSCTL_PROC(_vm, VM_LOADAVG, loadavg,
CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
0, 0, sysctl_loadavg, "S,loadavg", "");
/*
* Note: Thread safe; vm_map_lock protects in vm_toggle_entry_reuse()
*/
STATIC int
sysctl_vm_toggle_address_reuse(__unused struct sysctl_oid *oidp, __unused void *arg1,
__unused int arg2, struct sysctl_req *req)
{
int old_value = 0, new_value = 0, error = 0;
if (vm_toggle_entry_reuse( VM_TOGGLE_GETVALUE, &old_value )) {
return error;
}
error = sysctl_io_number(req, old_value, sizeof(int), &new_value, NULL);
if (!error) {
return vm_toggle_entry_reuse(new_value, NULL);
}
return error;
}
SYSCTL_PROC(_debug, OID_AUTO, toggle_address_reuse, CTLFLAG_ANYBODY | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, sysctl_vm_toggle_address_reuse, "I", "");
#ifdef CONFIG_XNUPOST
extern uint32_t xnupost_get_estimated_testdata_size(void);
extern int xnupost_reset_all_tests(void);
STATIC int
sysctl_handle_xnupost_get_tests SYSCTL_HANDLER_ARGS
{
/* fixup unused arguments warnings */
__unused int _oa2 = arg2;
__unused void * _oa1 = arg1;
__unused struct sysctl_oid * _oidp = oidp;
int error = 0;
user_addr_t oldp = 0;
user_addr_t newp = 0;
uint32_t usedbytes = 0;
oldp = req->oldptr;
newp = req->newptr;
if (newp) {
return ENOTSUP;
}
if ((void *)oldp == NULL) {
/* return estimated size for second call where info can be placed */
req->oldidx = xnupost_get_estimated_testdata_size();
} else {
error = xnupost_export_testdata((void *)oldp, req->oldlen, &usedbytes);
req->oldidx = usedbytes;
}
return error;
}
SYSCTL_PROC(_debug,
OID_AUTO,
xnupost_get_tests,
CTLFLAG_MASKED | CTLFLAG_ANYBODY | CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_LOCKED,
0,
0,
sysctl_handle_xnupost_get_tests,
"-",
"read xnupost test data in kernel");
#if CONFIG_EXT_PANICLOG
/*
* Extensible panic log test hooks
*/
static int
sysctl_debug_ext_paniclog_test_hook SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
int rval = 0;
uint32_t test_option = 0;
rval = sysctl_handle_int(oidp, &test_option, 0, req);
if (rval == 0 && req->newptr) {
rval = ext_paniclog_test_hook(test_option);
}
return rval;
}
SYSCTL_PROC(_debug, OID_AUTO, ext_paniclog_test_hook,
CTLTYPE_INT | CTLFLAG_RW,
0, 0,
sysctl_debug_ext_paniclog_test_hook, "A", "ext paniclog test hook");
#endif
STATIC int
sysctl_debug_xnupost_ctl SYSCTL_HANDLER_ARGS
{
/* fixup unused arguments warnings */
__unused int _oa2 = arg2;
__unused void * _oa1 = arg1;
__unused struct sysctl_oid * _oidp = oidp;
#define ARRCOUNT 4
/*
* INPUT: ACTION, PARAM1, PARAM2, PARAM3
* OUTPUT: RESULTCODE, ADDITIONAL DATA
*/
int32_t outval[ARRCOUNT] = {0};
int32_t input[ARRCOUNT] = {0};
int32_t out_size = sizeof(outval);
int32_t in_size = sizeof(input);
int error = 0;
/* if this is NULL call to find out size, send out size info */
if (!req->newptr) {
goto out;
}
/* pull in provided value from userspace */
error = SYSCTL_IN(req, &input[0], in_size);
if (error) {
return error;
}
if (input[0] == XTCTL_RESET_TESTDATA) {
outval[0] = xnupost_reset_all_tests();
goto out;
}
out:
error = SYSCTL_OUT(req, &outval[0], out_size);
return error;
}
SYSCTL_PROC(_debug,
OID_AUTO,
xnupost_testctl,
CTLFLAG_MASKED | CTLFLAG_ANYBODY | CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_LOCKED,
0,
0,
sysctl_debug_xnupost_ctl,
"I",
"xnupost control for kernel testing");
extern void test_oslog_handleOSLogCtl(int32_t * in, int32_t * out, int32_t arraycount);
STATIC int
sysctl_debug_test_oslog_ctl(__unused struct sysctl_oid * oidp, __unused void * arg1, __unused int arg2, struct sysctl_req * req)
{
#define ARRCOUNT 4
int32_t outval[ARRCOUNT] = {0};
int32_t input[ARRCOUNT] = {0};
int32_t size_outval = sizeof(outval);
int32_t size_inval = sizeof(input);
int32_t error;
/* if this is NULL call to find out size, send out size info */
if (!req->newptr) {
error = SYSCTL_OUT(req, &outval[0], size_outval);
return error;
}
/* pull in provided value from userspace */
error = SYSCTL_IN(req, &input[0], size_inval);
if (error) {
return error;
}
test_oslog_handleOSLogCtl(input, outval, ARRCOUNT);
error = SYSCTL_OUT(req, &outval[0], size_outval);
return error;
}
SYSCTL_PROC(_debug,
OID_AUTO,
test_OSLogCtl,
CTLFLAG_MASKED | CTLFLAG_ANYBODY | CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_LOCKED,
0,
0,
sysctl_debug_test_oslog_ctl,
"I",
"testing oslog in kernel");
#include <mach/task.h>
#include <mach/semaphore.h>
static LCK_GRP_DECLARE(sysctl_debug_test_stackshot_owner_grp, "test-stackshot-owner-grp");
static LCK_MTX_DECLARE(sysctl_debug_test_stackshot_owner_init_mtx,
&sysctl_debug_test_stackshot_owner_grp);
/* This is a sysctl for testing collection of owner info on a lock in kernel space. A multi-threaded
* test from userland sets this sysctl in such a way that a thread blocks in kernel mode, and a
* stackshot is taken to see if the owner of the lock can be identified.
*
* We can't return to userland with a kernel lock held, so be sure to unlock before we leave.
* the semaphores allow us to artificially create cases where the lock is being held and the
* thread is hanging / taking a long time to do something. */
volatile char sysctl_debug_test_stackshot_mtx_inited = 0;
semaphore_t sysctl_debug_test_stackshot_mutex_sem;
lck_mtx_t sysctl_debug_test_stackshot_owner_lck;
#define SYSCTL_DEBUG_MTX_ACQUIRE_WAIT 1
#define SYSCTL_DEBUG_MTX_ACQUIRE_NOWAIT 2
#define SYSCTL_DEBUG_MTX_SIGNAL 3
#define SYSCTL_DEBUG_MTX_TEARDOWN 4
STATIC int
sysctl_debug_test_stackshot_mutex_owner(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
long long option = -1;
/* if the user tries to read the sysctl, we tell them what the address of the lock is (to test against stackshot's output) */
long long mtx_unslid_addr = (long long)VM_KERNEL_UNSLIDE_OR_PERM(&sysctl_debug_test_stackshot_owner_lck);
int error = sysctl_io_number(req, mtx_unslid_addr, sizeof(long long), (void*)&option, NULL);
lck_mtx_lock(&sysctl_debug_test_stackshot_owner_init_mtx);
if (!sysctl_debug_test_stackshot_mtx_inited) {
lck_mtx_init(&sysctl_debug_test_stackshot_owner_lck,
&sysctl_debug_test_stackshot_owner_grp,
LCK_ATTR_NULL);
semaphore_create(kernel_task,
&sysctl_debug_test_stackshot_mutex_sem,
SYNC_POLICY_FIFO, 0);
sysctl_debug_test_stackshot_mtx_inited = 1;
}
lck_mtx_unlock(&sysctl_debug_test_stackshot_owner_init_mtx);
if (!error) {
switch (option) {
case SYSCTL_DEBUG_MTX_ACQUIRE_NOWAIT:
lck_mtx_lock(&sysctl_debug_test_stackshot_owner_lck);
lck_mtx_unlock(&sysctl_debug_test_stackshot_owner_lck);
break;
case SYSCTL_DEBUG_MTX_ACQUIRE_WAIT:
lck_mtx_lock(&sysctl_debug_test_stackshot_owner_lck);
semaphore_wait(sysctl_debug_test_stackshot_mutex_sem);
lck_mtx_unlock(&sysctl_debug_test_stackshot_owner_lck);
break;
case SYSCTL_DEBUG_MTX_SIGNAL:
semaphore_signal(sysctl_debug_test_stackshot_mutex_sem);
break;
case SYSCTL_DEBUG_MTX_TEARDOWN:
lck_mtx_lock(&sysctl_debug_test_stackshot_owner_init_mtx);
lck_mtx_destroy(&sysctl_debug_test_stackshot_owner_lck,
&sysctl_debug_test_stackshot_owner_grp);
semaphore_destroy(kernel_task,
sysctl_debug_test_stackshot_mutex_sem);
sysctl_debug_test_stackshot_mtx_inited = 0;
lck_mtx_unlock(&sysctl_debug_test_stackshot_owner_init_mtx);
break;
case -1: /* user just wanted to read the value, so do nothing */
break;
default:
error = EINVAL;
break;
}
}
return error;
}
/* we can't return to userland with a kernel rwlock held, so be sure to unlock before we leave.
* the semaphores allow us to artificially create cases where the lock is being held and the
* thread is hanging / taking a long time to do something. */
SYSCTL_PROC(_debug,
OID_AUTO,
test_MutexOwnerCtl,
CTLFLAG_MASKED | CTLFLAG_ANYBODY | CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED,
0,
0,
sysctl_debug_test_stackshot_mutex_owner,
"-",
"Testing mutex owner in kernel");
volatile char sysctl_debug_test_stackshot_rwlck_inited = 0;
lck_rw_t sysctl_debug_test_stackshot_owner_rwlck;
semaphore_t sysctl_debug_test_stackshot_rwlck_sem;
#define SYSCTL_DEBUG_KRWLCK_RACQUIRE_NOWAIT 1
#define SYSCTL_DEBUG_KRWLCK_RACQUIRE_WAIT 2
#define SYSCTL_DEBUG_KRWLCK_WACQUIRE_NOWAIT 3
#define SYSCTL_DEBUG_KRWLCK_WACQUIRE_WAIT 4
#define SYSCTL_DEBUG_KRWLCK_SIGNAL 5
#define SYSCTL_DEBUG_KRWLCK_TEARDOWN 6
STATIC int
sysctl_debug_test_stackshot_rwlck_owner(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
long long option = -1;
/* if the user tries to read the sysctl, we tell them what the address of the lock is
* (to test against stackshot's output) */
long long rwlck_unslid_addr = (long long)VM_KERNEL_UNSLIDE_OR_PERM(&sysctl_debug_test_stackshot_owner_rwlck);
int error = sysctl_io_number(req, rwlck_unslid_addr, sizeof(long long), (void*)&option, NULL);
lck_mtx_lock(&sysctl_debug_test_stackshot_owner_init_mtx);
if (!sysctl_debug_test_stackshot_rwlck_inited) {
lck_rw_init(&sysctl_debug_test_stackshot_owner_rwlck,
&sysctl_debug_test_stackshot_owner_grp,
LCK_ATTR_NULL);
semaphore_create(kernel_task,
&sysctl_debug_test_stackshot_rwlck_sem,
SYNC_POLICY_FIFO,
0);
sysctl_debug_test_stackshot_rwlck_inited = 1;
}
lck_mtx_unlock(&sysctl_debug_test_stackshot_owner_init_mtx);
if (!error) {
switch (option) {
case SYSCTL_DEBUG_KRWLCK_RACQUIRE_NOWAIT:
lck_rw_lock(&sysctl_debug_test_stackshot_owner_rwlck, LCK_RW_TYPE_SHARED);
lck_rw_unlock(&sysctl_debug_test_stackshot_owner_rwlck, LCK_RW_TYPE_SHARED);
break;
case SYSCTL_DEBUG_KRWLCK_RACQUIRE_WAIT:
lck_rw_lock(&sysctl_debug_test_stackshot_owner_rwlck, LCK_RW_TYPE_SHARED);
semaphore_wait(sysctl_debug_test_stackshot_rwlck_sem);
lck_rw_unlock(&sysctl_debug_test_stackshot_owner_rwlck, LCK_RW_TYPE_SHARED);
break;
case SYSCTL_DEBUG_KRWLCK_WACQUIRE_NOWAIT:
lck_rw_lock(&sysctl_debug_test_stackshot_owner_rwlck, LCK_RW_TYPE_EXCLUSIVE);
lck_rw_unlock(&sysctl_debug_test_stackshot_owner_rwlck, LCK_RW_TYPE_EXCLUSIVE);
break;
case SYSCTL_DEBUG_KRWLCK_WACQUIRE_WAIT:
lck_rw_lock(&sysctl_debug_test_stackshot_owner_rwlck, LCK_RW_TYPE_EXCLUSIVE);
semaphore_wait(sysctl_debug_test_stackshot_rwlck_sem);
lck_rw_unlock(&sysctl_debug_test_stackshot_owner_rwlck, LCK_RW_TYPE_EXCLUSIVE);
break;
case SYSCTL_DEBUG_KRWLCK_SIGNAL:
semaphore_signal(sysctl_debug_test_stackshot_rwlck_sem);
break;
case SYSCTL_DEBUG_KRWLCK_TEARDOWN:
lck_mtx_lock(&sysctl_debug_test_stackshot_owner_init_mtx);
lck_rw_destroy(&sysctl_debug_test_stackshot_owner_rwlck,
&sysctl_debug_test_stackshot_owner_grp);
semaphore_destroy(kernel_task,
sysctl_debug_test_stackshot_rwlck_sem);
sysctl_debug_test_stackshot_rwlck_inited = 0;
lck_mtx_unlock(&sysctl_debug_test_stackshot_owner_init_mtx);
break;
case -1: /* user just wanted to read the value, so do nothing */
break;
default:
error = EINVAL;
break;
}
}
return error;
}
SYSCTL_PROC(_debug,
OID_AUTO,
test_RWLockOwnerCtl,
CTLFLAG_MASKED | CTLFLAG_ANYBODY | CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED,
0,
0,
