gems-kernel/source/THIRDPARTY/xnu/bsd/kern/kern_exit.c
2024-06-03 11:29:39 -05:00

3598 lines
113 KiB
C

/*
* Copyright (c) 2000-2016 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/* Copyright (c) 1995, 1997 Apple Computer, Inc. All Rights Reserved */
/*
* Copyright (c) 1982, 1986, 1989, 1991, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_exit.c 8.7 (Berkeley) 2/12/94
*/
/*
* NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
* support for mandatory and extensible security protections. This notice
* is included in support of clause 2.2 (b) of the Apple Public License,
* Version 2.0.
*/
#include <machine/reg.h>
#include <machine/psl.h>
#include <stdatomic.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/ioctl.h>
#include <sys/proc_internal.h>
#include <sys/proc.h>
#include <sys/kauth.h>
#include <sys/tty.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <sys/kernel.h>
#include <sys/wait.h>
#include <sys/file_internal.h>
#include <sys/vnode_internal.h>
#include <sys/syslog.h>
#include <sys/malloc.h>
#include <sys/resourcevar.h>
#include <sys/ptrace.h>
#include <sys/proc_info.h>
#include <sys/reason.h>
#include <sys/_types/_timeval64.h>
#include <sys/user.h>
#include <sys/aio_kern.h>
#include <sys/sysproto.h>
#include <sys/signalvar.h>
#include <sys/kdebug.h>
#include <sys/kdebug_triage.h>
#include <sys/acct.h> /* acct_process */
#include <sys/codesign.h>
#include <sys/event.h> /* kevent_proc_copy_uptrs */
#include <sys/sdt.h>
#include <sys/bsdtask_info.h> /* bsd_getthreadname */
#include <sys/spawn.h>
#include <sys/ubc.h>
#include <sys/code_signing.h>
#include <security/audit/audit.h>
#include <bsm/audit_kevents.h>
#include <mach/mach_types.h>
#include <mach/task.h>
#include <mach/thread_act.h>
#include <kern/exc_resource.h>
#include <kern/kern_types.h>
#include <kern/kalloc.h>
#include <kern/task.h>
#include <corpses/task_corpse.h>
#include <kern/thread.h>
#include <kern/thread_call.h>
#include <kern/sched_prim.h>
#include <kern/assert.h>
#include <kern/locks.h>
#include <kern/policy_internal.h>
#include <kern/exc_guard.h>
#include <kern/backtrace.h>
#include <vm/vm_protos.h>
#include <os/log.h>
#include <os/system_event_log.h>
#include <pexpert/pexpert.h>
#include <kdp/kdp_dyld.h>
#if SYSV_SHM
#include <sys/shm_internal.h> /* shmexit */
#endif /* SYSV_SHM */
#if CONFIG_PERSONAS
#include <sys/persona.h>
#endif /* CONFIG_PERSONAS */
#if CONFIG_MEMORYSTATUS
#include <sys/kern_memorystatus.h>
#endif /* CONFIG_MEMORYSTATUS */
#if CONFIG_DTRACE
/* Do not include dtrace.h, it redefines kmem_[alloc/free] */
void dtrace_proc_exit(proc_t p);
#include <sys/dtrace_ptss.h>
#endif /* CONFIG_DTRACE */
#if CONFIG_MACF
#include <security/mac_framework.h>
#include <security/mac_mach_internal.h>
#include <sys/syscall.h>
#endif /* CONFIG_MACF */
#ifdef CONFIG_EXCLAVES
void
task_add_conclave_crash_info(task_t task, void *crash_info_ptr);
#endif /* CONFIG_EXCLAVES */
#if CONFIG_MEMORYSTATUS
static void proc_memorystatus_remove(proc_t p);
#endif /* CONFIG_MEMORYSTATUS */
void proc_prepareexit(proc_t p, int rv, boolean_t perf_notify);
void gather_populate_corpse_crashinfo(proc_t p, task_t corpse_task,
mach_exception_data_type_t code, mach_exception_data_type_t subcode,
uint64_t *udata_buffer, int num_udata, void *reason, exception_type_t etype);
mach_exception_data_type_t proc_encode_exit_exception_code(proc_t p);
exception_type_t get_exception_from_corpse_crashinfo(kcdata_descriptor_t corpse_info);
__private_extern__ void munge_user64_rusage(struct rusage *a_rusage_p, struct user64_rusage *a_user_rusage_p);
__private_extern__ void munge_user32_rusage(struct rusage *a_rusage_p, struct user32_rusage *a_user_rusage_p);
static void populate_corpse_crashinfo(proc_t p, task_t corpse_task,
struct rusage_superset *rup, mach_exception_data_type_t code,
mach_exception_data_type_t subcode, uint64_t *udata_buffer,
int num_udata, os_reason_t reason, exception_type_t etype);
static void proc_update_corpse_exception_codes(proc_t p, mach_exception_data_type_t *code, mach_exception_data_type_t *subcode);
extern int proc_pidpathinfo_internal(proc_t p, uint64_t arg, char *buffer, uint32_t buffersize, int32_t *retval);
extern void proc_piduniqidentifierinfo(proc_t p, struct proc_uniqidentifierinfo *p_uniqidinfo);
extern void task_coalition_ids(task_t task, uint64_t ids[COALITION_NUM_TYPES]);
extern uint64_t get_task_phys_footprint_limit(task_t);
int proc_list_uptrs(void *p, uint64_t *udata_buffer, int size);
extern uint64_t task_corpse_get_crashed_thread_id(task_t corpse_task);
extern unsigned int exception_log_max_pid;
extern void IOUserServerRecordExitReason(task_t task, os_reason_t reason);
/*
* Flags for `reap_child_locked`.
*/
__options_decl(reap_flags_t, uint32_t, {
/*
* Parent is exiting, so the kernel is responsible for reaping children.
*/
REAP_DEAD_PARENT = 0x01,
/*
* Childr process was re-parented to initproc.
*/
REAP_REPARENTED_TO_INIT = 0x02,
/*
* `proc_list_lock` is held on entry.
*/
REAP_LOCKED = 0x04,
/*
* Drop the `proc_list_lock` on return. Note that the `proc_list_lock` will
* be dropped internally by the function regardless.
*/
REAP_DROP_LOCK = 0x08,
});
static void reap_child_locked(proc_t parent, proc_t child, reap_flags_t flags);
static KALLOC_TYPE_DEFINE(zombie_zone, struct rusage_superset, KT_DEFAULT);
/*
* Things which should have prototypes in headers, but don't
*/
void proc_exit(proc_t p);
int wait1continue(int result);
int waitidcontinue(int result);
kern_return_t sys_perf_notify(thread_t thread, int pid);
kern_return_t task_exception_notify(exception_type_t exception,
mach_exception_data_type_t code, mach_exception_data_type_t subcode, bool fatal);
void delay(int);
#if __has_feature(ptrauth_calls)
int exit_with_pac_exception(proc_t p, exception_type_t exception, mach_exception_code_t code,
mach_exception_subcode_t subcode);
#endif /* __has_feature(ptrauth_calls) */
int exit_with_guard_exception(proc_t p, mach_exception_data_type_t code,
mach_exception_data_type_t subcode);
int exit_with_port_space_exception(proc_t p, mach_exception_data_type_t code,
mach_exception_data_type_t subcode);
static int exit_with_mach_exception(proc_t p, os_reason_t reason, exception_type_t exception,
mach_exception_code_t code, mach_exception_subcode_t subcode);
#if CONFIG_EXCLAVES
int
exit_with_exclave_exception(proc_t p);
#endif /* CONFIG_EXCLAVES */
int
exit_with_jit_exception(proc_t p);
#if DEVELOPMENT || DEBUG
static LCK_GRP_DECLARE(proc_exit_lpexit_spin_lock_grp, "proc_exit_lpexit_spin");
static LCK_MTX_DECLARE(proc_exit_lpexit_spin_lock, &proc_exit_lpexit_spin_lock_grp);
static pid_t proc_exit_lpexit_spin_pid = -1; /* wakeup point */
static int proc_exit_lpexit_spin_pos = -1; /* point to block */
static int proc_exit_lpexit_spinning = 0;
enum {
PELS_POS_START = 0, /* beginning of proc_exit */
PELS_POS_PRE_TASK_DETACH, /* before task/proc detach */
PELS_POS_POST_TASK_DETACH, /* after task/proc detach */
PELS_POS_END, /* end of proc_exit */
PELS_NPOS /* # valid values */
};
/* Panic if matching processes (delimited by ',') exit on error. */
static TUNABLE_STR(panic_on_eexit_pcomms, 128, "panic_on_error_exit", "");
static int
proc_exit_lpexit_spin_pid_sysctl SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
pid_t new_value;
int changed;
int error;
if (!PE_parse_boot_argn("enable_proc_exit_lpexit_spin", NULL, 0)) {
return ENOENT;
}
error = sysctl_io_number(req, proc_exit_lpexit_spin_pid,
sizeof(proc_exit_lpexit_spin_pid), &new_value, &changed);
if (error == 0 && changed != 0) {
if (new_value < -1) {
return EINVAL;
}
lck_mtx_lock(&proc_exit_lpexit_spin_lock);
proc_exit_lpexit_spin_pid = new_value;
wakeup(&proc_exit_lpexit_spin_pid);
proc_exit_lpexit_spinning = 0;
lck_mtx_unlock(&proc_exit_lpexit_spin_lock);
}
return error;
}
static int
proc_exit_lpexit_spin_pos_sysctl SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
int new_value;
int changed;
int error;
if (!PE_parse_boot_argn("enable_proc_exit_lpexit_spin", NULL, 0)) {
return ENOENT;
}
error = sysctl_io_number(req, proc_exit_lpexit_spin_pos,
sizeof(proc_exit_lpexit_spin_pos), &new_value, &changed);
if (error == 0 && changed != 0) {
if (new_value < -1 || new_value >= PELS_NPOS) {
return EINVAL;
}
lck_mtx_lock(&proc_exit_lpexit_spin_lock);
proc_exit_lpexit_spin_pos = new_value;
wakeup(&proc_exit_lpexit_spin_pid);
proc_exit_lpexit_spinning = 0;
lck_mtx_unlock(&proc_exit_lpexit_spin_lock);
}
return error;
}
static int
proc_exit_lpexit_spinning_sysctl SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
int new_value;
int changed;
int error;
if (!PE_parse_boot_argn("enable_proc_exit_lpexit_spin", NULL, 0)) {
return ENOENT;
}
error = sysctl_io_number(req, proc_exit_lpexit_spinning,
sizeof(proc_exit_lpexit_spinning), &new_value, &changed);
if (error == 0 && changed != 0) {
return EINVAL;
}
return error;
}
SYSCTL_PROC(_debug, OID_AUTO, proc_exit_lpexit_spin_pid,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
NULL, sizeof(pid_t),
proc_exit_lpexit_spin_pid_sysctl, "I", "PID to hold in proc_exit");
SYSCTL_PROC(_debug, OID_AUTO, proc_exit_lpexit_spin_pos,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
NULL, sizeof(int),
proc_exit_lpexit_spin_pos_sysctl, "I", "position to hold in proc_exit");
SYSCTL_PROC(_debug, OID_AUTO, proc_exit_lpexit_spinning,
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED,
NULL, sizeof(int),
proc_exit_lpexit_spinning_sysctl, "I", "is a thread at requested pid/pos");
static inline void
proc_exit_lpexit_check(pid_t pid, int pos)
{
if (proc_exit_lpexit_spin_pid == pid) {
bool slept = false;
lck_mtx_lock(&proc_exit_lpexit_spin_lock);
while (proc_exit_lpexit_spin_pid == pid &&
proc_exit_lpexit_spin_pos == pos) {
if (!slept) {
os_log(OS_LOG_DEFAULT,
"proc_exit_lpexit_check: Process[%d] waiting during proc_exit at pos %d as requested", pid, pos);
slept = true;
}
proc_exit_lpexit_spinning = 1;
msleep(&proc_exit_lpexit_spin_pid, &proc_exit_lpexit_spin_lock,
PWAIT, "proc_exit_lpexit_check", NULL);
proc_exit_lpexit_spinning = 0;
}
lck_mtx_unlock(&proc_exit_lpexit_spin_lock);
if (slept) {
os_log(OS_LOG_DEFAULT,
"proc_exit_lpexit_check: Process[%d] driving on from pos %d", pid, pos);
}
}
}
#endif /* DEVELOPMENT || DEBUG */
/*
* NOTE: Source and target may *NOT* overlap!