sysctl_debug_test_stackshot_rwlck_owner,
"-",
"Testing rwlock owner in kernel");
#endif /* !CONFIG_XNUPOST */
STATIC int
sysctl_swapusage
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int error;
uint64_t swap_total;
uint64_t swap_avail;
vm_size_t swap_pagesize;
boolean_t swap_encrypted;
struct xsw_usage xsu = {};
error = macx_swapinfo(&swap_total,
&swap_avail,
&swap_pagesize,
&swap_encrypted);
if (error) {
return error;
}
xsu.xsu_total = swap_total;
xsu.xsu_avail = swap_avail;
xsu.xsu_used = swap_total - swap_avail;
xsu.xsu_pagesize = (u_int32_t)MIN(swap_pagesize, UINT32_MAX);
xsu.xsu_encrypted = swap_encrypted;
return sysctl_io_opaque(req, &xsu, sizeof(xsu), NULL);
}
SYSCTL_PROC(_vm, VM_SWAPUSAGE, swapusage,
CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
0, 0, sysctl_swapusage, "S,xsw_usage", "");
extern int vm_swap_enabled;
SYSCTL_INT(_vm, OID_AUTO, swap_enabled, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_swap_enabled, 0, "");
#if DEVELOPMENT || DEBUG
extern int vm_num_swap_files_config;
extern int vm_num_swap_files;
extern lck_mtx_t vm_swap_data_lock;
#define VM_MAX_SWAP_FILE_NUM 100
static int
sysctl_vm_config_num_swap_files SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
int error = 0, val = vm_num_swap_files_config;
error = sysctl_handle_int(oidp, &val, 0, req);
if (error || !req->newptr) {
goto out;
}
if (!VM_CONFIG_SWAP_IS_ACTIVE && !VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) {
printf("Swap is disabled\n");
error = EINVAL;
goto out;
}
lck_mtx_lock(&vm_swap_data_lock);
if (val < vm_num_swap_files) {
printf("Cannot configure fewer swap files than already exist.\n");
error = EINVAL;
lck_mtx_unlock(&vm_swap_data_lock);
goto out;
}
if (val > VM_MAX_SWAP_FILE_NUM) {
printf("Capping number of swap files to upper bound.\n");
val = VM_MAX_SWAP_FILE_NUM;
}
vm_num_swap_files_config = val;
lck_mtx_unlock(&vm_swap_data_lock);
out:
return 0;
}
SYSCTL_PROC(_debug, OID_AUTO, num_swap_files_configured, CTLFLAG_ANYBODY | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, sysctl_vm_config_num_swap_files, "I", "");
#endif /* DEVELOPMENT || DEBUG */
/* this kernel does NOT implement shared_region_make_private_np() */
SYSCTL_INT(_kern, KERN_SHREG_PRIVATIZABLE, shreg_private,
CTLFLAG_RD | CTLFLAG_LOCKED,
(int *)NULL, 0, "");
STATIC int
fetch_process_cputype(
proc_t cur_proc,
int *name,
u_int namelen,
cpu_type_t *cputype)
{
proc_t p = PROC_NULL;
int refheld = 0;
cpu_type_t ret = 0;
int error = 0;
if (namelen == 0) {
p = cur_proc;
} else if (namelen == 1) {
p = proc_find(name[0]);
if (p == NULL) {
return EINVAL;
}
refheld = 1;
} else {
error = EINVAL;
goto out;
}
ret = cpu_type() & ~CPU_ARCH_MASK;
if (IS_64BIT_PROCESS(p)) {
ret |= CPU_ARCH_ABI64;
}
*cputype = ret;
if (refheld != 0) {
proc_rele(p);
}
out:
return error;
}
STATIC int
sysctl_sysctl_native(__unused struct sysctl_oid *oidp, void *arg1, int arg2,
struct sysctl_req *req)
{
int error;
cpu_type_t proc_cputype = 0;
if ((error = fetch_process_cputype(req->p, (int *)arg1, arg2, &proc_cputype)) != 0) {
return error;
}
int res = 1;
if ((proc_cputype & ~CPU_ARCH_MASK) != (cpu_type() & ~CPU_ARCH_MASK)) {
res = 0;
}
return SYSCTL_OUT(req, &res, sizeof(res));
}
SYSCTL_PROC(_sysctl, OID_AUTO, proc_native, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, sysctl_sysctl_native, "I", "proc_native");
STATIC int
sysctl_sysctl_cputype(__unused struct sysctl_oid *oidp, void *arg1, int arg2,
struct sysctl_req *req)
{
int error;
cpu_type_t proc_cputype = 0;
if ((error = fetch_process_cputype(req->p, (int *)arg1, arg2, &proc_cputype)) != 0) {
return error;
}
return SYSCTL_OUT(req, &proc_cputype, sizeof(proc_cputype));
}
SYSCTL_PROC(_sysctl, OID_AUTO, proc_cputype, CTLTYPE_NODE | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, sysctl_sysctl_cputype, "I", "proc_cputype");
STATIC int
sysctl_safeboot
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
return sysctl_io_number(req, boothowto & RB_SAFEBOOT ? 1 : 0, sizeof(int), NULL, NULL);
}
SYSCTL_PROC(_kern, KERN_SAFEBOOT, safeboot,
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED,
0, 0, sysctl_safeboot, "I", "");
STATIC int
sysctl_singleuser
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
return sysctl_io_number(req, boothowto & RB_SINGLE ? 1 : 0, sizeof(int), NULL, NULL);
}
SYSCTL_PROC(_kern, OID_AUTO, singleuser,
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED,
0, 0, sysctl_singleuser, "I", "");
STATIC int
sysctl_minimalboot
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
return sysctl_io_number(req, minimalboot, sizeof(int), NULL, NULL);
}
SYSCTL_PROC(_kern, OID_AUTO, minimalboot,
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED,
0, 0, sysctl_minimalboot, "I", "");
/*
* Controls for debugging affinity sets - see osfmk/kern/affinity.c
*/
extern boolean_t affinity_sets_enabled;
extern int affinity_sets_mapping;
SYSCTL_INT(_kern, OID_AUTO, affinity_sets_enabled,
CTLFLAG_RW | CTLFLAG_LOCKED, (int *) &affinity_sets_enabled, 0, "hinting enabled");
SYSCTL_INT(_kern, OID_AUTO, affinity_sets_mapping,
CTLFLAG_RW | CTLFLAG_LOCKED, &affinity_sets_mapping, 0, "mapping policy");
/*
* Boolean indicating if KASLR is active.
*/
STATIC int
sysctl_slide
(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
uint32_t slide;
slide = vm_kernel_slide ? 1 : 0;
return sysctl_io_number( req, slide, sizeof(int), NULL, NULL);
}
SYSCTL_PROC(_kern, OID_AUTO, slide,
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED,
0, 0, sysctl_slide, "I", "");
#if DEBUG || DEVELOPMENT
#if defined(__arm64__)
extern vm_offset_t segTEXTEXECB;
static int
sysctl_kernel_text_exec_base_slide SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2, oidp)
unsigned long slide = 0;
kc_format_t kc_format;
PE_get_primary_kc_format(&kc_format);
if (kc_format == KCFormatFileset) {
void *kch = PE_get_kc_header(KCKindPrimary);
slide = (unsigned long)segTEXTEXECB - (unsigned long)kch + vm_kernel_slide;
}
return SYSCTL_OUT(req, &slide, sizeof(slide));
}
SYSCTL_QUAD(_kern, OID_AUTO, kernel_slide, CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED, &vm_kernel_slide, "");
SYSCTL_QUAD(_kern, OID_AUTO, kernel_text_exec_base, CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED, &segTEXTEXECB, "");
SYSCTL_PROC(_kern, OID_AUTO, kernel_text_exec_base_slide, CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, sysctl_kernel_text_exec_base_slide, "Q", "");
#endif /* defined(__arm64__) */
/* User address of the PFZ */
extern user32_addr_t commpage_text32_location;
extern user64_addr_t commpage_text64_location;
STATIC int
sysctl_pfz_start SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
#ifdef __LP64__
return sysctl_io_number(req, commpage_text64_location, sizeof(user64_addr_t), NULL, NULL);
#else
return sysctl_io_number(req, commpage_text32_location, sizeof(user32_addr_t), NULL, NULL);
#endif
}
SYSCTL_PROC(_kern, OID_AUTO, pfz,
CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED | CTLFLAG_MASKED,
0, 0, sysctl_pfz_start, "I", "");
#endif
/*
* Limit on total memory users can wire.
*
* vm_global_user_wire_limit - system wide limit on wired memory from all processes combined.
*
* vm_per_task_user_wire_limit - per address space limit on wired memory. This puts a cap on the process's rlimit value.
*
* These values are initialized to reasonable defaults at boot time based on the available physical memory in
* kmem_init().
*
* All values are in bytes.
*/
vm_map_size_t vm_global_user_wire_limit;
vm_map_size_t vm_per_task_user_wire_limit;
extern uint64_t max_mem_actual, max_mem;
uint64_t vm_add_wire_count_over_global_limit;
uint64_t vm_add_wire_count_over_user_limit;
/*
* We used to have a global in the kernel called vm_global_no_user_wire_limit which was the inverse
* of vm_global_user_wire_limit. But maintaining both of those is silly, and vm_global_user_wire_limit is the
* real limit.
* This function is for backwards compatibility with userspace
* since we exposed the old global via a sysctl.
*/
STATIC int
sysctl_global_no_user_wire_amount(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
vm_map_size_t old_value;
vm_map_size_t new_value;
int changed;
int error;
uint64_t config_memsize = max_mem;
#if defined(XNU_TARGET_OS_OSX)
config_memsize = max_mem_actual;
#endif /* defined(XNU_TARGET_OS_OSX) */
old_value = (vm_map_size_t)(config_memsize - vm_global_user_wire_limit);
error = sysctl_io_number(req, old_value, sizeof(vm_map_size_t), &new_value, &changed);
if (changed) {
if ((uint64_t)new_value > config_memsize) {
error = EINVAL;
} else {
vm_global_user_wire_limit = (vm_map_size_t)(config_memsize - new_value);
}
}
return error;
}
/*
* There needs to be a more automatic/elegant way to do this
*/
SYSCTL_QUAD(_vm, OID_AUTO, global_user_wire_limit, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_global_user_wire_limit, "");
SYSCTL_QUAD(_vm, OID_AUTO, user_wire_limit, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_per_task_user_wire_limit, "");
SYSCTL_PROC(_vm, OID_AUTO, global_no_user_wire_amount, CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0, &sysctl_global_no_user_wire_amount, "Q", "");
/*
* Relaxed atomic RW of a 64bit value via sysctl.
*/
STATIC int
sysctl_r_64bit_atomic(uint64_t *ptr, struct sysctl_req *req)
{
uint64_t old_value;
uint64_t new_value;
int error;
old_value = os_atomic_load_wide(ptr, relaxed);
error = sysctl_io_number(req, old_value, sizeof(vm_map_size_t), &new_value, NULL);
return error;
}
STATIC int
sysctl_add_wire_count_over_global_limit(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
return sysctl_r_64bit_atomic(&vm_add_wire_count_over_global_limit, req);
}
STATIC int
sysctl_add_wire_count_over_user_limit(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
return sysctl_r_64bit_atomic(&vm_add_wire_count_over_user_limit, req);
}
SYSCTL_PROC(_vm, OID_AUTO, add_wire_count_over_global_limit, CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, &sysctl_add_wire_count_over_global_limit, "Q", "");
SYSCTL_PROC(_vm, OID_AUTO, add_wire_count_over_user_limit, CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, &sysctl_add_wire_count_over_user_limit, "Q", "");
#if DEVELOPMENT || DEBUG
/* These sysctls are used to test the wired limit. */
extern unsigned int vm_page_wire_count;
extern uint32_t vm_lopage_free_count;
SYSCTL_INT(_vm, OID_AUTO, page_wire_count, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_wire_count, 0, "");
SYSCTL_INT(_vm, OID_AUTO, lopage_free_count, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_lopage_free_count, 0, "");
/*
* Setting the per task variable exclude_physfootprint_ledger to 1 will allow the calling task to exclude memory entries that are
* tagged by VM_LEDGER_TAG_DEFAULT and flagged by VM_LEDGER_FLAG_EXCLUDE_FOOTPRINT_DEBUG from its phys_footprint ledger.
*/
STATIC int
sysctl_rw_task_no_footprint_for_debug(struct sysctl_oid *oidp __unused, void *arg1 __unused, int arg2 __unused, struct sysctl_req *req)
{
int error;
int value;
proc_t p = current_proc();
if (req->newptr) {
// Write request
error = SYSCTL_IN(req, &value, sizeof(value));
if (!error) {
if (value == 1) {
task_set_no_footprint_for_debug(proc_task(p), TRUE);
} else if (value == 0) {
task_set_no_footprint_for_debug(proc_task(p), FALSE);
} else {
error = EINVAL;
}
}
} else {
// Read request
value = task_get_no_footprint_for_debug(proc_task(p));
error = SYSCTL_OUT(req, &value, sizeof(value));
}
return error;
}
SYSCTL_PROC(_vm, OID_AUTO, task_no_footprint_for_debug,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_ANYBODY,
0, 0, &sysctl_rw_task_no_footprint_for_debug, "I", "Allow debug memory to be excluded from this task's memory footprint (debug only)");
#endif /* DEVELOPMENT || DEBUG */
extern int vm_map_copy_overwrite_aligned_src_not_internal;
extern int vm_map_copy_overwrite_aligned_src_not_symmetric;
extern int vm_map_copy_overwrite_aligned_src_large;
SYSCTL_INT(_vm, OID_AUTO, vm_copy_src_not_internal, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_map_copy_overwrite_aligned_src_not_internal, 0, "");
SYSCTL_INT(_vm, OID_AUTO, vm_copy_src_not_symmetric, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_map_copy_overwrite_aligned_src_not_symmetric, 0, "");
SYSCTL_INT(_vm, OID_AUTO, vm_copy_src_large, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_map_copy_overwrite_aligned_src_large, 0, "");
extern uint32_t vm_page_external_count;
SYSCTL_INT(_vm, OID_AUTO, vm_page_external_count, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_external_count, 0, "");
SYSCTL_INT(_vm, OID_AUTO, vm_page_filecache_min, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_pageout_state.vm_page_filecache_min, 0, "");
SYSCTL_INT(_vm, OID_AUTO, vm_page_xpmapped_min, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_pageout_state.vm_page_xpmapped_min, 0, "");
#if DEVELOPMENT || DEBUG
SYSCTL_INT(_vm, OID_AUTO, vm_page_filecache_min_divisor, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_pageout_state.vm_page_filecache_min_divisor, 0, "");
SYSCTL_INT(_vm, OID_AUTO, vm_page_xpmapped_min_divisor, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_pageout_state.vm_page_xpmapped_min_divisor, 0, "");
extern boolean_t vps_yield_for_pgqlockwaiters;
SYSCTL_INT(_vm, OID_AUTO, vm_pageoutscan_yields_for_pageQlockwaiters, CTLFLAG_RW | CTLFLAG_LOCKED, &vps_yield_for_pgqlockwaiters, 0, "");
#endif
extern int vm_compressor_mode;
extern int vm_compressor_is_active;
extern int vm_compressor_available;
extern uint32_t c_seg_bufsize;
extern uint64_t compressor_pool_size;
extern uint32_t vm_ripe_target_age;
extern uint32_t swapout_target_age;
extern int64_t compressor_bytes_used;
extern int64_t c_segment_input_bytes;
extern int64_t c_segment_compressed_bytes;
extern uint32_t compressor_eval_period_in_msecs;
extern uint32_t compressor_sample_min_in_msecs;
extern uint32_t compressor_sample_max_in_msecs;
extern uint32_t compressor_thrashing_threshold_per_10msecs;
extern uint32_t compressor_thrashing_min_per_10msecs;
extern uint32_t vm_compressor_time_thread;
#if DEVELOPMENT || DEBUG
extern uint32_t vm_compressor_minorcompact_threshold_divisor;
extern uint32_t vm_compressor_majorcompact_threshold_divisor;
extern uint32_t vm_compressor_unthrottle_threshold_divisor;
extern uint32_t vm_compressor_catchup_threshold_divisor;
extern uint32_t vm_compressor_minorcompact_threshold_divisor_overridden;
extern uint32_t vm_compressor_majorcompact_threshold_divisor_overridden;
extern uint32_t vm_compressor_unthrottle_threshold_divisor_overridden;
extern uint32_t vm_compressor_catchup_threshold_divisor_overridden;
extern vmct_stats_t vmct_stats;
STATIC int
sysctl_minorcompact_threshold_divisor(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int new_value, changed;
int error = sysctl_io_number(req, vm_compressor_minorcompact_threshold_divisor, sizeof(int), &new_value, &changed);
if (changed) {
vm_compressor_minorcompact_threshold_divisor = new_value;
vm_compressor_minorcompact_threshold_divisor_overridden = 1;
}
return error;
}
SYSCTL_PROC(_vm, OID_AUTO, compressor_minorcompact_threshold_divisor,
CTLTYPE_INT | CTLFLAG_LOCKED | CTLFLAG_RW,
0, 0, sysctl_minorcompact_threshold_divisor, "I", "");
STATIC int
sysctl_majorcompact_threshold_divisor(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int new_value, changed;
int error = sysctl_io_number(req, vm_compressor_majorcompact_threshold_divisor, sizeof(int), &new_value, &changed);
if (changed) {
vm_compressor_majorcompact_threshold_divisor = new_value;
vm_compressor_majorcompact_threshold_divisor_overridden = 1;
}
return error;
}
SYSCTL_PROC(_vm, OID_AUTO, compressor_majorcompact_threshold_divisor,
CTLTYPE_INT | CTLFLAG_LOCKED | CTLFLAG_RW,
0, 0, sysctl_majorcompact_threshold_divisor, "I", "");
STATIC int
sysctl_unthrottle_threshold_divisor(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int new_value, changed;
int error = sysctl_io_number(req, vm_compressor_unthrottle_threshold_divisor, sizeof(int), &new_value, &changed);
if (changed) {
vm_compressor_unthrottle_threshold_divisor = new_value;
vm_compressor_unthrottle_threshold_divisor_overridden = 1;
}
return error;
}
SYSCTL_PROC(_vm, OID_AUTO, compressor_unthrottle_threshold_divisor,
CTLTYPE_INT | CTLFLAG_LOCKED | CTLFLAG_RW,
0, 0, sysctl_unthrottle_threshold_divisor, "I", "");
STATIC int
sysctl_catchup_threshold_divisor(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int new_value, changed;
int error = sysctl_io_number(req, vm_compressor_catchup_threshold_divisor, sizeof(int), &new_value, &changed);
if (changed) {
vm_compressor_catchup_threshold_divisor = new_value;
vm_compressor_catchup_threshold_divisor_overridden = 1;
}
return error;
}
SYSCTL_PROC(_vm, OID_AUTO, compressor_catchup_threshold_divisor,
CTLTYPE_INT | CTLFLAG_LOCKED | CTLFLAG_RW,
0, 0, sysctl_catchup_threshold_divisor, "I", "");
#endif
SYSCTL_QUAD(_vm, OID_AUTO, compressor_input_bytes, CTLFLAG_RD | CTLFLAG_LOCKED, &c_segment_input_bytes, "");
SYSCTL_QUAD(_vm, OID_AUTO, compressor_compressed_bytes, CTLFLAG_RD | CTLFLAG_LOCKED, &c_segment_compressed_bytes, "");
SYSCTL_QUAD(_vm, OID_AUTO, compressor_bytes_used, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_bytes_used, "");
SYSCTL_INT(_vm, OID_AUTO, compressor_mode, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_compressor_mode, 0, "");
SYSCTL_INT(_vm, OID_AUTO, compressor_is_active, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_compressor_is_active, 0, "");
SYSCTL_INT(_vm, OID_AUTO, compressor_swapout_target_age, CTLFLAG_RD | CTLFLAG_LOCKED, &swapout_target_age, 0, "");
SYSCTL_INT(_vm, OID_AUTO, compressor_available, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_compressor_available, 0, "");
SYSCTL_INT(_vm, OID_AUTO, compressor_segment_buffer_size, CTLFLAG_RD | CTLFLAG_LOCKED, &c_seg_bufsize, 0, "");
SYSCTL_QUAD(_vm, OID_AUTO, compressor_pool_size, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_pool_size, "");
#if CONFIG_TRACK_UNMODIFIED_ANON_PAGES
extern uint64_t compressor_ro_uncompressed;
extern uint64_t compressor_ro_uncompressed_total_returned;
extern uint64_t compressor_ro_uncompressed_skip_returned;
extern uint64_t compressor_ro_uncompressed_get;
extern uint64_t compressor_ro_uncompressed_put;
extern uint64_t compressor_ro_uncompressed_swap_usage;
SYSCTL_QUAD(_vm, OID_AUTO, compressor_ro_uncompressed_total_returned, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_ro_uncompressed_total_returned, "");
SYSCTL_QUAD(_vm, OID_AUTO, compressor_ro_uncompressed_writes_saved, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_ro_uncompressed_skip_returned, "");
SYSCTL_QUAD(_vm, OID_AUTO, compressor_ro_uncompressed_candidates, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_ro_uncompressed, "");
SYSCTL_QUAD(_vm, OID_AUTO, compressor_ro_uncompressed_rereads, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_ro_uncompressed_get, "");
SYSCTL_QUAD(_vm, OID_AUTO, compressor_ro_uncompressed_swap_pages_on_disk, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_ro_uncompressed_swap_usage, "");
#endif /* CONFIG_TRACK_UNMODIFIED_ANON_PAGES */
extern int min_csegs_per_major_compaction;
SYSCTL_INT(_vm, OID_AUTO, compressor_min_csegs_per_major_compaction, CTLFLAG_RW | CTLFLAG_LOCKED, &min_csegs_per_major_compaction, 0, "");
SYSCTL_INT(_vm, OID_AUTO, vm_ripe_target_age_in_secs, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_ripe_target_age, 0, "");
SYSCTL_INT(_vm, OID_AUTO, compressor_eval_period_in_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &compressor_eval_period_in_msecs, 0, "");
SYSCTL_INT(_vm, OID_AUTO, compressor_sample_min_in_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &compressor_sample_min_in_msecs, 0, "");
SYSCTL_INT(_vm, OID_AUTO, compressor_sample_max_in_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &compressor_sample_max_in_msecs, 0, "");
SYSCTL_INT(_vm, OID_AUTO, compressor_thrashing_threshold_per_10msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &compressor_thrashing_threshold_per_10msecs, 0, "");
SYSCTL_INT(_vm, OID_AUTO, compressor_thrashing_min_per_10msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &compressor_thrashing_min_per_10msecs, 0, "");
SYSCTL_QUAD(_vm, OID_AUTO, compressor_swapouts_under_30s, CTLFLAG_RD | CTLFLAG_LOCKED, &vmcs_stats.unripe_under_30s, "");
SYSCTL_QUAD(_vm, OID_AUTO, compressor_swapouts_under_60s, CTLFLAG_RD | CTLFLAG_LOCKED, &vmcs_stats.unripe_under_60s, "");
SYSCTL_QUAD(_vm, OID_AUTO, compressor_swapouts_under_300s, CTLFLAG_RD | CTLFLAG_LOCKED, &vmcs_stats.unripe_under_300s, "");
SYSCTL_QUAD(_vm, OID_AUTO, compressor_swapper_reclaim_swapins, CTLFLAG_RD | CTLFLAG_LOCKED, &vmcs_stats.reclaim_swapins, "");
SYSCTL_QUAD(_vm, OID_AUTO, compressor_swapper_defrag_swapins, CTLFLAG_RD | CTLFLAG_LOCKED, &vmcs_stats.defrag_swapins, "");
SYSCTL_QUAD(_vm, OID_AUTO, compressor_swapper_swapout_threshold_exceeded, CTLFLAG_RD | CTLFLAG_LOCKED, &vmcs_stats.compressor_swap_threshold_exceeded, "");
SYSCTL_QUAD(_vm, OID_AUTO, compressor_swapper_swapout_fileq_throttled, CTLFLAG_RD | CTLFLAG_LOCKED, &vmcs_stats.external_q_throttled, "");
SYSCTL_QUAD(_vm, OID_AUTO, compressor_swapper_swapout_free_count_low, CTLFLAG_RD | CTLFLAG_LOCKED, &vmcs_stats.free_count_below_reserve, "");
SYSCTL_QUAD(_vm, OID_AUTO, compressor_swapper_swapout_thrashing_detected, CTLFLAG_RD | CTLFLAG_LOCKED, &vmcs_stats.thrashing_detected, "");
SYSCTL_QUAD(_vm, OID_AUTO, compressor_swapper_swapout_fragmentation_detected, CTLFLAG_RD | CTLFLAG_LOCKED, &vmcs_stats.fragmentation_detected, "");
SYSCTL_STRING(_vm, OID_AUTO, swapfileprefix, CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED, swapfilename, sizeof(swapfilename) - SWAPFILENAME_INDEX_LEN, "");
SYSCTL_INT(_vm, OID_AUTO, compressor_timing_enabled, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_compressor_time_thread, 0, "");
#if DEVELOPMENT || DEBUG
SYSCTL_QUAD(_vm, OID_AUTO, compressor_thread_runtime0, CTLFLAG_RD | CTLFLAG_LOCKED, &vmct_stats.vmct_runtimes[0], "");
SYSCTL_QUAD(_vm, OID_AUTO, compressor_thread_runtime1, CTLFLAG_RD | CTLFLAG_LOCKED, &vmct_stats.vmct_runtimes[1], "");
SYSCTL_QUAD(_vm, OID_AUTO, compressor_threads_total_execution_time, CTLFLAG_RD | CTLFLAG_LOCKED, &vmct_stats.vmct_cthreads_total, "");
SYSCTL_QUAD(_vm, OID_AUTO, compressor_thread_pages0, CTLFLAG_RD | CTLFLAG_LOCKED, &vmct_stats.vmct_pages[0], "");
SYSCTL_QUAD(_vm, OID_AUTO, compressor_thread_pages1, CTLFLAG_RD | CTLFLAG_LOCKED, &vmct_stats.vmct_pages[1], "");
SYSCTL_QUAD(_vm, OID_AUTO, compressor_thread_iterations0, CTLFLAG_RD | CTLFLAG_LOCKED, &vmct_stats.vmct_iterations[0], "");
SYSCTL_QUAD(_vm, OID_AUTO, compressor_thread_iterations1, CTLFLAG_RD | CTLFLAG_LOCKED, &vmct_stats.vmct_iterations[1], "");
SYSCTL_INT(_vm, OID_AUTO, compressor_thread_minpages0, CTLFLAG_RD | CTLFLAG_LOCKED, &vmct_stats.vmct_minpages[0], 0, "");
SYSCTL_INT(_vm, OID_AUTO, compressor_thread_minpages1, CTLFLAG_RD | CTLFLAG_LOCKED, &vmct_stats.vmct_minpages[1], 0, "");
SYSCTL_INT(_vm, OID_AUTO, compressor_thread_maxpages0, CTLFLAG_RD | CTLFLAG_LOCKED, &vmct_stats.vmct_maxpages[0], 0, "");
SYSCTL_INT(_vm, OID_AUTO, compressor_thread_maxpages1, CTLFLAG_RD | CTLFLAG_LOCKED, &vmct_stats.vmct_maxpages[1], 0, "");
int vm_compressor_injected_error_count;
SYSCTL_INT(_vm, OID_AUTO, compressor_injected_error_count, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_compressor_injected_error_count, 0, "");
static int
sysctl_compressor_inject_error(__unused struct sysctl_oid *oidp,
__unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int result;
vm_address_t va = 0;
int changed;
result = sysctl_io_number(req, va, sizeof(va), &va, &changed);
if (result == 0 && changed) {
result = vm_map_inject_error(current_map(), va);
if (result == 0) {
/*
* Count the number of errors injected successfully to detect
* situations where corruption was caused by improper use of this
* sysctl.
*/
os_atomic_inc(&vm_compressor_injected_error_count, relaxed);
}
}
return result;
}
SYSCTL_PROC(_vm, OID_AUTO, compressor_inject_error, CTLTYPE_QUAD | CTLFLAG_LOCKED | CTLFLAG_RW,
0, 0, sysctl_compressor_inject_error, "Q", "flips a bit in a compressed page for the current task");
/*
* Opt a process in/out of self donation mode.