* XXX Should share code with bsd/dev/ppc/unix_signal.c
*/
void
siginfo_user_to_user32(user_siginfo_t *in, user32_siginfo_t *out)
{
out->si_signo = in->si_signo;
out->si_errno = in->si_errno;
out->si_code = in->si_code;
out->si_pid = in->si_pid;
out->si_uid = in->si_uid;
out->si_status = in->si_status;
out->si_addr = CAST_DOWN_EXPLICIT(user32_addr_t, in->si_addr);
/* following cast works for sival_int because of padding */
out->si_value.sival_ptr = CAST_DOWN_EXPLICIT(user32_addr_t, in->si_value.sival_ptr);
out->si_band = (user32_long_t)in->si_band; /* range reduction */
}
void
siginfo_user_to_user64(user_siginfo_t *in, user64_siginfo_t *out)
{
out->si_signo = in->si_signo;
out->si_errno = in->si_errno;
out->si_code = in->si_code;
out->si_pid = in->si_pid;
out->si_uid = in->si_uid;
out->si_status = in->si_status;
out->si_addr = in->si_addr;
/* following cast works for sival_int because of padding */
out->si_value.sival_ptr = in->si_value.sival_ptr;
out->si_band = in->si_band; /* range reduction */
}
static int
copyoutsiginfo(user_siginfo_t *native, boolean_t is64, user_addr_t uaddr)
{
if (is64) {
user64_siginfo_t sinfo64;
bzero(&sinfo64, sizeof(sinfo64));
siginfo_user_to_user64(native, &sinfo64);
return copyout(&sinfo64, uaddr, sizeof(sinfo64));
} else {
user32_siginfo_t sinfo32;
bzero(&sinfo32, sizeof(sinfo32));
siginfo_user_to_user32(native, &sinfo32);
return copyout(&sinfo32, uaddr, sizeof(sinfo32));
}
}
void
gather_populate_corpse_crashinfo(proc_t p, task_t corpse_task,
mach_exception_data_type_t code, mach_exception_data_type_t subcode,
uint64_t *udata_buffer, int num_udata, void *reason, exception_type_t etype)
{
struct rusage_superset rup;
gather_rusage_info(p, &rup.ri, RUSAGE_INFO_CURRENT);
rup.ri.ri_phys_footprint = 0;
populate_corpse_crashinfo(p, corpse_task, &rup, code, subcode,
udata_buffer, num_udata, reason, etype);
}
static void
proc_update_corpse_exception_codes(proc_t p, mach_exception_data_type_t *code, mach_exception_data_type_t *subcode)
{
mach_exception_data_type_t code_update = *code;
mach_exception_data_type_t subcode_update = *subcode;
if (p->p_exit_reason == OS_REASON_NULL) {
return;
}
switch (p->p_exit_reason->osr_namespace) {
case OS_REASON_JETSAM:
if (p->p_exit_reason->osr_code == JETSAM_REASON_MEMORY_PERPROCESSLIMIT) {
/* Update the code with EXC_RESOURCE code for high memory watermark */
EXC_RESOURCE_ENCODE_TYPE(code_update, RESOURCE_TYPE_MEMORY);
EXC_RESOURCE_ENCODE_FLAVOR(code_update, FLAVOR_HIGH_WATERMARK);
EXC_RESOURCE_HWM_ENCODE_LIMIT(code_update, ((get_task_phys_footprint_limit(proc_task(p))) >> 20));
subcode_update = 0;
break;
}
break;
default:
break;
}
*code = code_update;
*subcode = subcode_update;
return;
}
mach_exception_data_type_t
proc_encode_exit_exception_code(proc_t p)
{
uint64_t subcode = 0;
if (p->p_exit_reason == OS_REASON_NULL) {
return 0;
}
/* Embed first 32 bits of osr_namespace and osr_code in exception code */
ENCODE_OSR_NAMESPACE_TO_MACH_EXCEPTION_CODE(subcode, p->p_exit_reason->osr_namespace);
ENCODE_OSR_CODE_TO_MACH_EXCEPTION_CODE(subcode, p->p_exit_reason->osr_code);
return (mach_exception_data_type_t)subcode;
}
static void
populate_corpse_crashinfo(proc_t p, task_t corpse_task, struct rusage_superset *rup,
mach_exception_data_type_t code, mach_exception_data_type_t subcode,
uint64_t *udata_buffer, int num_udata, os_reason_t reason, exception_type_t etype)
{
mach_vm_address_t uaddr = 0;
mach_exception_data_type_t exc_codes[EXCEPTION_CODE_MAX];
exc_codes[0] = code;
exc_codes[1] = subcode;
cpu_type_t cputype;
struct proc_uniqidentifierinfo p_uniqidinfo;
struct proc_workqueueinfo pwqinfo;
int retval = 0;
uint64_t crashed_threadid = task_corpse_get_crashed_thread_id(corpse_task);
boolean_t is_corpse_fork;
uint32_t csflags;
unsigned int pflags = 0;
uint64_t max_footprint_mb;
uint64_t max_footprint;
uint64_t ledger_internal;
uint64_t ledger_internal_compressed;
uint64_t ledger_iokit_mapped;
uint64_t ledger_alternate_accounting;
uint64_t ledger_alternate_accounting_compressed;
uint64_t ledger_purgeable_nonvolatile;
uint64_t ledger_purgeable_nonvolatile_compressed;
uint64_t ledger_page_table;
uint64_t ledger_phys_footprint;
uint64_t ledger_phys_footprint_lifetime_max;
uint64_t ledger_network_nonvolatile;
uint64_t ledger_network_nonvolatile_compressed;
uint64_t ledger_wired_mem;
uint64_t ledger_tagged_footprint;
uint64_t ledger_tagged_footprint_compressed;
uint64_t ledger_media_footprint;
uint64_t ledger_media_footprint_compressed;
uint64_t ledger_graphics_footprint;
uint64_t ledger_graphics_footprint_compressed;
uint64_t ledger_neural_footprint;
uint64_t ledger_neural_footprint_compressed;
void *crash_info_ptr = task_get_corpseinfo(corpse_task);
#if CONFIG_MEMORYSTATUS
int memstat_dirty_flags = 0;
#endif
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_EXCEPTION_CODES, sizeof(exc_codes), &uaddr)) {
kcdata_memcpy(crash_info_ptr, uaddr, exc_codes, sizeof(exc_codes));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_PID, sizeof(pid_t), &uaddr)) {
pid_t pid = proc_getpid(p);
kcdata_memcpy(crash_info_ptr, uaddr, &pid, sizeof(pid));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_PPID, sizeof(p->p_ppid), &uaddr)) {
kcdata_memcpy(crash_info_ptr, uaddr, &p->p_ppid, sizeof(p->p_ppid));
}
/* Don't include the crashed thread ID if there's an exit reason that indicates it's irrelevant */
if ((p->p_exit_reason == OS_REASON_NULL) || !(p->p_exit_reason->osr_flags & OS_REASON_FLAG_NO_CRASHED_TID)) {
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_CRASHED_THREADID, sizeof(uint64_t), &uaddr)) {
kcdata_memcpy(crash_info_ptr, uaddr, &crashed_threadid, sizeof(uint64_t));
}
}
static_assert(sizeof(struct proc_uniqidentifierinfo) == sizeof(struct crashinfo_proc_uniqidentifierinfo));
if (KERN_SUCCESS ==
kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_BSDINFOWITHUNIQID, sizeof(struct proc_uniqidentifierinfo), &uaddr)) {
proc_piduniqidentifierinfo(p, &p_uniqidinfo);
kcdata_memcpy(crash_info_ptr, uaddr, &p_uniqidinfo, sizeof(struct proc_uniqidentifierinfo));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_RUSAGE_INFO, sizeof(rusage_info_current), &uaddr)) {
kcdata_memcpy(crash_info_ptr, uaddr, &rup->ri, sizeof(rusage_info_current));
}
csflags = (uint32_t)proc_getcsflags(p);
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_PROC_CSFLAGS, sizeof(csflags), &uaddr)) {
kcdata_memcpy(crash_info_ptr, uaddr, &csflags, sizeof(csflags));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_PROC_NAME, sizeof(p->p_comm), &uaddr)) {
kcdata_memcpy(crash_info_ptr, uaddr, &p->p_comm, sizeof(p->p_comm));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_PROC_STARTTIME, sizeof(p->p_start), &uaddr)) {
struct timeval64 t64;
t64.tv_sec = (int64_t)p->p_start.tv_sec;
t64.tv_usec = (int64_t)p->p_start.tv_usec;
kcdata_memcpy(crash_info_ptr, uaddr, &t64, sizeof(t64));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_USERSTACK, sizeof(p->user_stack), &uaddr)) {
kcdata_memcpy(crash_info_ptr, uaddr, &p->user_stack, sizeof(p->user_stack));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_ARGSLEN, sizeof(p->p_argslen), &uaddr)) {
kcdata_memcpy(crash_info_ptr, uaddr, &p->p_argslen, sizeof(p->p_argslen));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_PROC_ARGC, sizeof(p->p_argc), &uaddr)) {
kcdata_memcpy(crash_info_ptr, uaddr, &p->p_argc, sizeof(p->p_argc));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_PROC_PATH, MAXPATHLEN, &uaddr)) {
char *buf = zalloc_flags(ZV_NAMEI, Z_WAITOK | Z_ZERO);
proc_pidpathinfo_internal(p, 0, buf, MAXPATHLEN, &retval);
kcdata_memcpy(crash_info_ptr, uaddr, buf, MAXPATHLEN);
zfree(ZV_NAMEI, buf);
}
pflags = p->p_flag & (P_LP64 | P_SUGID | P_TRANSLATED);
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_PROC_FLAGS, sizeof(pflags), &uaddr)) {
kcdata_memcpy(crash_info_ptr, uaddr, &pflags, sizeof(pflags));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_UID, sizeof(p->p_uid), &uaddr)) {
kcdata_memcpy(crash_info_ptr, uaddr, &p->p_uid, sizeof(p->p_uid));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_GID, sizeof(p->p_gid), &uaddr)) {
kcdata_memcpy(crash_info_ptr, uaddr, &p->p_gid, sizeof(p->p_gid));
}
cputype = cpu_type() & ~CPU_ARCH_MASK;
if (IS_64BIT_PROCESS(p)) {
cputype |= CPU_ARCH_ABI64;
} else if (proc_is64bit_data(p)) {
cputype |= CPU_ARCH_ABI64_32;
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_CPUTYPE, sizeof(cpu_type_t), &uaddr)) {
kcdata_memcpy(crash_info_ptr, uaddr, &cputype, sizeof(cpu_type_t));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_PROC_CPUTYPE, sizeof(cpu_type_t), &uaddr)) {
kcdata_memcpy(crash_info_ptr, uaddr, &p->p_cputype, sizeof(cpu_type_t));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_MEMORY_LIMIT, sizeof(max_footprint_mb), &uaddr)) {
max_footprint = get_task_phys_footprint_limit(proc_task(p));
max_footprint_mb = max_footprint >> 20;
kcdata_memcpy(crash_info_ptr, uaddr, &max_footprint_mb, sizeof(max_footprint_mb));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_PHYS_FOOTPRINT_LIFETIME_MAX, sizeof(ledger_phys_footprint_lifetime_max), &uaddr)) {
ledger_phys_footprint_lifetime_max = get_task_phys_footprint_lifetime_max(proc_task(p));
kcdata_memcpy(crash_info_ptr, uaddr, &ledger_phys_footprint_lifetime_max, sizeof(ledger_phys_footprint_lifetime_max));
}
// In the forking case, the current ledger info is copied into the corpse while the original task is suspended for consistency
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_INTERNAL, sizeof(ledger_internal), &uaddr)) {
ledger_internal = get_task_internal(corpse_task);
kcdata_memcpy(crash_info_ptr, uaddr, &ledger_internal, sizeof(ledger_internal));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_INTERNAL_COMPRESSED, sizeof(ledger_internal_compressed), &uaddr)) {
ledger_internal_compressed = get_task_internal_compressed(corpse_task);
kcdata_memcpy(crash_info_ptr, uaddr, &ledger_internal_compressed, sizeof(ledger_internal_compressed));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_IOKIT_MAPPED, sizeof(ledger_iokit_mapped), &uaddr)) {
ledger_iokit_mapped = get_task_iokit_mapped(corpse_task);
kcdata_memcpy(crash_info_ptr, uaddr, &ledger_iokit_mapped, sizeof(ledger_iokit_mapped));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_ALTERNATE_ACCOUNTING, sizeof(ledger_alternate_accounting), &uaddr)) {
ledger_alternate_accounting = get_task_alternate_accounting(corpse_task);
kcdata_memcpy(crash_info_ptr, uaddr, &ledger_alternate_accounting, sizeof(ledger_alternate_accounting));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_ALTERNATE_ACCOUNTING_COMPRESSED, sizeof(ledger_alternate_accounting_compressed), &uaddr)) {
ledger_alternate_accounting_compressed = get_task_alternate_accounting_compressed(corpse_task);
kcdata_memcpy(crash_info_ptr, uaddr, &ledger_alternate_accounting_compressed, sizeof(ledger_alternate_accounting_compressed));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_PURGEABLE_NONVOLATILE, sizeof(ledger_purgeable_nonvolatile), &uaddr)) {
ledger_purgeable_nonvolatile = get_task_purgeable_nonvolatile(corpse_task);
kcdata_memcpy(crash_info_ptr, uaddr, &ledger_purgeable_nonvolatile, sizeof(ledger_purgeable_nonvolatile));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_PURGEABLE_NONVOLATILE_COMPRESSED, sizeof(ledger_purgeable_nonvolatile_compressed), &uaddr)) {
ledger_purgeable_nonvolatile_compressed = get_task_purgeable_nonvolatile_compressed(corpse_task);
kcdata_memcpy(crash_info_ptr, uaddr, &ledger_purgeable_nonvolatile_compressed, sizeof(ledger_purgeable_nonvolatile_compressed));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_PAGE_TABLE, sizeof(ledger_page_table), &uaddr)) {
ledger_page_table = get_task_page_table(corpse_task);
kcdata_memcpy(crash_info_ptr, uaddr, &ledger_page_table, sizeof(ledger_page_table));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_PHYS_FOOTPRINT, sizeof(ledger_phys_footprint), &uaddr)) {
ledger_phys_footprint = get_task_phys_footprint(corpse_task);
kcdata_memcpy(crash_info_ptr, uaddr, &ledger_phys_footprint, sizeof(ledger_phys_footprint));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_NETWORK_NONVOLATILE, sizeof(ledger_network_nonvolatile), &uaddr)) {
ledger_network_nonvolatile = get_task_network_nonvolatile(corpse_task);
kcdata_memcpy(crash_info_ptr, uaddr, &ledger_network_nonvolatile, sizeof(ledger_network_nonvolatile));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_NETWORK_NONVOLATILE_COMPRESSED, sizeof(ledger_network_nonvolatile_compressed), &uaddr)) {
ledger_network_nonvolatile_compressed = get_task_network_nonvolatile_compressed(corpse_task);
kcdata_memcpy(crash_info_ptr, uaddr, &ledger_network_nonvolatile_compressed, sizeof(ledger_network_nonvolatile_compressed));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_WIRED_MEM, sizeof(ledger_wired_mem), &uaddr)) {
ledger_wired_mem = get_task_wired_mem(corpse_task);
kcdata_memcpy(crash_info_ptr, uaddr, &ledger_wired_mem, sizeof(ledger_wired_mem));
}
bzero(&pwqinfo, sizeof(struct proc_workqueueinfo));
retval = fill_procworkqueue(p, &pwqinfo);
if (retval == 0) {
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_WORKQUEUEINFO, sizeof(struct proc_workqueueinfo), &uaddr)) {
kcdata_memcpy(crash_info_ptr, uaddr, &pwqinfo, sizeof(struct proc_workqueueinfo));
}
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_RESPONSIBLE_PID, sizeof(p->p_responsible_pid), &uaddr)) {
kcdata_memcpy(crash_info_ptr, uaddr, &p->p_responsible_pid, sizeof(p->p_responsible_pid));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_PROC_PERSONA_ID, sizeof(uid_t), &uaddr)) {
uid_t persona_id = proc_persona_id(p);
kcdata_memcpy(crash_info_ptr, uaddr, &persona_id, sizeof(persona_id));
}
#if CONFIG_COALITIONS
if (KERN_SUCCESS == kcdata_get_memory_addr_for_array(crash_info_ptr, TASK_CRASHINFO_COALITION_ID, sizeof(uint64_t), COALITION_NUM_TYPES, &uaddr)) {
uint64_t coalition_ids[COALITION_NUM_TYPES];
task_coalition_ids(proc_task(p), coalition_ids);
kcdata_memcpy(crash_info_ptr, uaddr, coalition_ids, sizeof(coalition_ids));
}
#endif /* CONFIG_COALITIONS */
#if CONFIG_MEMORYSTATUS
memstat_dirty_flags = memorystatus_dirty_get(p, FALSE);
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_DIRTY_FLAGS, sizeof(memstat_dirty_flags), &uaddr)) {