*/
static int
sysctl_vm_pid_toggle_selfdonate_pages SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
int error, pid = 0;
proc_t p;
error = sysctl_handle_int(oidp, &pid, 0, req);
if (error || !req->newptr) {
return error;
}
p = proc_find(pid);
if (p != NULL) {
(void) vm_toggle_task_selfdonate_pages(proc_task(p));
proc_rele(p);
return error;
} else {
printf("sysctl_vm_pid_selfdonate_pages: Invalid process\n");
}
return EINVAL;
}
SYSCTL_PROC(_vm, OID_AUTO, pid_toggle_selfdonate_pages, CTLTYPE_INT | CTLFLAG_WR | CTLFLAG_LOCKED | CTLFLAG_MASKED,
0, 0, &sysctl_vm_pid_toggle_selfdonate_pages, "I", "");
#endif
extern uint32_t vm_page_donate_mode;
extern uint32_t vm_page_donate_target_high, vm_page_donate_target_low;
SYSCTL_INT(_vm, OID_AUTO, vm_page_donate_mode, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_page_donate_mode, 0, "");
SYSCTL_INT(_vm, OID_AUTO, vm_page_donate_target_high, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_page_donate_target_high, 0, "");
SYSCTL_INT(_vm, OID_AUTO, vm_page_donate_target_low, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_page_donate_target_low, 0, "");
SYSCTL_QUAD(_vm, OID_AUTO, lz4_compressions, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.lz4_compressions, "");
SYSCTL_QUAD(_vm, OID_AUTO, lz4_compression_failures, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.lz4_compression_failures, "");
SYSCTL_QUAD(_vm, OID_AUTO, lz4_compressed_bytes, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.lz4_compressed_bytes, "");
SYSCTL_QUAD(_vm, OID_AUTO, lz4_wk_compression_delta, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.lz4_wk_compression_delta, "");
SYSCTL_QUAD(_vm, OID_AUTO, lz4_wk_compression_negative_delta, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.lz4_wk_compression_negative_delta, "");
SYSCTL_QUAD(_vm, OID_AUTO, lz4_decompressions, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.lz4_decompressions, "");
SYSCTL_QUAD(_vm, OID_AUTO, lz4_decompressed_bytes, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.lz4_decompressed_bytes, "");
SYSCTL_QUAD(_vm, OID_AUTO, uc_decompressions, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.uc_decompressions, "");
SYSCTL_QUAD(_vm, OID_AUTO, wk_compressions, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wk_compressions, "");
SYSCTL_QUAD(_vm, OID_AUTO, wk_catime, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wk_cabstime, "");
SYSCTL_QUAD(_vm, OID_AUTO, wkh_catime, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wkh_cabstime, "");
SYSCTL_QUAD(_vm, OID_AUTO, wkh_compressions, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wkh_compressions, "");
SYSCTL_QUAD(_vm, OID_AUTO, wks_catime, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wks_cabstime, "");
SYSCTL_QUAD(_vm, OID_AUTO, wks_compressions, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wks_compressions, "");
SYSCTL_QUAD(_vm, OID_AUTO, wk_compressions_exclusive, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wk_compressions_exclusive, "");
SYSCTL_QUAD(_vm, OID_AUTO, wk_sv_compressions, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wk_sv_compressions, "");
SYSCTL_QUAD(_vm, OID_AUTO, wk_mzv_compressions, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wk_mzv_compressions, "");
SYSCTL_QUAD(_vm, OID_AUTO, wk_compression_failures, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wk_compression_failures, "");
SYSCTL_QUAD(_vm, OID_AUTO, wk_compressed_bytes_exclusive, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wk_compressed_bytes_exclusive, "");
SYSCTL_QUAD(_vm, OID_AUTO, wk_compressed_bytes_total, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wk_compressed_bytes_total, "");
SYSCTL_QUAD(_vm, OID_AUTO, wks_compressed_bytes, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wks_compressed_bytes, "");
SYSCTL_QUAD(_vm, OID_AUTO, wks_compression_failures, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wks_compression_failures, "");
SYSCTL_QUAD(_vm, OID_AUTO, wks_sv_compressions, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wks_sv_compressions, "");
SYSCTL_QUAD(_vm, OID_AUTO, wk_decompressions, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wk_decompressions, "");
SYSCTL_QUAD(_vm, OID_AUTO, wk_datime, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wk_dabstime, "");
SYSCTL_QUAD(_vm, OID_AUTO, wkh_datime, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wkh_dabstime, "");
SYSCTL_QUAD(_vm, OID_AUTO, wkh_decompressions, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wkh_decompressions, "");
SYSCTL_QUAD(_vm, OID_AUTO, wks_datime, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wks_dabstime, "");
SYSCTL_QUAD(_vm, OID_AUTO, wks_decompressions, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wks_decompressions, "");
SYSCTL_QUAD(_vm, OID_AUTO, wk_decompressed_bytes, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wk_decompressed_bytes, "");
SYSCTL_QUAD(_vm, OID_AUTO, wk_sv_decompressions, CTLFLAG_RD | CTLFLAG_LOCKED, &compressor_stats.wk_sv_decompressions, "");
SYSCTL_INT(_vm, OID_AUTO, lz4_threshold, CTLFLAG_RW | CTLFLAG_LOCKED, &vmctune.lz4_threshold, 0, "");
SYSCTL_INT(_vm, OID_AUTO, wkdm_reeval_threshold, CTLFLAG_RW | CTLFLAG_LOCKED, &vmctune.wkdm_reeval_threshold, 0, "");
SYSCTL_INT(_vm, OID_AUTO, lz4_max_failure_skips, CTLFLAG_RW | CTLFLAG_LOCKED, &vmctune.lz4_max_failure_skips, 0, "");
SYSCTL_INT(_vm, OID_AUTO, lz4_max_failure_run_length, CTLFLAG_RW | CTLFLAG_LOCKED, &vmctune.lz4_max_failure_run_length, 0, "");
SYSCTL_INT(_vm, OID_AUTO, lz4_max_preselects, CTLFLAG_RW | CTLFLAG_LOCKED, &vmctune.lz4_max_preselects, 0, "");
SYSCTL_INT(_vm, OID_AUTO, lz4_run_preselection_threshold, CTLFLAG_RW | CTLFLAG_LOCKED, &vmctune.lz4_run_preselection_threshold, 0, "");
SYSCTL_INT(_vm, OID_AUTO, lz4_run_continue_bytes, CTLFLAG_RW | CTLFLAG_LOCKED, &vmctune.lz4_run_continue_bytes, 0, "");
SYSCTL_INT(_vm, OID_AUTO, lz4_profitable_bytes, CTLFLAG_RW | CTLFLAG_LOCKED, &vmctune.lz4_profitable_bytes, 0, "");
#if DEVELOPMENT || DEBUG
extern int vm_compressor_current_codec;
extern int vm_compressor_test_seg_wp;
extern boolean_t vm_compressor_force_sw_wkdm;
SYSCTL_INT(_vm, OID_AUTO, compressor_codec, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_compressor_current_codec, 0, "");
SYSCTL_INT(_vm, OID_AUTO, compressor_test_wp, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_compressor_test_seg_wp, 0, "");
SYSCTL_INT(_vm, OID_AUTO, wksw_force, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_compressor_force_sw_wkdm, 0, "");
extern int precompy, wkswhw;
SYSCTL_INT(_vm, OID_AUTO, precompy, CTLFLAG_RW | CTLFLAG_LOCKED, &precompy, 0, "");
SYSCTL_INT(_vm, OID_AUTO, wkswhw, CTLFLAG_RW | CTLFLAG_LOCKED, &wkswhw, 0, "");
extern unsigned int vm_ktrace_enabled;
SYSCTL_INT(_vm, OID_AUTO, vm_ktrace, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_ktrace_enabled, 0, "");
#endif
#if CONFIG_PHANTOM_CACHE
extern uint32_t phantom_cache_thrashing_threshold;
extern uint32_t phantom_cache_eval_period_in_msecs;
extern uint32_t phantom_cache_thrashing_threshold_ssd;
SYSCTL_INT(_vm, OID_AUTO, phantom_cache_eval_period_in_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &phantom_cache_eval_period_in_msecs, 0, "");
SYSCTL_INT(_vm, OID_AUTO, phantom_cache_thrashing_threshold, CTLFLAG_RW | CTLFLAG_LOCKED, &phantom_cache_thrashing_threshold, 0, "");
SYSCTL_INT(_vm, OID_AUTO, phantom_cache_thrashing_threshold_ssd, CTLFLAG_RW | CTLFLAG_LOCKED, &phantom_cache_thrashing_threshold_ssd, 0, "");
#endif
#if defined(__LP64__)
extern uint32_t vm_page_background_count;
extern uint32_t vm_page_background_target;
extern uint32_t vm_page_background_internal_count;
extern uint32_t vm_page_background_external_count;
extern uint32_t vm_page_background_mode;
extern uint32_t vm_page_background_exclude_external;
extern uint64_t vm_page_background_promoted_count;
extern uint64_t vm_pageout_rejected_bq_internal;
extern uint64_t vm_pageout_rejected_bq_external;
SYSCTL_INT(_vm, OID_AUTO, vm_page_background_mode, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_page_background_mode, 0, "");
SYSCTL_INT(_vm, OID_AUTO, vm_page_background_exclude_external, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_page_background_exclude_external, 0, "");
SYSCTL_INT(_vm, OID_AUTO, vm_page_background_target, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_page_background_target, 0, "");
SYSCTL_INT(_vm, OID_AUTO, vm_page_background_count, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_background_count, 0, "");
SYSCTL_INT(_vm, OID_AUTO, vm_page_background_internal_count, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_background_internal_count, 0, "");
SYSCTL_INT(_vm, OID_AUTO, vm_page_background_external_count, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_background_external_count, 0, "");
SYSCTL_QUAD(_vm, OID_AUTO, vm_page_background_promoted_count, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_background_promoted_count, "");
SYSCTL_QUAD(_vm, OID_AUTO, vm_pageout_considered_bq_internal, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_pageout_vminfo.vm_pageout_considered_bq_internal, "");
SYSCTL_QUAD(_vm, OID_AUTO, vm_pageout_considered_bq_external, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_pageout_vminfo.vm_pageout_considered_bq_external, "");
SYSCTL_QUAD(_vm, OID_AUTO, vm_pageout_rejected_bq_internal, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_pageout_rejected_bq_internal, "");
SYSCTL_QUAD(_vm, OID_AUTO, vm_pageout_rejected_bq_external, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_pageout_rejected_bq_external, "");
#endif /* __LP64__ */
extern void vm_update_darkwake_mode(boolean_t);
extern boolean_t vm_darkwake_mode;
STATIC int
sysctl_toggle_darkwake_mode(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int new_value, changed;
int error = sysctl_io_number(req, vm_darkwake_mode, sizeof(int), &new_value, &changed);
if (!error && changed) {
if (new_value != 0 && new_value != 1) {
printf("Error: Invalid value passed to darkwake sysctl. Acceptable: 0 or 1.\n");
error = EINVAL;
} else {
vm_update_darkwake_mode((boolean_t) new_value);
}
}
return error;
}
SYSCTL_PROC(_vm, OID_AUTO, darkwake_mode,
CTLTYPE_INT | CTLFLAG_LOCKED | CTLFLAG_RW,
0, 0, sysctl_toggle_darkwake_mode, "I", "");
#if (DEVELOPMENT || DEBUG)
SYSCTL_UINT(_vm, OID_AUTO, vm_page_creation_throttled_hard,
CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED,
&vm_page_creation_throttled_hard, 0, "");
SYSCTL_UINT(_vm, OID_AUTO, vm_page_creation_throttled_soft,
CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED,
&vm_page_creation_throttled_soft, 0, "");
extern uint32_t vm_pageout_memorystatus_fb_factor_nr;
extern uint32_t vm_pageout_memorystatus_fb_factor_dr;
SYSCTL_INT(_vm, OID_AUTO, vm_pageout_memorystatus_fb_factor_nr, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_pageout_memorystatus_fb_factor_nr, 0, "");
SYSCTL_INT(_vm, OID_AUTO, vm_pageout_memorystatus_fb_factor_dr, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_pageout_memorystatus_fb_factor_dr, 0, "");
extern uint32_t vm_grab_anon_nops;
SYSCTL_INT(_vm, OID_AUTO, vm_grab_anon_overrides, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_pageout_debug.vm_grab_anon_overrides, 0, "");
SYSCTL_INT(_vm, OID_AUTO, vm_grab_anon_nops, CTLFLAG_RW | CTLFLAG_LOCKED, &vm_pageout_debug.vm_grab_anon_nops, 0, "");
SYSCTL_INT(_vm, OID_AUTO, vm_pageout_yield_for_free_pages, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_pageout_debug.vm_pageout_yield_for_free_pages, 0, "");
extern int vm_page_delayed_work_ctx_needed;
SYSCTL_INT(_vm, OID_AUTO, vm_page_needed_delayed_work_ctx, CTLFLAG_RD | CTLFLAG_LOCKED, &vm_page_delayed_work_ctx_needed, 0, "");
/* log message counters for persistence mode */
SCALABLE_COUNTER_DECLARE(oslog_p_total_msgcount);
SCALABLE_COUNTER_DECLARE(oslog_p_metadata_saved_msgcount);
SCALABLE_COUNTER_DECLARE(oslog_p_metadata_dropped_msgcount);
SCALABLE_COUNTER_DECLARE(oslog_p_signpost_saved_msgcount);
SCALABLE_COUNTER_DECLARE(oslog_p_signpost_dropped_msgcount);
SCALABLE_COUNTER_DECLARE(oslog_p_error_count);
SCALABLE_COUNTER_DECLARE(oslog_p_error_count);
SCALABLE_COUNTER_DECLARE(oslog_p_saved_msgcount);
SCALABLE_COUNTER_DECLARE(oslog_p_dropped_msgcount);
SCALABLE_COUNTER_DECLARE(oslog_p_boot_dropped_msgcount);
SCALABLE_COUNTER_DECLARE(oslog_p_coprocessor_total_msgcount);
SCALABLE_COUNTER_DECLARE(oslog_p_coprocessor_dropped_msgcount);
SCALABLE_COUNTER_DECLARE(oslog_p_unresolved_kc_msgcount);
SCALABLE_COUNTER_DECLARE(oslog_p_fmt_invalid_msgcount);
SCALABLE_COUNTER_DECLARE(oslog_p_fmt_max_args_msgcount);
SCALABLE_COUNTER_DECLARE(oslog_p_truncated_msgcount);
SCALABLE_COUNTER_DECLARE(oslog_subsystem_count);
SCALABLE_COUNTER_DECLARE(oslog_subsystem_found);
SCALABLE_COUNTER_DECLARE(oslog_subsystem_dropped);
SCALABLE_COUNTER_DECLARE(log_queue_cnt_received);
SCALABLE_COUNTER_DECLARE(log_queue_cnt_rejected_fh);
SCALABLE_COUNTER_DECLARE(log_queue_cnt_sent);
SCALABLE_COUNTER_DECLARE(log_queue_cnt_dropped_nomem);
SCALABLE_COUNTER_DECLARE(log_queue_cnt_queued);
SCALABLE_COUNTER_DECLARE(log_queue_cnt_dropped_off);
SCALABLE_COUNTER_DECLARE(log_queue_cnt_mem_active);
SCALABLE_COUNTER_DECLARE(log_queue_cnt_mem_allocated);
SCALABLE_COUNTER_DECLARE(log_queue_cnt_mem_released);
SCALABLE_COUNTER_DECLARE(log_queue_cnt_mem_failed);
/* log message counters for streaming mode */
SCALABLE_COUNTER_DECLARE(oslog_s_total_msgcount);
SCALABLE_COUNTER_DECLARE(oslog_s_metadata_msgcount);
SCALABLE_COUNTER_DECLARE(oslog_s_error_count);
SCALABLE_COUNTER_DECLARE(oslog_s_streamed_msgcount);
SCALABLE_COUNTER_DECLARE(oslog_s_dropped_msgcount);
/* log message counters for msgbuf logging */
SCALABLE_COUNTER_DECLARE(oslog_msgbuf_msgcount);
SCALABLE_COUNTER_DECLARE(oslog_msgbuf_dropped_msgcount);
extern uint32_t oslog_msgbuf_dropped_charcount;
#if CONFIG_EXCLAVES
/* log message counters for exclaves logging */
SCALABLE_COUNTER_DECLARE(oslog_e_log_count);
SCALABLE_COUNTER_DECLARE(oslog_e_log_dropped_count);
SCALABLE_COUNTER_DECLARE(oslog_e_metadata_count);
SCALABLE_COUNTER_DECLARE(oslog_e_metadata_dropped_count);
SCALABLE_COUNTER_DECLARE(oslog_e_signpost_count);
SCALABLE_COUNTER_DECLARE(oslog_e_signpost_dropped_count);
SCALABLE_COUNTER_DECLARE(oslog_e_query_count);
SCALABLE_COUNTER_DECLARE(oslog_e_error_query_count);
#endif // CONFIG_EXCLAVES
SYSCTL_SCALABLE_COUNTER(_debug, oslog_p_total_msgcount, oslog_p_total_msgcount, "");
SYSCTL_SCALABLE_COUNTER(_debug, oslog_p_metadata_saved_msgcount, oslog_p_metadata_saved_msgcount, "");
SYSCTL_SCALABLE_COUNTER(_debug, oslog_p_metadata_dropped_msgcount, oslog_p_metadata_dropped_msgcount, "");
SYSCTL_SCALABLE_COUNTER(_debug, oslog_p_signpost_saved_msgcount, oslog_p_signpost_saved_msgcount, "");
SYSCTL_SCALABLE_COUNTER(_debug, oslog_p_signpost_dropped_msgcount, oslog_p_signpost_dropped_msgcount, "");
SYSCTL_SCALABLE_COUNTER(_debug, oslog_p_error_count, oslog_p_error_count, "");
SYSCTL_SCALABLE_COUNTER(_debug, oslog_p_saved_msgcount, oslog_p_saved_msgcount, "");
SYSCTL_SCALABLE_COUNTER(_debug, oslog_p_dropped_msgcount, oslog_p_dropped_msgcount, "");
SYSCTL_SCALABLE_COUNTER(_debug, oslog_p_boot_dropped_msgcount, oslog_p_boot_dropped_msgcount, "");
SYSCTL_SCALABLE_COUNTER(_debug, oslog_p_coprocessor_total_msgcount, oslog_p_coprocessor_total_msgcount, "");
SYSCTL_SCALABLE_COUNTER(_debug, oslog_p_coprocessor_dropped_msgcount, oslog_p_coprocessor_dropped_msgcount, "");
SYSCTL_SCALABLE_COUNTER(_debug, oslog_p_unresolved_kc_msgcount, oslog_p_unresolved_kc_msgcount, "");
SYSCTL_SCALABLE_COUNTER(_debug, oslog_p_fmt_invalid_msgcount, oslog_p_fmt_invalid_msgcount, "");
SYSCTL_SCALABLE_COUNTER(_debug, oslog_p_fmt_max_args_msgcount, oslog_p_fmt_max_args_msgcount, "");
SYSCTL_SCALABLE_COUNTER(_debug, oslog_p_truncated_msgcount, oslog_p_truncated_msgcount, "");
SYSCTL_SCALABLE_COUNTER(_debug, oslog_s_total_msgcount, oslog_s_total_msgcount, "Number of logs sent to streaming");
SYSCTL_SCALABLE_COUNTER(_debug, oslog_s_metadata_msgcount, oslog_s_metadata_msgcount, "Number of metadata sent to streaming");
SYSCTL_SCALABLE_COUNTER(_debug, oslog_s_error_count, oslog_s_error_count, "Number of invalid stream logs");
SYSCTL_SCALABLE_COUNTER(_debug, oslog_s_streamed_msgcount, oslog_s_streamed_msgcount, "Number of streamed logs");
SYSCTL_SCALABLE_COUNTER(_debug, oslog_s_dropped_msgcount, oslog_s_dropped_msgcount, "Number of logs dropped from stream");
SYSCTL_SCALABLE_COUNTER(_debug, oslog_msgbuf_msgcount, oslog_msgbuf_msgcount, "Number of dmesg log messages");
SYSCTL_SCALABLE_COUNTER(_debug, oslog_msgbuf_dropped_msgcount, oslog_msgbuf_dropped_msgcount, "Number of dropped dmesg log messages");
SYSCTL_UINT(_debug, OID_AUTO, oslog_msgbuf_dropped_charcount, CTLFLAG_ANYBODY | CTLFLAG_RD | CTLFLAG_LOCKED, &oslog_msgbuf_dropped_charcount, 0, "Number of dropped dmesg log chars");
SYSCTL_SCALABLE_COUNTER(_debug, log_queue_cnt_received, log_queue_cnt_received, "Number of received logs");
SYSCTL_SCALABLE_COUNTER(_debug, log_queue_cnt_rejected_fh, log_queue_cnt_rejected_fh, "Number of logs initially rejected by FH");
SYSCTL_SCALABLE_COUNTER(_debug, log_queue_cnt_sent, log_queue_cnt_sent, "Number of logs successfully saved in FH");
SYSCTL_SCALABLE_COUNTER(_debug, log_queue_cnt_dropped_nomem, log_queue_cnt_dropped_nomem, "Number of logs dropped due to lack of queue memory");
SYSCTL_SCALABLE_COUNTER(_debug, log_queue_cnt_queued, log_queue_cnt_queued, "Current number of logs stored in log queues");
SYSCTL_SCALABLE_COUNTER(_debug, log_queue_cnt_dropped_off, log_queue_cnt_dropped_off, "Number of logs dropped due to disabled log queues");
SYSCTL_SCALABLE_COUNTER(_debug, log_queue_cnt_mem_allocated, log_queue_cnt_mem_allocated, "Number of memory allocations");
SYSCTL_SCALABLE_COUNTER(_debug, log_queue_cnt_mem_released, log_queue_cnt_mem_released, "Number of memory releases");
SYSCTL_SCALABLE_COUNTER(_debug, log_queue_cnt_mem_failed, log_queue_cnt_mem_failed, "Number of failed memory allocations");
SYSCTL_SCALABLE_COUNTER(_debug, oslog_subsystem_count, oslog_subsystem_count, "Number of registered log subsystems");
SYSCTL_SCALABLE_COUNTER(_debug, oslog_subsystem_found, oslog_subsystem_found, "Number of sucessful log subsystem lookups");
SYSCTL_SCALABLE_COUNTER(_debug, oslog_subsystem_dropped, oslog_subsystem_dropped, "Number of dropped log subsystem registrations");
#if CONFIG_EXCLAVES
SYSCTL_SCALABLE_COUNTER(_debug, oslog_e_metadata_count, oslog_e_metadata_count,
"Number of metadata messages retrieved from the exclaves log server");
SYSCTL_SCALABLE_COUNTER(_debug, oslog_e_metadata_dropped_count, oslog_e_metadata_dropped_count,
"Number of dropped metadata messages retrieved from the exclaves log server");
SYSCTL_SCALABLE_COUNTER(_debug, oslog_e_log_count, oslog_e_log_count,
"Number of logs retrieved from the exclaves log server");
SYSCTL_SCALABLE_COUNTER(_debug, oslog_e_log_dropped_count, oslog_e_log_dropped_count,
"Number of dropeed logs retrieved from the exclaves log server");
SYSCTL_SCALABLE_COUNTER(_debug, oslog_e_signpost_count, oslog_e_signpost_count,
"Number of signposts retrieved from the exclaves log server");
SYSCTL_SCALABLE_COUNTER(_debug, oslog_e_signpost_dropped_count, oslog_e_signpost_dropped_count,
"Number of dropped signposts retrieved from the exclaves log server");
SYSCTL_SCALABLE_COUNTER(_debug, oslog_e_query_count, oslog_e_query_count,
"Number of sucessful queries to the exclaves log server");
SYSCTL_SCALABLE_COUNTER(_debug, oslog_e_error_query_count, oslog_e_error_query_count,
"Number of failed queries to the exclaves log server");
#endif // CONFIG_EXCLAVES
#endif /* DEVELOPMENT || DEBUG */
/*
* Enable tracing of voucher contents
*/
extern uint32_t ipc_voucher_trace_contents;
SYSCTL_INT(_kern, OID_AUTO, ipc_voucher_trace_contents,
CTLFLAG_RW | CTLFLAG_LOCKED, &ipc_voucher_trace_contents, 0, "Enable tracing voucher contents");
/*
* Kernel stack size and depth
*/
SYSCTL_INT(_kern, OID_AUTO, stack_size,
CTLFLAG_RD | CTLFLAG_LOCKED, (int *) &kernel_stack_size, 0, "Kernel stack size");
SYSCTL_INT(_kern, OID_AUTO, stack_depth_max,
CTLFLAG_RD | CTLFLAG_LOCKED, (int *) &kernel_stack_depth_max, 0, "Max kernel stack depth at interrupt or context switch");
extern unsigned int kern_feature_overrides;
SYSCTL_INT(_kern, OID_AUTO, kern_feature_overrides,
CTLFLAG_RD | CTLFLAG_LOCKED, &kern_feature_overrides, 0, "Kernel feature override mask");
/*
* enable back trace for port allocations
*/
extern int ipc_portbt;
SYSCTL_INT(_kern, OID_AUTO, ipc_portbt,
CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED,
&ipc_portbt, 0, "");
/*
* Mach message signature validation control and outputs
*/
extern unsigned int ikm_signature_failures;
SYSCTL_INT(_kern, OID_AUTO, ikm_signature_failures,
CTLFLAG_RD | CTLFLAG_LOCKED, &ikm_signature_failures, 0, "Message signature failure count");
extern unsigned int ikm_signature_failure_id;
SYSCTL_INT(_kern, OID_AUTO, ikm_signature_failure_id,
CTLFLAG_RD | CTLFLAG_LOCKED, &ikm_signature_failure_id, 0, "Message signature failure count");
#if (DEVELOPMENT || DEBUG)
extern unsigned int ikm_signature_panic_disable;
SYSCTL_INT(_kern, OID_AUTO, ikm_signature_panic_disable,
CTLFLAG_RW | CTLFLAG_LOCKED, &ikm_signature_panic_disable, 0, "Message signature failure mode");
extern unsigned int ikm_signature_header_failures;
SYSCTL_INT(_kern, OID_AUTO, ikm_signature_header_failures,
CTLFLAG_RD | CTLFLAG_LOCKED, &ikm_signature_header_failures, 0, "Message header signature failure count");
extern unsigned int ikm_signature_trailer_failures;
SYSCTL_INT(_kern, OID_AUTO, ikm_signature_trailer_failures,
CTLFLAG_RD | CTLFLAG_LOCKED, &ikm_signature_trailer_failures, 0, "Message trailer signature failure count");
#endif
/*
* Scheduler sysctls
*/
SYSCTL_STRING(_kern, OID_AUTO, sched,
CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED,
sched_string, sizeof(sched_string),
"Timeshare scheduler implementation");
static int
sysctl_cpu_quiescent_counter_interval SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
uint32_t local_min_interval_us = smr_cpu_checkin_get_min_interval_us();
int error = sysctl_handle_int(oidp, &local_min_interval_us, 0, req);
if (error || !req->newptr) {
return error;
}
smr_cpu_checkin_set_min_interval_us(local_min_interval_us);
return 0;
}
SYSCTL_PROC(_kern, OID_AUTO, cpu_checkin_interval,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0,
sysctl_cpu_quiescent_counter_interval, "I",
"Quiescent CPU checkin interval (microseconds)");
/*
* Allow the precise user/kernel time sysctl to be set, but don't allow it to
* affect anything. Some tools expect to be able to set this, even though
* runtime configuration is no longer supported.
*/
static int
sysctl_precise_user_kernel_time SYSCTL_HANDLER_ARGS
{
#if PRECISE_USER_KERNEL_TIME
int dummy_set = 1;
#else /* PRECISE_USER_KERNEL_TIME */
int dummy_set = 0;
#endif /* !PRECISE_USER_KERNEL_TIME */
return sysctl_handle_int(oidp, &dummy_set, 0, req);
}
SYSCTL_PROC(_kern, OID_AUTO, precise_user_kernel_time,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0, sysctl_precise_user_kernel_time, "I",
"Precise accounting of kernel vs. user time (deprecated)");
#if CONFIG_PERVASIVE_ENERGY && HAS_CPU_DPE_COUNTER
__security_const_late static int pervasive_energy = 1;
#else /* CONFIG_PERVASIVE_ENERGY && HAS_CPU_DPE_COUNTER */
__security_const_late static int pervasive_energy = 0;
#endif /* !CONFIG_PERVASIVE_ENERGY || !HAS_CPU_DPE_COUNTER */
SYSCTL_INT(_kern, OID_AUTO, pervasive_energy,
CTLFLAG_KERN | CTLFLAG_RD | CTLFLAG_LOCKED, &pervasive_energy, 0, "");
/* Parameters related to timer coalescing tuning, to be replaced
* with a dedicated systemcall in the future.