kcdata_memcpy(crash_info_ptr, uaddr, &memstat_dirty_flags, sizeof(memstat_dirty_flags));
}
#endif
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_MEMORY_LIMIT_INCREASE, sizeof(p->p_memlimit_increase), &uaddr)) {
kcdata_memcpy(crash_info_ptr, uaddr, &p->p_memlimit_increase, sizeof(p->p_memlimit_increase));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_TAGGED_FOOTPRINT, sizeof(ledger_tagged_footprint), &uaddr)) {
ledger_tagged_footprint = get_task_tagged_footprint(corpse_task);
kcdata_memcpy(crash_info_ptr, uaddr, &ledger_tagged_footprint, sizeof(ledger_tagged_footprint));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_TAGGED_FOOTPRINT_COMPRESSED, sizeof(ledger_tagged_footprint_compressed), &uaddr)) {
ledger_tagged_footprint_compressed = get_task_tagged_footprint_compressed(corpse_task);
kcdata_memcpy(crash_info_ptr, uaddr, &ledger_tagged_footprint_compressed, sizeof(ledger_tagged_footprint_compressed));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_MEDIA_FOOTPRINT, sizeof(ledger_media_footprint), &uaddr)) {
ledger_media_footprint = get_task_media_footprint(corpse_task);
kcdata_memcpy(crash_info_ptr, uaddr, &ledger_media_footprint, sizeof(ledger_media_footprint));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_MEDIA_FOOTPRINT_COMPRESSED, sizeof(ledger_media_footprint_compressed), &uaddr)) {
ledger_media_footprint_compressed = get_task_media_footprint_compressed(corpse_task);
kcdata_memcpy(crash_info_ptr, uaddr, &ledger_media_footprint_compressed, sizeof(ledger_media_footprint_compressed));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_GRAPHICS_FOOTPRINT, sizeof(ledger_graphics_footprint), &uaddr)) {
ledger_graphics_footprint = get_task_graphics_footprint(corpse_task);
kcdata_memcpy(crash_info_ptr, uaddr, &ledger_graphics_footprint, sizeof(ledger_graphics_footprint));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_GRAPHICS_FOOTPRINT_COMPRESSED, sizeof(ledger_graphics_footprint_compressed), &uaddr)) {
ledger_graphics_footprint_compressed = get_task_graphics_footprint_compressed(corpse_task);
kcdata_memcpy(crash_info_ptr, uaddr, &ledger_graphics_footprint_compressed, sizeof(ledger_graphics_footprint_compressed));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_NEURAL_FOOTPRINT, sizeof(ledger_neural_footprint), &uaddr)) {
ledger_neural_footprint = get_task_neural_footprint(corpse_task);
kcdata_memcpy(crash_info_ptr, uaddr, &ledger_neural_footprint, sizeof(ledger_neural_footprint));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_LEDGER_NEURAL_FOOTPRINT_COMPRESSED, sizeof(ledger_neural_footprint_compressed), &uaddr)) {
ledger_neural_footprint_compressed = get_task_neural_footprint_compressed(corpse_task);
kcdata_memcpy(crash_info_ptr, uaddr, &ledger_neural_footprint_compressed, sizeof(ledger_neural_footprint_compressed));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_MEMORYSTATUS_EFFECTIVE_PRIORITY, sizeof(p->p_memstat_effectivepriority), &uaddr)) {
kcdata_memcpy(crash_info_ptr, uaddr, &p->p_memstat_effectivepriority, sizeof(p->p_memstat_effectivepriority));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_KERNEL_TRIAGE_INFO_V1, sizeof(struct kernel_triage_info_v1), &uaddr)) {
char triage_strings[KDBG_TRIAGE_MAX_STRINGS][KDBG_TRIAGE_MAX_STRLEN];
ktriage_extract(thread_tid(current_thread()), triage_strings, KDBG_TRIAGE_MAX_STRINGS * KDBG_TRIAGE_MAX_STRLEN);
kcdata_memcpy(crash_info_ptr, uaddr, (void*) triage_strings, sizeof(struct kernel_triage_info_v1));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_TASK_IS_CORPSE_FORK, sizeof(is_corpse_fork), &uaddr)) {
is_corpse_fork = is_corpsefork(corpse_task);
kcdata_memcpy(crash_info_ptr, uaddr, &is_corpse_fork, sizeof(is_corpse_fork));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_EXCEPTION_TYPE, sizeof(etype), &uaddr)) {
kcdata_memcpy(crash_info_ptr, uaddr, &etype, sizeof(etype));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_CRASH_COUNT, sizeof(int), &uaddr)) {
kcdata_memcpy(crash_info_ptr, uaddr, &p->p_crash_count, sizeof(int));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_THROTTLE_TIMEOUT, sizeof(int), &uaddr)) {
kcdata_memcpy(crash_info_ptr, uaddr, &p->p_throttle_timeout, sizeof(int));
}
char signing_id[MAX_CRASHINFO_SIGNING_ID_LEN] = {};
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_CS_SIGNING_ID, sizeof(signing_id), &uaddr)) {
const char * id = cs_identity_get(p);
if (id) {
strlcpy(signing_id, id, sizeof(signing_id));
}
kcdata_memcpy(crash_info_ptr, uaddr, &signing_id, sizeof(signing_id));
}
char team_id[MAX_CRASHINFO_TEAM_ID_LEN] = {};
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_CS_TEAM_ID, sizeof(team_id), &uaddr)) {
const char * id = csproc_get_teamid(p);
if (id) {
strlcpy(team_id, id, sizeof(team_id));
}
kcdata_memcpy(crash_info_ptr, uaddr, &team_id, sizeof(team_id));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_CS_VALIDATION_CATEGORY, sizeof(uint32_t), &uaddr)) {
uint32_t category = 0;
if (csproc_get_validation_category(p, &category) != KERN_SUCCESS) {
category = CS_VALIDATION_CATEGORY_INVALID;
}
kcdata_memcpy(crash_info_ptr, uaddr, &category, sizeof(category));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, TASK_CRASHINFO_CS_TRUST_LEVEL, sizeof(uint32_t), &uaddr)) {
uint32_t trust = 0;
kern_return_t ret = get_trust_level_kdp(get_task_pmap(corpse_task), &trust);
if (ret != KERN_SUCCESS) {
trust = KCDATA_INVALID_CS_TRUST_LEVEL;
}
kcdata_memcpy(crash_info_ptr, uaddr, &trust, sizeof(trust));
}
if (p->p_exit_reason != OS_REASON_NULL && reason == OS_REASON_NULL) {
reason = p->p_exit_reason;
}
if (reason != OS_REASON_NULL) {
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, EXIT_REASON_SNAPSHOT, sizeof(struct exit_reason_snapshot), &uaddr)) {
struct exit_reason_snapshot ers = {
.ers_namespace = reason->osr_namespace,
.ers_code = reason->osr_code,
.ers_flags = reason->osr_flags
};
kcdata_memcpy(crash_info_ptr, uaddr, &ers, sizeof(ers));
}
if (reason->osr_kcd_buf != 0) {
uint32_t reason_buf_size = (uint32_t)kcdata_memory_get_used_bytes(&reason->osr_kcd_descriptor);
assert(reason_buf_size != 0);
if (KERN_SUCCESS == kcdata_get_memory_addr(crash_info_ptr, KCDATA_TYPE_NESTED_KCDATA, reason_buf_size, &uaddr)) {
kcdata_memcpy(crash_info_ptr, uaddr, reason->osr_kcd_buf, reason_buf_size);
}
}
}
if (num_udata > 0) {
if (KERN_SUCCESS == kcdata_get_memory_addr_for_array(crash_info_ptr, TASK_CRASHINFO_UDATA_PTRS,
sizeof(uint64_t), num_udata, &uaddr)) {
kcdata_memcpy(crash_info_ptr, uaddr, udata_buffer, sizeof(uint64_t) * num_udata);
}
}
#if CONFIG_EXCLAVES
task_add_conclave_crash_info(corpse_task, crash_info_ptr);
#endif /* CONFIG_EXCLAVES */
}
exception_type_t
get_exception_from_corpse_crashinfo(kcdata_descriptor_t corpse_info)
{
kcdata_iter_t iter = kcdata_iter((void *)corpse_info->kcd_addr_begin,
corpse_info->kcd_length);
__assert_only uint32_t type = kcdata_iter_type(iter);
assert(type == KCDATA_BUFFER_BEGIN_CRASHINFO);
iter = kcdata_iter_find_type(iter, TASK_CRASHINFO_EXCEPTION_TYPE);
exception_type_t *etype = kcdata_iter_payload(iter);
return *etype;
}
/*
* Collect information required for generating lightwight corpse for current
* task, which can be terminating.
*/
kern_return_t
current_thread_collect_backtrace_info(
kcdata_descriptor_t *new_desc,
exception_type_t etype,
mach_exception_data_t code,
mach_msg_type_number_t codeCnt,
void *reasonp)
{
kcdata_descriptor_t kcdata;
kern_return_t kr;
int frame_count = 0, max_frames = 100;
mach_vm_address_t uuid_info_addr = 0;
uint32_t uuid_info_count = 0;
uint32_t btinfo_flag = 0;
mach_vm_address_t btinfo_flag_addr = 0, kaddr = 0;
natural_t alloc_size = BTINFO_ALLOCATION_SIZE;
mach_msg_type_number_t th_info_count = THREAD_IDENTIFIER_INFO_COUNT;
thread_identifier_info_data_t th_info;
char threadname[MAXTHREADNAMESIZE];
void *btdata_kernel = NULL;
typedef uintptr_t user_btframe_t __kernel_data_semantics;
user_btframe_t *btframes = NULL;
os_reason_t reason = (os_reason_t)reasonp;
struct backtrace_user_info info = BTUINFO_INIT;
struct rusage_superset rup;
uint32_t platform;
task_t task = current_task();
proc_t p = current_proc();
bool has_64bit_addr = task_get_64bit_addr(current_task());
bool has_64bit_data = task_get_64bit_data(current_task());
if (new_desc == NULL) {
return KERN_INVALID_ARGUMENT;
}
/* First, collect backtrace frames */
btframes = kalloc_data(max_frames * sizeof(btframes[0]), Z_WAITOK | Z_ZERO);
if (!btframes) {
return KERN_RESOURCE_SHORTAGE;
}
frame_count = backtrace_user(btframes, max_frames, NULL, &info);
if (info.btui_error || frame_count == 0) {
kfree_data(btframes, max_frames * sizeof(btframes[0]));
return KERN_FAILURE;
}
if ((info.btui_info & BTI_TRUNCATED) != 0) {
btinfo_flag |= TASK_BTINFO_FLAG_BT_TRUNCATED;
}
/* Captured in kcdata descriptor below */
btdata_kernel = kalloc_data(alloc_size, Z_WAITOK | Z_ZERO);
if (!btdata_kernel) {
kfree_data(btframes, max_frames * sizeof(btframes[0]));
return KERN_RESOURCE_SHORTAGE;
}
kcdata = task_btinfo_alloc_init((mach_vm_address_t)btdata_kernel, alloc_size);
if (!kcdata) {
kfree_data(btdata_kernel, alloc_size);
kfree_data(btframes, max_frames * sizeof(btframes[0]));
return KERN_RESOURCE_SHORTAGE;
}
/* First reserve space in kcdata blob for the btinfo flag fields */
if (KERN_SUCCESS != kcdata_get_memory_addr(kcdata, TASK_BTINFO_FLAGS,
sizeof(uint32_t), &btinfo_flag_addr)) {
kfree_data(btdata_kernel, alloc_size);
kfree_data(btframes, max_frames * sizeof(btframes[0]));
kcdata_memory_destroy(kcdata);
return KERN_RESOURCE_SHORTAGE;
}
if (KERN_SUCCESS == kcdata_get_memory_addr_for_array(kcdata,
(has_64bit_addr ? TASK_BTINFO_BACKTRACE64 : TASK_BTINFO_BACKTRACE),
sizeof(uintptr_t), frame_count, &kaddr)) {
kcdata_memcpy(kcdata, kaddr, btframes, sizeof(uintptr_t) * frame_count);
}
#if __LP64__
/* We only support async stacks on 64-bit kernels */
frame_count = 0;
if (info.btui_async_frame_addr != 0) {
if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_ASYNC_START_INDEX,
sizeof(uint32_t), &kaddr)) {
uint32_t idx = info.btui_async_start_index;
kcdata_memcpy(kcdata, kaddr, &idx, sizeof(uint32_t));
}
struct backtrace_control ctl = {
.btc_frame_addr = info.btui_async_frame_addr,
.btc_addr_offset = BTCTL_ASYNC_ADDR_OFFSET,
};
info = BTUINFO_INIT;
frame_count = backtrace_user(btframes, max_frames, &ctl, &info);
if (info.btui_error == 0 && frame_count > 0) {
if (KERN_SUCCESS == kcdata_get_memory_addr_for_array(kcdata,
TASK_BTINFO_ASYNC_BACKTRACE64,
sizeof(uintptr_t), frame_count, &kaddr)) {
kcdata_memcpy(kcdata, kaddr, btframes, sizeof(uintptr_t) * frame_count);
}
}
if ((info.btui_info & BTI_TRUNCATED) != 0) {
btinfo_flag |= TASK_BTINFO_FLAG_ASYNC_BT_TRUNCATED;
}
}
#endif
/* Backtrace collection done, free the frames buffer */
kfree_data(btframes, max_frames * sizeof(btframes[0]));
btframes = NULL;
thread_set_exec_promotion(current_thread());
/* Next, suspend the task briefly and collect image load infos */
task_suspend_internal(task);
/* all_image_info struct is ABI, in agreement with address width */
if (has_64bit_addr) {
struct user64_dyld_all_image_infos task_image_infos = {};
struct btinfo_sc_load_info64 sc_info;
(void)copyin((user_addr_t)task_get_all_image_info_addr(task), &task_image_infos,
sizeof(struct user64_dyld_all_image_infos));
uuid_info_count = (uint32_t)task_image_infos.uuidArrayCount;
uuid_info_addr = task_image_infos.uuidArray;
sc_info.sharedCacheSlide = task_image_infos.sharedCacheSlide;
sc_info.sharedCacheBaseAddress = task_image_infos.sharedCacheBaseAddress;
memcpy(&sc_info.sharedCacheUUID, &task_image_infos.sharedCacheUUID,
sizeof(task_image_infos.sharedCacheUUID));
if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata,
TASK_BTINFO_SC_LOADINFO64, sizeof(sc_info), &kaddr)) {
kcdata_memcpy(kcdata, kaddr, &sc_info, sizeof(sc_info));
}
} else {
struct user32_dyld_all_image_infos task_image_infos = {};
struct btinfo_sc_load_info sc_info;
(void)copyin((user_addr_t)task_get_all_image_info_addr(task), &task_image_infos,
sizeof(struct user32_dyld_all_image_infos));
uuid_info_count = task_image_infos.uuidArrayCount;
uuid_info_addr = task_image_infos.uuidArray;
sc_info.sharedCacheSlide = task_image_infos.sharedCacheSlide;
sc_info.sharedCacheBaseAddress = task_image_infos.sharedCacheBaseAddress;
memcpy(&sc_info.sharedCacheUUID, &task_image_infos.sharedCacheUUID,
sizeof(task_image_infos.sharedCacheUUID));
if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata,
TASK_BTINFO_SC_LOADINFO, sizeof(sc_info), &kaddr)) {
kcdata_memcpy(kcdata, kaddr, &sc_info, sizeof(sc_info));
}
}
if (!uuid_info_addr) {
/*
* Can happen when we catch dyld in the middle of updating
* this data structure, or copyin of all_image_info struct failed.
*/
task_resume_internal(task);
thread_clear_exec_promotion(current_thread());
kfree_data(btdata_kernel, alloc_size);
kcdata_memory_destroy(kcdata);
return KERN_MEMORY_ERROR;
}
if (uuid_info_count > 0) {
uint32_t uuid_info_size = (uint32_t)(has_64bit_addr ?