*/
/* Enable processing pending timers in the context of any other interrupt
* Coalescing tuning parameters for various thread/task attributes */
STATIC int
sysctl_timer_user_us_kernel_abstime SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp)
int size = arg2; /* subcommand*/
int error;
int changed = 0;
uint64_t old_value_ns;
uint64_t new_value_ns;
uint64_t value_abstime;
if (size == sizeof(uint32_t)) {
value_abstime = *((uint32_t *)arg1);
} else if (size == sizeof(uint64_t)) {
value_abstime = *((uint64_t *)arg1);
} else {
return ENOTSUP;
}
absolutetime_to_nanoseconds(value_abstime, &old_value_ns);
error = sysctl_io_number(req, old_value_ns, sizeof(old_value_ns), &new_value_ns, &changed);
if ((error) || (!changed)) {
return error;
}
nanoseconds_to_absolutetime(new_value_ns, &value_abstime);
if (size == sizeof(uint32_t)) {
*((uint32_t *)arg1) = (uint32_t)value_abstime;
} else {
*((uint64_t *)arg1) = value_abstime;
}
return error;
}
SYSCTL_INT(_kern, OID_AUTO, timer_coalesce_bg_scale,
CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&tcoal_prio_params.timer_coalesce_bg_shift, 0, "");
SYSCTL_PROC(_kern, OID_AUTO, timer_resort_threshold_ns,
CTLTYPE_QUAD | CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&tcoal_prio_params.timer_resort_threshold_abstime,
sizeof(tcoal_prio_params.timer_resort_threshold_abstime),
sysctl_timer_user_us_kernel_abstime,
"Q", "");
SYSCTL_PROC(_kern, OID_AUTO, timer_coalesce_bg_ns_max,
CTLTYPE_QUAD | CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&tcoal_prio_params.timer_coalesce_bg_abstime_max,
sizeof(tcoal_prio_params.timer_coalesce_bg_abstime_max),
sysctl_timer_user_us_kernel_abstime,
"Q", "");
SYSCTL_INT(_kern, OID_AUTO, timer_coalesce_kt_scale,
CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&tcoal_prio_params.timer_coalesce_kt_shift, 0, "");
SYSCTL_PROC(_kern, OID_AUTO, timer_coalesce_kt_ns_max,
CTLTYPE_QUAD | CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&tcoal_prio_params.timer_coalesce_kt_abstime_max,
sizeof(tcoal_prio_params.timer_coalesce_kt_abstime_max),
sysctl_timer_user_us_kernel_abstime,
"Q", "");
SYSCTL_INT(_kern, OID_AUTO, timer_coalesce_fp_scale,
CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&tcoal_prio_params.timer_coalesce_fp_shift, 0, "");
SYSCTL_PROC(_kern, OID_AUTO, timer_coalesce_fp_ns_max,
CTLTYPE_QUAD | CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&tcoal_prio_params.timer_coalesce_fp_abstime_max,
sizeof(tcoal_prio_params.timer_coalesce_fp_abstime_max),
sysctl_timer_user_us_kernel_abstime,
"Q", "");
SYSCTL_INT(_kern, OID_AUTO, timer_coalesce_ts_scale,
CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&tcoal_prio_params.timer_coalesce_ts_shift, 0, "");
SYSCTL_PROC(_kern, OID_AUTO, timer_coalesce_ts_ns_max,
CTLTYPE_QUAD | CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&tcoal_prio_params.timer_coalesce_ts_abstime_max,
sizeof(tcoal_prio_params.timer_coalesce_ts_abstime_max),
sysctl_timer_user_us_kernel_abstime,
"Q", "");
SYSCTL_INT(_kern, OID_AUTO, timer_coalesce_tier0_scale,
CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&tcoal_prio_params.latency_qos_scale[0], 0, "");
SYSCTL_PROC(_kern, OID_AUTO, timer_coalesce_tier0_ns_max,
CTLTYPE_QUAD | CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&tcoal_prio_params.latency_qos_abstime_max[0],
sizeof(tcoal_prio_params.latency_qos_abstime_max[0]),
sysctl_timer_user_us_kernel_abstime,
"Q", "");
SYSCTL_INT(_kern, OID_AUTO, timer_coalesce_tier1_scale,
CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&tcoal_prio_params.latency_qos_scale[1], 0, "");
SYSCTL_PROC(_kern, OID_AUTO, timer_coalesce_tier1_ns_max,
CTLTYPE_QUAD | CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&tcoal_prio_params.latency_qos_abstime_max[1],
sizeof(tcoal_prio_params.latency_qos_abstime_max[1]),
sysctl_timer_user_us_kernel_abstime,
"Q", "");
SYSCTL_INT(_kern, OID_AUTO, timer_coalesce_tier2_scale,
CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&tcoal_prio_params.latency_qos_scale[2], 0, "");
SYSCTL_PROC(_kern, OID_AUTO, timer_coalesce_tier2_ns_max,
CTLTYPE_QUAD | CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&tcoal_prio_params.latency_qos_abstime_max[2],
sizeof(tcoal_prio_params.latency_qos_abstime_max[2]),
sysctl_timer_user_us_kernel_abstime,
"Q", "");
SYSCTL_INT(_kern, OID_AUTO, timer_coalesce_tier3_scale,
CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&tcoal_prio_params.latency_qos_scale[3], 0, "");
SYSCTL_PROC(_kern, OID_AUTO, timer_coalesce_tier3_ns_max,
CTLTYPE_QUAD | CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&tcoal_prio_params.latency_qos_abstime_max[3],
sizeof(tcoal_prio_params.latency_qos_abstime_max[3]),
sysctl_timer_user_us_kernel_abstime,
"Q", "");
SYSCTL_INT(_kern, OID_AUTO, timer_coalesce_tier4_scale,
CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&tcoal_prio_params.latency_qos_scale[4], 0, "");
SYSCTL_PROC(_kern, OID_AUTO, timer_coalesce_tier4_ns_max,
CTLTYPE_QUAD | CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&tcoal_prio_params.latency_qos_abstime_max[4],
sizeof(tcoal_prio_params.latency_qos_abstime_max[4]),
sysctl_timer_user_us_kernel_abstime,
"Q", "");
SYSCTL_INT(_kern, OID_AUTO, timer_coalesce_tier5_scale,
CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&tcoal_prio_params.latency_qos_scale[5], 0, "");
SYSCTL_PROC(_kern, OID_AUTO, timer_coalesce_tier5_ns_max,
CTLTYPE_QUAD | CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&tcoal_prio_params.latency_qos_abstime_max[5],
sizeof(tcoal_prio_params.latency_qos_abstime_max[5]),
sysctl_timer_user_us_kernel_abstime,
"Q", "");
/* Communicate the "user idle level" heuristic to the timer layer, and
* potentially other layers in the future.
*/
static int
timer_user_idle_level(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int new_value = 0, old_value = 0, changed = 0, error;
old_value = timer_get_user_idle_level();
error = sysctl_io_number(req, old_value, sizeof(int), &new_value, &changed);
if (error == 0 && changed) {
if (timer_set_user_idle_level(new_value) != KERN_SUCCESS) {
error = ERANGE;
}
}
return error;
}
SYSCTL_PROC(_machdep, OID_AUTO, user_idle_level,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0,
timer_user_idle_level, "I", "User idle level heuristic, 0-128");
#if DEVELOPMENT || DEBUG
/*
* Basic console mode for games; used for development purposes only.
* Final implementation for this feature (with possible removal of
* sysctl) tracked via rdar://101215873.
*/
static int console_mode = 0;
SYSCTL_INT(_kern, OID_AUTO, console_mode,
CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_MASKED,
&console_mode, 0, "Game Console Mode");
#endif /* DEVELOPMENT || DEBUG */
#if HYPERVISOR
SYSCTL_INT(_kern, OID_AUTO, hv_support,
CTLFLAG_KERN | CTLFLAG_RD | CTLFLAG_LOCKED,
&hv_support_available, 0, "");
SYSCTL_INT(_kern, OID_AUTO, hv_disable,
CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&hv_disable, 0, "");
#endif /* HYPERVISOR */
#if DEVELOPMENT || DEBUG
extern uint64_t driverkit_checkin_timed_out;
SYSCTL_QUAD(_kern, OID_AUTO, driverkit_checkin_timed_out,
CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_LOCKED,
&driverkit_checkin_timed_out, "timestamp of dext checkin timeout");
#endif
#if CONFIG_DARKBOOT
STATIC int
sysctl_darkboot SYSCTL_HANDLER_ARGS
{
int err = 0, value = 0;
#pragma unused(oidp, arg1, arg2, err, value, req)
/*
* Handle the sysctl request.
*
* If this is a read, the function will set the value to the current darkboot value. Otherwise,
* we'll get the request identifier into "value" and then we can honor it.
*/
if ((err = sysctl_io_number(req, darkboot, sizeof(int), &value, NULL)) != 0) {
goto exit;
}
/* writing requested, let's process the request */
if (req->newptr) {
/* writing is protected by an entitlement */
if (priv_check_cred(kauth_cred_get(), PRIV_DARKBOOT, 0) != 0) {
err = EPERM;
goto exit;
}
switch (value) {
case MEMORY_MAINTENANCE_DARK_BOOT_UNSET:
/*
* If the darkboot sysctl is unset, the NVRAM variable
* must be unset too. If that's not the case, it means
* someone is doing something crazy and not supported.
*/
if (darkboot != 0) {
int ret = PERemoveNVRAMProperty(MEMORY_MAINTENANCE_DARK_BOOT_NVRAM_NAME);
if (ret) {
darkboot = 0;
} else {
err = EINVAL;
}
}
break;
case MEMORY_MAINTENANCE_DARK_BOOT_SET:
darkboot = 1;
break;
case MEMORY_MAINTENANCE_DARK_BOOT_SET_PERSISTENT: {
/*
* Set the NVRAM and update 'darkboot' in case
* of success. Otherwise, do not update
* 'darkboot' and report the failure.
*/
if (PEWriteNVRAMBooleanProperty(MEMORY_MAINTENANCE_DARK_BOOT_NVRAM_NAME, TRUE)) {
darkboot = 1;
} else {
err = EINVAL;
}
break;
}
default:
err = EINVAL;
}
}
exit:
return err;
}
SYSCTL_PROC(_kern, OID_AUTO, darkboot,
CTLFLAG_KERN | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_ANYBODY,
0, 0, sysctl_darkboot, "I", "");
#endif /* CONFIG_DARKBOOT */
#if DEVELOPMENT || DEBUG
#include <sys/sysent.h>
/* This should result in a fatal exception, verifying that "sysent" is
* write-protected.