sizeof(struct user64_dyld_uuid_info) : sizeof(struct user32_dyld_uuid_info));
if (KERN_SUCCESS == kcdata_get_memory_addr_for_array(kcdata,
(has_64bit_addr ? TASK_BTINFO_DYLD_LOADINFO64 : TASK_BTINFO_DYLD_LOADINFO),
uuid_info_size, uuid_info_count, &kaddr)) {
if (copyin((user_addr_t)uuid_info_addr, (void *)kaddr, uuid_info_size * uuid_info_count)) {
task_resume_internal(task);
thread_clear_exec_promotion(current_thread());
kfree_data(btdata_kernel, alloc_size);
kcdata_memory_destroy(kcdata);
return KERN_MEMORY_ERROR;
}
}
}
task_resume_internal(task);
thread_clear_exec_promotion(current_thread());
/* Next, collect all other information */
thread_flavor_t tsflavor;
mach_msg_type_number_t tscount;
#if defined(__x86_64__) || defined(__i386__)
tsflavor = x86_THREAD_STATE; /* unified */
tscount = x86_THREAD_STATE_COUNT;
#else
tsflavor = ARM_THREAD_STATE; /* unified */
tscount = ARM_UNIFIED_THREAD_STATE_COUNT;
#endif
if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_THREAD_STATE,
sizeof(struct btinfo_thread_state_data_t) + sizeof(int) * tscount, &kaddr)) {
struct btinfo_thread_state_data_t *bt_thread_state = (struct btinfo_thread_state_data_t *)kaddr;
bt_thread_state->flavor = tsflavor;
bt_thread_state->count = tscount;
/* variable-sized tstate array follows */
kr = thread_getstatus_to_user(current_thread(), bt_thread_state->flavor,
(thread_state_t)&bt_thread_state->tstate, &bt_thread_state->count, TSSF_FLAGS_NONE);
if (kr != KERN_SUCCESS) {
bzero((void *)kaddr, sizeof(struct btinfo_thread_state_data_t) + sizeof(int) * tscount);
if (kr == KERN_TERMINATED) {
btinfo_flag |= TASK_BTINFO_FLAG_TASK_TERMINATED;
}
}
}
#if defined(__x86_64__) || defined(__i386__)
tsflavor = x86_EXCEPTION_STATE; /* unified */
tscount = x86_EXCEPTION_STATE_COUNT;
#else
#if defined(__arm64__)
if (has_64bit_data) {
tsflavor = ARM_EXCEPTION_STATE64;
tscount = ARM_EXCEPTION_STATE64_COUNT;
} else
#endif /* defined(__arm64__) */
{
tsflavor = ARM_EXCEPTION_STATE;
tscount = ARM_EXCEPTION_STATE_COUNT;
}
#endif /* defined(__x86_64__) || defined(__i386__) */
if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_THREAD_EXCEPTION_STATE,
sizeof(struct btinfo_thread_state_data_t) + sizeof(int) * tscount, &kaddr)) {
struct btinfo_thread_state_data_t *bt_thread_state = (struct btinfo_thread_state_data_t *)kaddr;
bt_thread_state->flavor = tsflavor;
bt_thread_state->count = tscount;
/* variable-sized tstate array follows */
kr = thread_getstatus_to_user(current_thread(), bt_thread_state->flavor,
(thread_state_t)&bt_thread_state->tstate, &bt_thread_state->count, TSSF_FLAGS_NONE);
if (kr != KERN_SUCCESS) {
bzero((void *)kaddr, sizeof(struct btinfo_thread_state_data_t) + sizeof(int) * tscount);
if (kr == KERN_TERMINATED) {
btinfo_flag |= TASK_BTINFO_FLAG_TASK_TERMINATED;
}
}
}
if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_PID, sizeof(pid_t), &kaddr)) {
pid_t pid = proc_getpid(p);
kcdata_memcpy(kcdata, kaddr, &pid, sizeof(pid));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_PPID, sizeof(p->p_ppid), &kaddr)) {
kcdata_memcpy(kcdata, kaddr, &p->p_ppid, sizeof(p->p_ppid));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_PROC_NAME, sizeof(p->p_comm), &kaddr)) {
kcdata_memcpy(kcdata, kaddr, &p->p_comm, sizeof(p->p_comm));
}
#if CONFIG_COALITIONS
if (KERN_SUCCESS == kcdata_get_memory_addr_for_array(kcdata, TASK_BTINFO_COALITION_ID, sizeof(uint64_t), COALITION_NUM_TYPES, &kaddr)) {
uint64_t coalition_ids[COALITION_NUM_TYPES];
task_coalition_ids(proc_task(p), coalition_ids);
kcdata_memcpy(kcdata, kaddr, coalition_ids, sizeof(coalition_ids));
}
#endif /* CONFIG_COALITIONS */
/* V0 is sufficient for ReportCrash */
gather_rusage_info(current_proc(), &rup.ri, RUSAGE_INFO_V0);
rup.ri.ri_phys_footprint = 0;
/* Soft crash, proc did not exit */
rup.ri.ri_proc_exit_abstime = 0;
if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_RUSAGE_INFO, sizeof(struct rusage_info_v0), &kaddr)) {
kcdata_memcpy(kcdata, kaddr, &rup.ri, sizeof(struct rusage_info_v0));
}
platform = proc_platform(current_proc());
if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_PLATFORM, sizeof(platform), &kaddr)) {
kcdata_memcpy(kcdata, kaddr, &platform, sizeof(platform));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_PROC_PATH, MAXPATHLEN, &kaddr)) {
char *buf = zalloc_flags(ZV_NAMEI, Z_WAITOK | Z_ZERO);
proc_pidpathinfo_internal(p, 0, buf, MAXPATHLEN, NULL);
kcdata_memcpy(kcdata, kaddr, buf, MAXPATHLEN);
zfree(ZV_NAMEI, buf);
}
if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_UID, sizeof(p->p_uid), &kaddr)) {
kcdata_memcpy(kcdata, kaddr, &p->p_uid, sizeof(p->p_uid));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_GID, sizeof(p->p_gid), &kaddr)) {
kcdata_memcpy(kcdata, kaddr, &p->p_gid, sizeof(p->p_gid));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_PROC_FLAGS, sizeof(unsigned int), &kaddr)) {
unsigned int pflags = p->p_flag & (P_LP64 | P_SUGID | P_TRANSLATED);
kcdata_memcpy(kcdata, kaddr, &pflags, sizeof(pflags));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_CPUTYPE, sizeof(cpu_type_t), &kaddr)) {
cpu_type_t cputype = cpu_type() & ~CPU_ARCH_MASK;
if (has_64bit_addr) {
cputype |= CPU_ARCH_ABI64;
} else if (has_64bit_data) {
cputype |= CPU_ARCH_ABI64_32;
}
kcdata_memcpy(kcdata, kaddr, &cputype, sizeof(cpu_type_t));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_EXCEPTION_TYPE, sizeof(etype), &kaddr)) {
kcdata_memcpy(kcdata, kaddr, &etype, sizeof(etype));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_CRASH_COUNT, sizeof(int), &kaddr)) {
kcdata_memcpy(kcdata, kaddr, &p->p_crash_count, sizeof(int));
}
if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_THROTTLE_TIMEOUT, sizeof(int), &kaddr)) {
kcdata_memcpy(kcdata, kaddr, &p->p_throttle_timeout, sizeof(int));
}
assert(codeCnt <= EXCEPTION_CODE_MAX);
if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_EXCEPTION_CODES,
sizeof(mach_exception_code_t) * codeCnt, &kaddr)) {
kcdata_memcpy(kcdata, kaddr, code, sizeof(mach_exception_code_t) * codeCnt);
}
if (reason != OS_REASON_NULL) {
if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, EXIT_REASON_SNAPSHOT, sizeof(struct exit_reason_snapshot), &kaddr)) {
struct exit_reason_snapshot ers = {
.ers_namespace = reason->osr_namespace,
.ers_code = reason->osr_code,
.ers_flags = reason->osr_flags
};
kcdata_memcpy(kcdata, kaddr, &ers, sizeof(ers));
}
if (reason->osr_kcd_buf != 0) {
uint32_t reason_buf_size = (uint32_t)kcdata_memory_get_used_bytes(&reason->osr_kcd_descriptor);
assert(reason_buf_size != 0);
if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, KCDATA_TYPE_NESTED_KCDATA, reason_buf_size, &kaddr)) {
kcdata_memcpy(kcdata, kaddr, reason->osr_kcd_buf, reason_buf_size);
}
}
}
threadname[0] = '\0';
if (KERN_SUCCESS == kcdata_get_memory_addr(kcdata, TASK_BTINFO_THREAD_NAME,
sizeof(threadname), &kaddr)) {
bsd_getthreadname(get_bsdthread_info(current_thread()), threadname);
kcdata_memcpy(kcdata, kaddr, threadname, sizeof(threadname));
}
kr = thread_info(current_thread(), THREAD_IDENTIFIER_INFO, (thread_info_t)&th_info, &th_info_count);
if (kr == KERN_TERMINATED) {
btinfo_flag |= TASK_BTINFO_FLAG_TASK_TERMINATED;
}
kern_return_t last_kr = kcdata_get_memory_addr(kcdata, TASK_BTINFO_THREAD_ID,
sizeof(uint64_t), &kaddr);
/*
* If the last kcdata_get_memory_addr() failed (unlikely), signal to exception
* handler (ReportCrash) that lw corpse collection ran out of space and the
* result is incomplete.
*/
if (last_kr != KERN_SUCCESS) {
btinfo_flag |= TASK_BTINFO_FLAG_KCDATA_INCOMPLETE;
}
if (KERN_SUCCESS == kr && KERN_SUCCESS == last_kr) {
kcdata_memcpy(kcdata, kaddr, &th_info.thread_id, sizeof(uint64_t));
}
/* Lastly, copy the flags to the address we reserved at the beginning. */
kcdata_memcpy(kcdata, btinfo_flag_addr, &btinfo_flag, sizeof(uint32_t));
*new_desc = kcdata;
return KERN_SUCCESS;
}
/*
* We only parse exit reason kcdata blobs for critical process before they die
* and we're going to panic or for opt-in, limited diagnostic tools.
*
* Meant to be called immediately before panicking or limited diagnostic
* scenarios.
*/
char *
exit_reason_get_string_desc(os_reason_t exit_reason)
{
kcdata_iter_t iter;
if (exit_reason == OS_REASON_NULL || exit_reason->osr_kcd_buf == NULL ||
exit_reason->osr_bufsize == 0) {
return NULL;
}
iter = kcdata_iter(exit_reason->osr_kcd_buf, exit_reason->osr_bufsize);
if (!kcdata_iter_valid(iter)) {
#if DEBUG || DEVELOPMENT
printf("exit reason has invalid exit reason buffer\n");
#endif
return NULL;
}
if (kcdata_iter_type(iter) != KCDATA_BUFFER_BEGIN_OS_REASON) {
#if DEBUG || DEVELOPMENT
printf("exit reason buffer type mismatch, expected %d got %d\n",
KCDATA_BUFFER_BEGIN_OS_REASON, kcdata_iter_type(iter));
#endif
return NULL;
}
iter = kcdata_iter_find_type(iter, EXIT_REASON_USER_DESC);
if (!kcdata_iter_valid(iter)) {
return NULL;
}
return (char *)kcdata_iter_payload(iter);
}
static int initproc_spawned = 0;
static int
sysctl_initproc_spawned(struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req)
{
if (req->newptr != 0 && (proc_getpid(req->p) != 1 || initproc_spawned != 0)) {
// Can only ever be set by launchd, and only once at boot
return EPERM;
}
return sysctl_handle_int(oidp, &initproc_spawned, 0, req);
}
SYSCTL_PROC(_kern, OID_AUTO, initproc_spawned,
CTLFLAG_RW | CTLFLAG_KERN | CTLTYPE_INT | CTLFLAG_LOCKED, 0, 0,
sysctl_initproc_spawned, "I", "Boolean indicator that launchd has reached main");
#if DEVELOPMENT || DEBUG
/* disable user faults */
static TUNABLE(bool, bootarg_disable_user_faults, "-disable_user_faults", false);
#endif /* DEVELOPMENT || DEBUG */
#define OS_REASON_IFLAG_USER_FAULT 0x1
#define OS_REASON_TOTAL_USER_FAULTS_PER_PROC 5
static int
abort_with_payload_internal(proc_t p,
uint32_t reason_namespace, uint64_t reason_code,
user_addr_t payload, uint32_t payload_size,
user_addr_t reason_string, uint64_t reason_flags,
uint32_t internal_flags)
{
os_reason_t exit_reason = OS_REASON_NULL;
kern_return_t kr = KERN_SUCCESS;
if (internal_flags & OS_REASON_IFLAG_USER_FAULT) {
uint32_t old_value = atomic_load_explicit(&p->p_user_faults,
memory_order_relaxed);
#if DEVELOPMENT || DEBUG
if (bootarg_disable_user_faults) {
return EQFULL;
}
#endif /* DEVELOPMENT || DEBUG */
for (;;) {
if (old_value >= OS_REASON_TOTAL_USER_FAULTS_PER_PROC) {
return EQFULL;
}
// this reloads the value in old_value
if (atomic_compare_exchange_strong_explicit(&p->p_user_faults,
&old_value, old_value + 1, memory_order_relaxed,
memory_order_relaxed)) {
break;
}
}
}
KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
proc_getpid(p), reason_namespace,
reason_code, 0, 0);
exit_reason = build_userspace_exit_reason(reason_namespace, reason_code,
payload, payload_size, reason_string, reason_flags | OS_REASON_FLAG_ABORT);
if (internal_flags & OS_REASON_IFLAG_USER_FAULT) {
mach_exception_code_t code = 0;
EXC_GUARD_ENCODE_TYPE(code, GUARD_TYPE_USER); /* simulated EXC_GUARD */
EXC_GUARD_ENCODE_FLAVOR(code, 0);
EXC_GUARD_ENCODE_TARGET(code, reason_namespace);
if (exit_reason == OS_REASON_NULL) {
kr = KERN_RESOURCE_SHORTAGE;
} else {
kr = task_violated_guard(code, reason_code, exit_reason, TRUE);
}
os_reason_free(exit_reason);
} else {
/*
* We use SIGABRT (rather than calling exit directly from here) so that
* the debugger can catch abort_with_{reason,payload} calls.
*/
psignal_try_thread_with_reason(p, current_thread(), SIGABRT, exit_reason);
}
switch (kr) {
case KERN_SUCCESS:
return 0;
case KERN_NOT_SUPPORTED:
return ENOTSUP;
case KERN_INVALID_ARGUMENT:
return EINVAL;
case KERN_RESOURCE_SHORTAGE:
default:
return EBUSY;
}
}
int
abort_with_payload(struct proc *cur_proc, struct abort_with_payload_args *args,
__unused void *retval)
{
abort_with_payload_internal(cur_proc, args->reason_namespace,
args->reason_code, args->payload, args->payload_size,
args->reason_string, args->reason_flags, 0);
return 0;
}
int
os_fault_with_payload(struct proc *cur_proc,
struct os_fault_with_payload_args *args, __unused int *retval)
{
return abort_with_payload_internal(cur_proc, args->reason_namespace,
args->reason_code, args->payload, args->payload_size,
args->reason_string, args->reason_flags, OS_REASON_IFLAG_USER_FAULT);
}
/*
* exit --
* Death of process.
*/
__attribute__((noreturn))
void
exit(proc_t p, struct exit_args *uap, int *retval)
{
p->p_xhighbits = ((uint32_t)(uap->rval) & 0xFF000000) >> 24;
exit1(p, W_EXITCODE((uint32_t)uap->rval, 0), retval);
thread_exception_return();
/* NOTREACHED */
while (TRUE) {
thread_block(THREAD_CONTINUE_NULL);
}
/* NOTREACHED */
}
/*
* Exit: deallocate address space and other resources, change proc state
* to zombie, and unlink proc from allproc and parent's lists. Save exit
* status and rusage for wait(). Check for child processes and orphan them.
*/
int
exit1(proc_t p, int rv, int *retval)
{
return exit1_internal(p, rv, retval, FALSE, TRUE, 0);
}
int
exit1_internal(proc_t p, int rv, int *retval, boolean_t thread_can_terminate, boolean_t perf_notify,
int jetsam_flags)
{
return exit_with_reason(p, rv, retval, thread_can_terminate, perf_notify, jetsam_flags, OS_REASON_NULL);
}
/*
* NOTE: exit_with_reason drops a reference on the passed exit_reason
*/
int
exit_with_reason(proc_t p, int rv, int *retval, boolean_t thread_can_terminate, boolean_t perf_notify,
int jetsam_flags, struct os_reason *exit_reason)
{
thread_t self = current_thread();
struct task *task = proc_task(p);
struct uthread *ut;
int error = 0;
bool proc_exiting = false;
#if DEVELOPMENT || DEBUG
/*
* Debug boot-arg: panic here if matching process is exiting with non-zero code.
* Example usage: panic_on_error_exit=launchd,logd,watchdogd
*/
if (rv && strnstr(panic_on_eexit_pcomms, p->p_comm, sizeof(panic_on_eexit_pcomms))) {
panic("%s: Process %s with pid %d exited on error with code 0x%x.",
__FUNCTION__, p->p_comm, proc_getpid(p), rv);
}
#endif
/*
* If a thread in this task has already
* called exit(), then halt any others
* right here.
*/
ut = get_bsdthread_info(self);
(void)retval;
/*
* The parameter list of audit_syscall_exit() was augmented to
* take the Darwin syscall number as the first parameter,
* which is currently required by mac_audit_postselect().
*/
/*
* The BSM token contains two components: an exit status as passed
* to exit(), and a return value to indicate what sort of exit it
* was. The exit status is WEXITSTATUS(rv), but it's not clear
* what the return value is.
*/
AUDIT_ARG(exit, WEXITSTATUS(rv), 0);
/*
* TODO: what to audit here when jetsam calls exit and the uthread,
* 'ut' does not belong to the proc, 'p'.
*/
AUDIT_SYSCALL_EXIT(SYS_exit, p, ut, 0); /* Exit is always successfull */
DTRACE_PROC1(exit, int, CLD_EXITED);
/* mark process is going to exit and pull out of DBG/disk throttle */
/* TODO: This should be done after becoming exit thread */
proc_set_task_policy(proc_task(p), TASK_POLICY_ATTRIBUTE,
TASK_POLICY_TERMINATED, TASK_POLICY_ENABLE);
proc_lock(p);
error = proc_transstart(p, 1, (jetsam_flags ? 1 : 0));
if (error == EDEADLK) {
/*
* If proc_transstart() returns EDEADLK, then another thread
* is either exec'ing or exiting. Return an error and allow
* the other thread to continue.
*/
proc_unlock(p);
os_reason_free(exit_reason);
if (current_proc() == p) {
if (p->exit_thread == self) {
panic("exit_thread failed to exit");
}
if (thread_can_terminate) {
thread_exception_return();
}
}
return error;
}
proc_exiting = !!(p->p_lflag & P_LEXIT);
while (proc_exiting || p->exit_thread != self) {
if (proc_exiting || sig_try_locked(p) <= 0) {
proc_transend(p, 1);
os_reason_free(exit_reason);
if (get_threadtask(self) != task) {
proc_unlock(p);
return 0;
}
proc_unlock(p);
thread_terminate(self);
if (!thread_can_terminate) {
return 0;
}
thread_exception_return();
/* NOTREACHED */
}
sig_lock_to_exit(p);
}
if (exit_reason != OS_REASON_NULL) {
KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_COMMIT) | DBG_FUNC_NONE,
proc_getpid(p), exit_reason->osr_namespace,
exit_reason->osr_code, 0, 0);
}
assert(p->p_exit_reason == OS_REASON_NULL);
p->p_exit_reason = exit_reason;
p->p_lflag |= P_LEXIT;
p->p_xstat = rv;
p->p_lflag |= jetsam_flags;
proc_transend(p, 1);
proc_unlock(p);
proc_prepareexit(p, rv, perf_notify);
/* Last thread to terminate will call proc_exit() */
task_terminate_internal(task);
return 0;
}
#if CONFIG_MEMORYSTATUS
/*
* Remove this process from jetsam bands for freezing or exiting. Note this will block, if the process
* is currently being frozen.
* The proc_list_lock is held by the caller.
* NB: If the process should be ineligible for future freezing or jetsaming the caller should first set
* the p_refcount P_REF_DEAD bit.
*/
static void
proc_memorystatus_remove(proc_t p)
{
LCK_MTX_ASSERT(&proc_list_mlock, LCK_MTX_ASSERT_OWNED);
while (memorystatus_remove(p) == EAGAIN) {
os_log(OS_LOG_DEFAULT, "memorystatus_remove: Process[%d] tried to exit while being frozen. Blocking exit until freeze completes.", proc_getpid(p));
msleep(&p->p_memstat_state, &proc_list_mlock, PWAIT, "proc_memorystatus_remove", NULL);
}
}
#endif
#if DEVELOPMENT
boolean_t crash_behavior_test_mode = FALSE;
boolean_t crash_behavior_test_would_panic = FALSE;
SYSCTL_UINT(_kern, OID_AUTO, crash_behavior_test_mode, CTLFLAG_RW, &crash_behavior_test_mode, 0, "");
SYSCTL_UINT(_kern, OID_AUTO, crash_behavior_test_would_panic, CTLFLAG_RW, &crash_behavior_test_would_panic, 0, "");
#endif /* DEVELOPMENT */
static bool
_proc_is_crashing_signal(int sig)
{
bool result = false;
switch (sig) {
case SIGILL:
case SIGABRT:
case SIGFPE:
case SIGBUS:
case SIGSEGV:
case SIGSYS:
/*
* If SIGTRAP is the terminating signal, then we can safely assume the
* process crashed. (On iOS, SIGTRAP will be the terminating signal when
* a process calls __builtin_trap(), which will abort.)