*/
static int
kern_sysent_write(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
uint64_t new_value = 0, old_value = 0;
int changed = 0, error;
error = sysctl_io_number(req, old_value, sizeof(uint64_t), &new_value, &changed);
if ((error == 0) && changed) {
volatile uint32_t *wraddr = __DECONST(uint32_t *, &sysent[0]);
*wraddr = 0;
printf("sysent[0] write succeeded\n");
}
return error;
}
SYSCTL_PROC(_kern, OID_AUTO, sysent_const_check,
CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED,
0, 0,
kern_sysent_write, "I", "Attempt sysent[0] write");
#endif
#if DEVELOPMENT || DEBUG
SYSCTL_COMPAT_INT(_kern, OID_AUTO, development, CTLFLAG_RD | CTLFLAG_MASKED | CTLFLAG_KERN, NULL, 1, "");
#else
SYSCTL_COMPAT_INT(_kern, OID_AUTO, development, CTLFLAG_RD | CTLFLAG_MASKED, NULL, 0, "");
#endif
#if DEVELOPMENT || DEBUG
decl_lck_spin_data(, spinlock_panic_test_lock);
__attribute__((noreturn))
static void
spinlock_panic_test_acquire_spinlock(void * arg __unused, wait_result_t wres __unused)
{
lck_spin_lock(&spinlock_panic_test_lock);
while (1) {
;
}
}
static int
sysctl_spinlock_panic_test SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
if (req->newlen == 0) {
return EINVAL;
}
thread_t panic_spinlock_thread;
/* Initialize panic spinlock */
lck_grp_t * panic_spinlock_grp;
lck_grp_attr_t * panic_spinlock_grp_attr;
lck_attr_t * panic_spinlock_attr;
panic_spinlock_grp_attr = lck_grp_attr_alloc_init();
panic_spinlock_grp = lck_grp_alloc_init("panic_spinlock", panic_spinlock_grp_attr);
panic_spinlock_attr = lck_attr_alloc_init();
lck_spin_init(&spinlock_panic_test_lock, panic_spinlock_grp, panic_spinlock_attr);
/* Create thread to acquire spinlock */
if (kernel_thread_start(spinlock_panic_test_acquire_spinlock, NULL, &panic_spinlock_thread) != KERN_SUCCESS) {
return EBUSY;
}
/* Try to acquire spinlock -- should panic eventually */
lck_spin_lock(&spinlock_panic_test_lock);
while (1) {
;
}
}
__attribute__((noreturn))
static void
simultaneous_panic_worker
(void * arg, wait_result_t wres __unused)
{
atomic_int *start_panic = (atomic_int *)arg;
while (!atomic_load(start_panic)) {
;
}
panic("SIMULTANEOUS PANIC TEST: INITIATING PANIC FROM CPU %d", cpu_number());
__builtin_unreachable();
}
static int
sysctl_simultaneous_panic_test SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
if (req->newlen == 0) {
return EINVAL;
}
int i = 0, threads_to_create = 2 * processor_count;
atomic_int start_panic = 0;
unsigned int threads_created = 0;
thread_t new_panic_thread;
for (i = threads_to_create; i > 0; i--) {
if (kernel_thread_start(simultaneous_panic_worker, (void *) &start_panic, &new_panic_thread) == KERN_SUCCESS) {
threads_created++;
}
}
/* FAIL if we couldn't create at least processor_count threads */
if (threads_created < processor_count) {
panic("SIMULTANEOUS PANIC TEST: FAILED TO CREATE ENOUGH THREADS, ONLY CREATED %d (of %d)",
threads_created, threads_to_create);
}
atomic_exchange(&start_panic, 1);
while (1) {
;
}
}
extern unsigned int panic_test_failure_mode;
SYSCTL_INT(_debug, OID_AUTO, xnu_panic_failure_mode, CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_KERN, &panic_test_failure_mode, 0, "panic/debugger test failure mode");
extern unsigned int panic_test_action_count;
SYSCTL_INT(_debug, OID_AUTO, xnu_panic_action_count, CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_KERN, &panic_test_action_count, 0, "panic/debugger test action count");
extern unsigned int panic_test_case;
SYSCTL_INT(_debug, OID_AUTO, xnu_panic_test_case, CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_KERN, &panic_test_case, 0, "panic/debugger testcase");
SYSCTL_PROC(_debug, OID_AUTO, xnu_spinlock_panic_test, CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_MASKED, 0, 0, sysctl_spinlock_panic_test, "A", "spinlock panic test");
SYSCTL_PROC(_debug, OID_AUTO, xnu_simultaneous_panic_test, CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_KERN | CTLFLAG_MASKED, 0, 0, sysctl_simultaneous_panic_test, "A", "simultaneous panic test");
extern int exc_resource_threads_enabled;
SYSCTL_INT(_kern, OID_AUTO, exc_resource_threads_enabled, CTLFLAG_RW | CTLFLAG_LOCKED, &exc_resource_threads_enabled, 0, "exc_resource thread limit enabled");
#endif /* DEVELOPMENT || DEBUG */
#if BUILT_LTO
static int _built_lto = 1;
#else // BUILT_LTO
static int _built_lto = 0;
#endif // !BUILT_LTO
SYSCTL_INT(_kern, OID_AUTO, link_time_optimized, CTLFLAG_RD | CTLFLAG_LOCKED | CTLFLAG_KERN, &_built_lto, 0, "Whether the kernel was built with Link Time Optimization enabled");
#if CONFIG_THREAD_GROUPS
#if DEVELOPMENT || DEBUG
static int
sysctl_get_thread_group_id SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2, oidp)
uint64_t thread_group_id = thread_group_get_id(thread_group_get(current_thread()));
return SYSCTL_OUT(req, &thread_group_id, sizeof(thread_group_id));
}
SYSCTL_PROC(_kern, OID_AUTO, thread_group_id, CTLFLAG_RD | CTLFLAG_LOCKED | CTLTYPE_QUAD,
0, 0, &sysctl_get_thread_group_id, "I", "thread group id of the thread");
STATIC int
sysctl_thread_group_count(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int value = thread_group_count();
return sysctl_io_number(req, value, sizeof(value), NULL, NULL);
}
SYSCTL_PROC(_kern, OID_AUTO, thread_group_count, CTLFLAG_RD | CTLFLAG_LOCKED | CTLFLAG_KERN,
0, 0, &sysctl_thread_group_count, "I", "count of thread groups");
#endif /* DEVELOPMENT || DEBUG */
const uint32_t thread_groups_supported = 1;
#else /* CONFIG_THREAD_GROUPS */
const uint32_t thread_groups_supported = 0;
#endif /* CONFIG_THREAD_GROUPS */
STATIC int
sysctl_thread_groups_supported(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
int value = thread_groups_supported;
return sysctl_io_number(req, value, sizeof(value), NULL, NULL);
}
SYSCTL_PROC(_kern, OID_AUTO, thread_groups_supported, CTLFLAG_RD | CTLFLAG_LOCKED | CTLFLAG_KERN,
0, 0, &sysctl_thread_groups_supported, "I", "thread groups supported");
static int
sysctl_grade_cputype SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2, oidp)
int error = 0;
int type_tuple[2] = {};
int return_value = 0;
error = SYSCTL_IN(req, &type_tuple, sizeof(type_tuple));
if (error) {
return error;
}
return_value = grade_binary(type_tuple[0], type_tuple[1] & ~CPU_SUBTYPE_MASK, type_tuple[1] & CPU_SUBTYPE_MASK, FALSE);
error = SYSCTL_OUT(req, &return_value, sizeof(return_value));
if (error) {
return error;
}
return error;
}
SYSCTL_PROC(_kern, OID_AUTO, grade_cputype,
CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MASKED | CTLFLAG_LOCKED | CTLTYPE_OPAQUE,
0, 0, &sysctl_grade_cputype, "S",
"grade value of cpu_type_t+cpu_sub_type_t");
extern boolean_t allow_direct_handoff;
SYSCTL_INT(_kern, OID_AUTO, direct_handoff,
CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&allow_direct_handoff, 0, "Enable direct handoff for realtime threads");
#if DEVELOPMENT || DEBUG
SYSCTL_QUAD(_kern, OID_AUTO, phys_carveout_pa, CTLFLAG_RD | CTLFLAG_LOCKED | CTLFLAG_KERN,
&phys_carveout_pa,
"base physical address of the phys_carveout_mb boot-arg region");
SYSCTL_QUAD(_kern, OID_AUTO, phys_carveout_size, CTLFLAG_RD | CTLFLAG_LOCKED | CTLFLAG_KERN,
&phys_carveout_size,
"size in bytes of the phys_carveout_mb boot-arg region");
extern void do_cseg_wedge_thread(void);
extern void do_cseg_unwedge_thread(void);
static int
cseg_wedge_thread SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
int error, val = 0;
error = sysctl_handle_int(oidp, &val, 0, req);
if (error || val == 0) {
return error;
}
do_cseg_wedge_thread();
return 0;
}
SYSCTL_PROC(_kern, OID_AUTO, cseg_wedge_thread, CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_MASKED, 0, 0, cseg_wedge_thread, "I", "wedge c_seg thread");
static int
cseg_unwedge_thread SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
int error, val = 0;
error = sysctl_handle_int(oidp, &val, 0, req);
if (error || val == 0) {
return error;
}
do_cseg_unwedge_thread();
return 0;
}
SYSCTL_PROC(_kern, OID_AUTO, cseg_unwedge_thread, CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_MASKED, 0, 0, cseg_unwedge_thread, "I", "unstuck c_seg thread");
static atomic_int wedge_thread_should_wake = 0;
static int
unwedge_thread SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
int error, val = 0;
error = sysctl_handle_int(oidp, &val, 0, req);
if (error || val == 0) {
return error;
}
atomic_store(&wedge_thread_should_wake, 1);
return 0;
}
SYSCTL_PROC(_kern, OID_AUTO, unwedge_thread, CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_LOCKED, 0, 0, unwedge_thread, "I", "unwedge the thread wedged by kern.wedge_thread");
static int
wedge_thread SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
int error, val = 0;
error = sysctl_handle_int(oidp, &val, 0, req);
if (error || val == 0) {
return error;
}
uint64_t interval = 1;
nanoseconds_to_absolutetime(1000 * 1000 * 50, &interval);
atomic_store(&wedge_thread_should_wake, 0);
while (!atomic_load(&wedge_thread_should_wake)) {
tsleep1(NULL, 0, "wedge_thread", mach_absolute_time() + interval, NULL);
}
return 0;
}
SYSCTL_PROC(_kern, OID_AUTO, wedge_thread,
CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_LOCKED, 0, 0, wedge_thread, "I",
"wedge this thread so it cannot be cleaned up");
static int
sysctl_total_corpses_count SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
extern unsigned long total_corpses_count(void);
unsigned long corpse_count_long = total_corpses_count();
unsigned int corpse_count = (unsigned int)MIN(corpse_count_long, UINT_MAX);
return sysctl_io_opaque(req, &corpse_count, sizeof(corpse_count), NULL);
}
SYSCTL_PROC(_kern, OID_AUTO, total_corpses_count,
CTLFLAG_RD | CTLFLAG_ANYBODY | CTLFLAG_LOCKED, 0, 0,
sysctl_total_corpses_count, "I", "total corpses on the system");
static int
sysctl_turnstile_test_prim_lock SYSCTL_HANDLER_ARGS;
static int
sysctl_turnstile_test_prim_unlock SYSCTL_HANDLER_ARGS;
int
tstile_test_prim_lock(boolean_t use_hashtable);
int
tstile_test_prim_unlock(boolean_t use_hashtable);
static int
sysctl_turnstile_test_prim_lock SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
int error, val = 0;
error = sysctl_handle_int(oidp, &val, 0, req);
if (error || val == 0) {
return error;
}
switch (val) {
case SYSCTL_TURNSTILE_TEST_USER_DEFAULT:
case SYSCTL_TURNSTILE_TEST_USER_HASHTABLE:
case SYSCTL_TURNSTILE_TEST_KERNEL_DEFAULT:
case SYSCTL_TURNSTILE_TEST_KERNEL_HASHTABLE:
return tstile_test_prim_lock(val);
default:
return error;
}
}
static int
sysctl_turnstile_test_prim_unlock SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
int error, val = 0;
error = sysctl_handle_int(oidp, &val, 0, req);
if (error || val == 0) {
return error;
}
switch (val) {
case SYSCTL_TURNSTILE_TEST_USER_DEFAULT:
case SYSCTL_TURNSTILE_TEST_USER_HASHTABLE:
case SYSCTL_TURNSTILE_TEST_KERNEL_DEFAULT:
case SYSCTL_TURNSTILE_TEST_KERNEL_HASHTABLE:
return tstile_test_prim_unlock(val);
default:
return error;
}
}
SYSCTL_PROC(_kern, OID_AUTO, turnstiles_test_lock, CTLFLAG_WR | CTLFLAG_ANYBODY | CTLFLAG_KERN | CTLFLAG_LOCKED,
0, 0, sysctl_turnstile_test_prim_lock, "I", "turnstiles test lock");
SYSCTL_PROC(_kern, OID_AUTO, turnstiles_test_unlock, CTLFLAG_WR | CTLFLAG_ANYBODY | CTLFLAG_KERN | CTLFLAG_LOCKED,
0, 0, sysctl_turnstile_test_prim_unlock, "I", "turnstiles test unlock");
int
turnstile_get_boost_stats_sysctl(void *req);
int
turnstile_get_unboost_stats_sysctl(void *req);
static int
sysctl_turnstile_boost_stats SYSCTL_HANDLER_ARGS;
static int
sysctl_turnstile_unboost_stats SYSCTL_HANDLER_ARGS;
extern uint64_t thread_block_on_turnstile_count;
extern uint64_t thread_block_on_regular_waitq_count;
static int
sysctl_turnstile_boost_stats SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2, oidp)
return turnstile_get_boost_stats_sysctl(req);
}
static int
sysctl_turnstile_unboost_stats SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2, oidp)
return turnstile_get_unboost_stats_sysctl(req);
}
SYSCTL_PROC(_kern, OID_AUTO, turnstile_boost_stats, CTLFLAG_RD | CTLFLAG_ANYBODY | CTLFLAG_KERN | CTLFLAG_LOCKED | CTLTYPE_STRUCT,
0, 0, sysctl_turnstile_boost_stats, "S", "turnstiles boost stats");
SYSCTL_PROC(_kern, OID_AUTO, turnstile_unboost_stats, CTLFLAG_RD | CTLFLAG_ANYBODY | CTLFLAG_KERN | CTLFLAG_LOCKED | CTLTYPE_STRUCT,
0, 0, sysctl_turnstile_unboost_stats, "S", "turnstiles unboost stats");
SYSCTL_QUAD(_kern, OID_AUTO, thread_block_count_on_turnstile,
CTLFLAG_RD | CTLFLAG_ANYBODY | CTLFLAG_KERN | CTLFLAG_LOCKED,
&thread_block_on_turnstile_count, "thread blocked on turnstile count");
SYSCTL_QUAD(_kern, OID_AUTO, thread_block_count_on_reg_waitq,
CTLFLAG_RD | CTLFLAG_ANYBODY | CTLFLAG_KERN | CTLFLAG_LOCKED,
&thread_block_on_regular_waitq_count, "thread blocked on regular waitq count");
#if CONFIG_PV_TICKET
extern int ticket_lock_spins;
SYSCTL_INT(_kern, OID_AUTO, ticket_lock_spins,
CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
&ticket_lock_spins, 0, "loops before hypercall");
#if (DEBUG || DEVELOPMENT)
/* PV ticket lock stats */
SYSCTL_SCALABLE_COUNTER(_kern, ticket_lock_kicks, ticket_kick_count,
"ticket lock kicks");
SYSCTL_SCALABLE_COUNTER(_kern, ticket_lock_waits, ticket_wait_count,
"ticket lock waits");
SYSCTL_SCALABLE_COUNTER(_kern, ticket_lock_already, ticket_already_count,
"ticket lock already unlocked");
SYSCTL_SCALABLE_COUNTER(_kern, ticket_lock_just_unlock, ticket_just_unlock,
"ticket unlock without kick");
SYSCTL_SCALABLE_COUNTER(_kern, ticket_lock_wflag_cleared, ticket_wflag_cleared,
"ticket lock wait flag cleared");
SYSCTL_SCALABLE_COUNTER(_kern, ticket_lock_wflag_still, ticket_wflag_still,
"ticket lock wait flag not cleared");
SYSCTL_SCALABLE_COUNTER(_kern, ticket_lock_spin_count, ticket_spin_count,
"ticket lock spin count");
/* sysctl kern.hcall_probe=n -- does hypercall #n exist? */
static int
sysctl_hcall_probe SYSCTL_HANDLER_ARGS
{
char instr[20];
if (!req->newptr) {
return 0;
}
if (req->newlen >= sizeof(instr)) {
return EOVERFLOW;
}
int error = SYSCTL_IN(req, instr, req->newlen);
if (error) {
return error;
}
instr[req->newlen] = '\0';
int hcall = 0;
error = sscanf(instr, "%d", &hcall);
if (error != 1 || hcall < 0) {
return EINVAL;
}
uprintf("%savailable\n",
hvg_is_hcall_available((hvg_hcall_code_t)hcall) ? "" : "not ");
return 0;
}
SYSCTL_PROC(_kern, OID_AUTO, hcall_probe,
CTLTYPE_STRING | CTLFLAG_WR | CTLFLAG_LOCKED | CTLFLAG_MASKED,
0, 0, sysctl_hcall_probe, "A", "probe hypercall by id");
#endif /* (DEBUG || DEVELOPMENT) */
#endif /* CONFIG_PV_TICKET */
#if defined(__x86_64__)
extern uint64_t MutexSpin;
SYSCTL_QUAD(_kern, OID_AUTO, mutex_spin_abs, CTLFLAG_RW, &MutexSpin,
"Spin time in abs for acquiring a kernel mutex");
#else
extern machine_timeout_t MutexSpin;
SYSCTL_QUAD(_kern, OID_AUTO, mutex_spin_abs, CTLFLAG_RW, &MutexSpin,
"Spin time in abs for acquiring a kernel mutex");
#endif
extern uint64_t low_MutexSpin;
extern int64_t high_MutexSpin;
extern unsigned int real_ncpus;
SYSCTL_QUAD(_kern, OID_AUTO, low_mutex_spin_abs, CTLFLAG_RW, &low_MutexSpin,
"Low spin threshold in abs for acquiring a kernel mutex");
static int
sysctl_high_mutex_spin_ns SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
int error;
int64_t val = 0;
int64_t res;
/* Check if the user is writing to high_MutexSpin, or just reading it */
if (req->newptr) {
error = SYSCTL_IN(req, &val, sizeof(val));
if (error || (val < 0 && val != -1)) {
return error;
}
high_MutexSpin = val;
}
if (high_MutexSpin >= 0) {
res = high_MutexSpin;
} else {
res = low_MutexSpin * real_ncpus;
}
return SYSCTL_OUT(req, &res, sizeof(res));
}
SYSCTL_PROC(_kern, OID_AUTO, high_mutex_spin_abs, CTLFLAG_RW | CTLTYPE_QUAD, 0, 0, sysctl_high_mutex_spin_ns, "I",
"High spin threshold in abs for acquiring a kernel mutex");
#if defined (__x86_64__)
semaphore_t sysctl_test_panic_with_thread_sem;
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Winfinite-recursion" /* rdar://38801963 */
__attribute__((noreturn))
static void
panic_thread_test_child_spin(void * arg, wait_result_t wres)
{
static int panic_thread_recurse_count = 5;
if (panic_thread_recurse_count > 0) {
panic_thread_recurse_count--;
panic_thread_test_child_spin(arg, wres);
}
semaphore_signal(sysctl_test_panic_with_thread_sem);
while (1) {
;
}
}
#pragma clang diagnostic pop
static void
panic_thread_test_child_park(void * arg __unused, wait_result_t wres __unused)
{
int event;
assert_wait(&event, THREAD_UNINT);
semaphore_signal(sysctl_test_panic_with_thread_sem);
thread_block(panic_thread_test_child_park);
}
static int
sysctl_test_panic_with_thread SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
int rval = 0;
char str[16] = { '\0' };
thread_t child_thread = THREAD_NULL;
rval = sysctl_handle_string(oidp, str, sizeof(str), req);
if (rval != 0 || !req->newptr) {
return EINVAL;
}
semaphore_create(kernel_task, &sysctl_test_panic_with_thread_sem, SYNC_POLICY_FIFO, 0);
/* Create thread to spin or park in continuation */
if (strncmp("spin", str, strlen("spin")) == 0) {
if (kernel_thread_start(panic_thread_test_child_spin, NULL, &child_thread) != KERN_SUCCESS) {
semaphore_destroy(kernel_task, sysctl_test_panic_with_thread_sem);
return EBUSY;
}
} else if (strncmp("continuation", str, strlen("continuation")) == 0) {
if (kernel_thread_start(panic_thread_test_child_park, NULL, &child_thread) != KERN_SUCCESS) {
semaphore_destroy(kernel_task, sysctl_test_panic_with_thread_sem);
return EBUSY;
}
} else {
semaphore_destroy(kernel_task, sysctl_test_panic_with_thread_sem);
return EINVAL;
}
semaphore_wait(sysctl_test_panic_with_thread_sem);
panic_with_thread_context(0, NULL, 0, child_thread, "testing panic_with_thread_context for thread %p", child_thread);
/* Not reached */
return EINVAL;
}
SYSCTL_PROC(_kern, OID_AUTO, test_panic_with_thread,
CTLFLAG_MASKED | CTLFLAG_KERN | CTLFLAG_LOCKED | CTLFLAG_WR | CTLTYPE_STRING,
0, 0, sysctl_test_panic_with_thread, "A", "test panic flow for backtracing a different thread");
#endif /* defined (__x86_64__) */
#endif /* DEVELOPMENT || DEBUG */
static int
sysctl_get_owned_vmobjects SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
/* validate */
if (req->newlen != sizeof(mach_port_name_t) || req->newptr == USER_ADDR_NULL ||
req->oldidx != 0 || req->newidx != 0 || req->p == NULL ||
(req->oldlen == 0 && req->oldptr != USER_ADDR_NULL)) {
return EINVAL;
}
int error;
mach_port_name_t task_port_name;
task_t task;
size_t buffer_size = (req->oldptr != USER_ADDR_NULL) ? req->oldlen : 0;
vmobject_list_output_t buffer = NULL;
size_t output_size;
size_t entries;
/* we have a "newptr" (for write) we get a task port name from the caller. */
error = SYSCTL_IN(req, &task_port_name, sizeof(mach_port_name_t));
if (error != 0) {
goto sysctl_get_vmobject_list_exit;
}
task = port_name_to_task_read(task_port_name);
if (task == TASK_NULL) {
error = ESRCH;
goto sysctl_get_vmobject_list_exit;
}
bool corpse = task_is_a_corpse(task);
/* get the current size */
size_t max_size;
task_get_owned_vmobjects(task, 0, NULL, &max_size, &entries);
if (buffer_size && (buffer_size < sizeof(*buffer) + sizeof(vm_object_query_data_t))) {
error = ENOMEM;
goto sysctl_get_vmobject_list_deallocate_and_exit;
}
if (corpse == false) {
/* copy the vmobjects and vmobject data out of the task */
if (buffer_size == 0) {
output_size = max_size;
} else {
buffer_size = (buffer_size > max_size) ? max_size : buffer_size;
buffer = (struct _vmobject_list_output_ *)kalloc_data(buffer_size, Z_WAITOK);
if (!buffer) {
error = ENOMEM;
goto sysctl_get_vmobject_list_deallocate_and_exit;
}
task_get_owned_vmobjects(task, buffer_size, buffer, &output_size, &entries);
}
/* req->oldptr should be USER_ADDR_NULL if buffer == NULL and return the current size */
/* otherwise copy buffer to oldptr and return the bytes copied */
error = SYSCTL_OUT(req, (char *)buffer, output_size);
} else {
vmobject_list_output_t list;
task_get_corpse_vmobject_list(task, &list, &max_size);
assert(buffer == NULL);
/* copy corpse_vmobject_list to output buffer to avoid double copy */
if (buffer_size) {
size_t temp_size;
temp_size = buffer_size > max_size ? max_size : buffer_size;
output_size = temp_size - sizeof(*buffer);
/* whole multiple of vm_object_query_data_t */
output_size = (output_size / sizeof(vm_object_query_data_t)) * sizeof(vm_object_query_data_t) + sizeof(*buffer);
buffer = list;
} else {
output_size = max_size;
}
/* req->oldptr should be USER_ADDR_NULL if buffer == NULL and return the current size */
/* otherwise copy buffer to oldptr and return the bytes copied */
error = SYSCTL_OUT(req, (char*)buffer, output_size);
buffer = NULL;
}
sysctl_get_vmobject_list_deallocate_and_exit:
task_deallocate(task);
sysctl_get_vmobject_list_exit:
if (buffer) {
kfree_data(buffer, buffer_size);
}
return error;
}
SYSCTL_PROC(_vm, OID_AUTO, get_owned_vmobjects,
CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_WR | CTLFLAG_MASKED | CTLFLAG_KERN | CTLFLAG_LOCKED | CTLFLAG_ANYBODY,
0, 0, sysctl_get_owned_vmobjects, "A", "get owned vmobjects in task");
extern uint64_t num_static_scalable_counters;
SYSCTL_QUAD(_kern, OID_AUTO, num_static_scalable_counters, CTLFLAG_RD | CTLFLAG_LOCKED, &num_static_scalable_counters, "");
#if SCHED_HYGIENE_DEBUG
TUNABLE_DT(bool, sched_hygiene_nonspec_tb, "machine-timeouts", "nonspec-tb", "sched-hygiene-nonspec-tb", false, TUNABLE_DT_NONE);
#endif /* SCHED_HYGIENE_DEBUG */
uuid_string_t trial_treatment_id;
uuid_string_t trial_experiment_id;
int trial_deployment_id = -1;
SYSCTL_STRING(_kern, OID_AUTO, trial_treatment_id, CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_ANYBODY | CTLFLAG_EXPERIMENT, trial_treatment_id, sizeof(trial_treatment_id), "");
SYSCTL_STRING(_kern, OID_AUTO, trial_experiment_id, CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_ANYBODY | CTLFLAG_EXPERIMENT, trial_experiment_id, sizeof(trial_experiment_id), "");
SYSCTL_INT(_kern, OID_AUTO, trial_deployment_id, CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_ANYBODY | CTLFLAG_EXPERIMENT, &trial_deployment_id, 0, "");
#if (DEVELOPMENT || DEBUG)
/* For unit testing setting factors & limits. */
unsigned int testing_experiment_factor;
EXPERIMENT_FACTOR_UINT(_kern, testing_experiment_factor, &testing_experiment_factor, 5, 10, "");
extern int exception_log_max_pid;
SYSCTL_INT(_debug, OID_AUTO, exception_log_max_pid, CTLFLAG_RW | CTLFLAG_LOCKED, &exception_log_max_pid, 0, "Log exceptions for all processes up to this pid");
#endif /* (DEVELOPMENT || DEBUG) */
#if DEVELOPMENT || DEBUG
static int
unlink_kernelcore_sysctl SYSCTL_HANDLER_ARGS
{
if (!req->newptr) {
return EINVAL;
}
void IOBSDLowSpaceUnlinkKernelCore(void);
IOBSDLowSpaceUnlinkKernelCore();
return 0;
}
SYSCTL_PROC(_kern, OID_AUTO, unlink_kernelcore,
CTLTYPE_INT | CTLFLAG_WR | CTLFLAG_LOCKED | CTLFLAG_MASKED, 0, 0,
unlink_kernelcore_sysctl, "-", "unlink the kernelcore file");
#endif /* DEVELOPMENT || DEBUG */
#if CONFIG_IOTRACE
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wcast-qual"
SYSCTL_INT(_debug, OID_AUTO, MMIOtrace,
CTLFLAG_KERN | CTLFLAG_RW | CTLFLAG_LOCKED,
(int *)&mmiotrace_enabled, 0, "");
#pragma clang diagnostic pop
#endif /* CONFIG_IOTRACE */
static int
sysctl_page_protection_type SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
int value = ml_page_protection_type();
return SYSCTL_OUT(req, &value, sizeof(value));
}
SYSCTL_PROC(_kern, OID_AUTO, page_protection_type,
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED,
0, 0, sysctl_page_protection_type, "I", "Type of page protection that the system supports");
TUNABLE_DT(int, gpu_pmem_selector, "defaults", "kern.gpu_pmem_selector", "gpu-pmem-selector", 0, TUNABLE_DT_NONE);
#if CONFIG_EXCLAVES
static int
sysctl_task_conclave SYSCTL_HANDLER_ARGS
{
extern const char *exclaves_resource_name(void *);
#pragma unused(arg2)
void *conclave = task_get_conclave(current_task());
if (conclave != NULL) {
const char *name = exclaves_resource_name(conclave);
assert3u(strlen(name), >, 0);
/*
* This is a RO operation already and the string is never
* written to.
*/
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wcast-qual"
return sysctl_handle_string(oidp, (char *)name, 0, req);
#pragma clang diagnostic pop
}
return sysctl_handle_string(oidp, arg1, MAXCONCLAVENAME, req);
}
SYSCTL_PROC(_kern, OID_AUTO, task_conclave,
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED,
"", 0, sysctl_task_conclave, "A", "Conclave string for the task");
void task_set_conclave_untaintable(task_t task);
static int
sysctl_task_conclave_untaintable SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
int error, val = 0;
error = sysctl_handle_int(oidp, &val, 0, req);
if (error || val == 0) {
return error;
}
task_set_conclave_untaintable(current_task());
return 0;
}
SYSCTL_PROC(_kern, OID_AUTO, task_conclave_untaintable,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
"", 0, sysctl_task_conclave_untaintable, "A", "Task could not be tainted by talking to conclaves");
extern uint32_t fake_crash_buffer_length;
SYSCTL_INT(_kern, OID_AUTO, fake_crash_buffer_length, CTLFLAG_RD, &fake_crash_buffer_length, 0, NULL);
#endif /* CONFIG_EXCLAVES */
#if (DEVELOPMENT || DEBUG)
SYSCTL_INT(_kern, OID_AUTO, gpu_pmem_selector,
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED | CTLFLAG_KERN,
&gpu_pmem_selector, 0, "GPU wire down limit selector");
#else /* !(DEVELOPMENT || DEBUG) */
SYSCTL_INT(_kern, OID_AUTO, gpu_pmem_selector,
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED | CTLFLAG_KERN | CTLFLAG_MASKED,
&gpu_pmem_selector, 0, "GPU wire down limit selector");
#endif /* (DEVELOPMENT || DEBUG) */
static int
sysctl_exclaves_status SYSCTL_HANDLER_ARGS
{
int value = exclaves_get_status();
return sysctl_io_number(req, value, sizeof(value), NULL, NULL);
}
SYSCTL_PROC(_kern, OID_AUTO, exclaves_status,
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED,
0, 0, sysctl_exclaves_status, "I", "Running status of Exclaves");
static int
sysctl_exclaves_boot_stage SYSCTL_HANDLER_ARGS
{
int value = exclaves_get_boot_stage();
return sysctl_io_number(req, value, sizeof(value), NULL, NULL);
}
SYSCTL_PROC(_kern, OID_AUTO, exclaves_boot_stage,
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED,
0, 0, sysctl_exclaves_boot_stage, "I", "Boot stage of Exclaves");
#if CONFIG_EXCLAVES && (DEVELOPMENT || DEBUG)
extern unsigned int exclaves_debug;
SYSCTL_UINT(_kern, OID_AUTO, exclaves_debug, CTLFLAG_RW | CTLFLAG_LOCKED,
&exclaves_debug, 0, "Exclaves debug flags");
#endif /* CONFIG_EXCLAVES && (DEVELOPMENT || DEBUG) */