*/
case SIGTRAP:
result = true;
}
return result;
}
static bool
_proc_is_fatal_reason(os_reason_t reason)
{
if ((reason->osr_flags & OS_REASON_FLAG_ABORT) != 0) {
/* Abort is always fatal even if there is no crash report generated */
return true;
}
if ((reason->osr_flags & OS_REASON_FLAG_NO_CRASH_REPORT) != 0) {
/*
* No crash report means this reason shouldn't be considered fatal
* unless we are in test mode
*/
#if DEVELOPMENT
if (crash_behavior_test_mode) {
return true;
}
#endif /* DEVELOPMENT */
return false;
}
// By default all OS_REASON are fatal
return true;
}
static TUNABLE(bool, panic_on_crash_disabled, "panic_on_crash_disabled", false);
static bool
proc_should_trigger_panic(proc_t p, int rv)
{
if (p == initproc) {
/* Always panic for launchd */
return true;
}
if (panic_on_crash_disabled) {
printf("panic-on-crash disabled via boot-arg\n");
return false;
}
if ((p->p_crash_behavior & POSIX_SPAWN_PANIC_ON_EXIT) != 0) {
return true;
}
if ((p->p_crash_behavior & POSIX_SPAWN_PANIC_ON_SPAWN_FAIL) != 0) {
return true;
}
if (p->p_posix_spawn_failed) {
/* posix_spawn failures normally don't qualify for panics */
return false;
}
bool deadline_expired = (mach_continuous_time() > p->p_crash_behavior_deadline);
if (p->p_crash_behavior_deadline != 0 && deadline_expired) {
return false;
}
if (WIFEXITED(rv)) {
int code = WEXITSTATUS(rv);
if ((p->p_crash_behavior & POSIX_SPAWN_PANIC_ON_NON_ZERO_EXIT) != 0) {
if (code == 0) {
/* No panic if we exit 0 */
return false;
} else {
/* Panic on non-zero exit */
return true;
}
} else {
/* No panic on normal exit if the process doesn't have the non-zero flag set */
return false;
}
} else if (WIFSIGNALED(rv)) {
int signal = WTERMSIG(rv);
/* This is a crash (non-normal exit) */
if ((p->p_crash_behavior & POSIX_SPAWN_PANIC_ON_CRASH) != 0) {
os_reason_t reason = p->p_exit_reason;
if (reason != OS_REASON_NULL) {
if (!_proc_is_fatal_reason(reason)) {
// Skip non-fatal terminate_with_reason
return false;
}
if (reason->osr_namespace == OS_REASON_SIGNAL) {
/*
* OS_REASON_SIGNAL delivers as a SIGKILL with the actual signal
* in osr_code, so we should check that signal here
*/
return _proc_is_crashing_signal((int)reason->osr_code);
} else {
/*
* This branch covers the case of terminate_with_reason which
* delivers a SIGTERM which is still considered a crash even
* thought the signal is not considered a crashing signal
*/
return true;
}
}
return _proc_is_crashing_signal(signal);
} else {
return false;
}
} else {
/*
* This branch implies that we didn't exit normally nor did we receive
* a signal. This should be unreachable.
*/
return true;
}
}
static void
proc_crash_coredump(proc_t p)
{
(void)p;
#if (DEVELOPMENT || DEBUG) && CONFIG_COREDUMP
/*
* For debugging purposes, generate a core file of initproc before
* panicking. Leave at least 300 MB free on the root volume, and ignore
* the process's corefile ulimit. fsync() the file to ensure it lands on disk
* before the panic hits.
*/
int err;
uint64_t coredump_start = mach_absolute_time();
uint64_t coredump_end;
clock_sec_t tv_sec;
clock_usec_t tv_usec;
uint32_t tv_msec;
err = coredump(p, 300, COREDUMP_IGNORE_ULIMIT | COREDUMP_FULLFSYNC);
coredump_end = mach_absolute_time();
absolutetime_to_microtime(coredump_end - coredump_start, &tv_sec, &tv_usec);
tv_msec = tv_usec / 1000;
if (err != 0) {
printf("Failed to generate core file for pid: %d: error %d, took %d.%03d seconds\n",
proc_getpid(p), err, (uint32_t)tv_sec, tv_msec);
} else {
printf("Generated core file for pid: %d in %d.%03d seconds\n",
proc_getpid(p), (uint32_t)tv_sec, tv_msec);
}
#endif /* (DEVELOPMENT || DEBUG) && CONFIG_COREDUMP */
}
static void
proc_handle_critical_exit(proc_t p, int rv)
{
if (!proc_should_trigger_panic(p, rv)) {
// No panic, bail out
return;
}
#if DEVELOPMENT
if (crash_behavior_test_mode) {
crash_behavior_test_would_panic = TRUE;
// Force test mode off after hitting a panic
crash_behavior_test_mode = FALSE;
return;
}
#endif /* DEVELOPMENT */
char *exit_reason_desc = exit_reason_get_string_desc(p->p_exit_reason);
if (p->p_exit_reason == OS_REASON_NULL) {
printf("pid %d exited -- no exit reason available -- (signal %d, exit %d)\n",
proc_getpid(p), WTERMSIG(rv), WEXITSTATUS(rv));
} else {
printf("pid %d exited -- exit reason namespace %d subcode 0x%llx, description %s\n", proc_getpid(p),
p->p_exit_reason->osr_namespace, p->p_exit_reason->osr_code, exit_reason_desc ?
exit_reason_desc : "none");
}
const char *prefix_str;
char prefix_str_buf[128];
if (p == initproc) {
if (strnstr(p->p_name, "preinit", sizeof(p->p_name))) {
prefix_str = "LTE preinit process exited";
} else if (initproc_spawned) {
prefix_str = "initproc exited";
} else {
prefix_str = "initproc failed to start";
}
} else {
/* For processes that aren't launchd, just use the process name and pid */
snprintf(prefix_str_buf, sizeof(prefix_str_buf), "%s[%d] exited", p->p_name, proc_getpid(p));
prefix_str = prefix_str_buf;
}
proc_crash_coredump(p);
sync(p, (void *)NULL, (int *)NULL);
if (p->p_exit_reason == OS_REASON_NULL) {
panic_with_options(0, NULL, DEBUGGER_OPTION_INITPROC_PANIC, "%s -- no exit reason available -- (signal %d, exit status %d %s)",
prefix_str, WTERMSIG(rv), WEXITSTATUS(rv), ((proc_getcsflags(p) & CS_KILLED) ? "CS_KILLED" : ""));
} else {
panic_with_options(0, NULL, DEBUGGER_OPTION_INITPROC_PANIC, "%s %s -- exit reason namespace %d subcode 0x%llx description: %." LAUNCHD_PANIC_REASON_STRING_MAXLEN "s",
((proc_getcsflags(p) & CS_KILLED) ? "CS_KILLED" : ""),
prefix_str, p->p_exit_reason->osr_namespace, p->p_exit_reason->osr_code,
exit_reason_desc ? exit_reason_desc : "none");
}
}
void
proc_prepareexit(proc_t p, int rv, boolean_t perf_notify)
{
mach_exception_data_type_t code = 0, subcode = 0;
exception_type_t etype;
struct uthread *ut;
thread_t self = current_thread();
ut = get_bsdthread_info(self);
struct rusage_superset *rup;
int kr = 0;
int create_corpse = FALSE;
bool corpse_source = false;
task_t task = proc_task(p);
if (p->p_crash_behavior != 0 || p == initproc) {
proc_handle_critical_exit(p, rv);
}
if (task) {
corpse_source = vm_map_is_corpse_source(get_task_map(task));
}
/*
* Generate a corefile/crashlog if:
* The process doesn't have an exit reason that indicates no crash report should be created
* AND any of the following are true:
* - The process was terminated due to a fatal signal that generates a core
* - The process was killed due to a code signing violation
* - The process has an exit reason that indicates we should generate a crash report
*
* The first condition is necessary because abort_with_reason()/payload() use SIGABRT
* (which normally triggers a core) but may indicate that no crash report should be created.
*/
if (!(PROC_HAS_EXITREASON(p) && (PROC_EXITREASON_FLAGS(p) & OS_REASON_FLAG_NO_CRASH_REPORT)) &&
(hassigprop(WTERMSIG(rv), SA_CORE) || ((proc_getcsflags(p) & CS_KILLED) != 0) ||
(PROC_HAS_EXITREASON(p) && (PROC_EXITREASON_FLAGS(p) &
OS_REASON_FLAG_GENERATE_CRASH_REPORT)))) {
/*
* Workaround for processes checking up on PT_DENY_ATTACH:
* should be backed out post-Leopard (details in 5431025).
*/
if ((SIGSEGV == WTERMSIG(rv)) &&
(p->p_pptr->p_lflag & P_LNOATTACH)) {
goto skipcheck;
}
/*
* Crash Reporter looks for the signal value, original exception
* type, and low 20 bits of the original code in code[0]
* (8, 4, and 20 bits respectively). code[1] is unmodified.
*/
code = ((WTERMSIG(rv) & 0xff) << 24) |
((ut->uu_exception & 0x0f) << 20) |
((int)ut->uu_code & 0xfffff);
subcode = ut->uu_subcode;
etype = ut->uu_exception;
/* Defualt to EXC_CRASH if the exception is not an EXC_RESOURCE or EXC_GUARD */
if (etype != EXC_RESOURCE || etype != EXC_GUARD) {
etype = EXC_CRASH;
}
#if (DEVELOPMENT || DEBUG)
if (p->p_pid <= exception_log_max_pid) {
char *proc_name = proc_best_name(p);
if (PROC_HAS_EXITREASON(p)) {
record_system_event(SYSTEM_EVENT_TYPE_INFO, SYSTEM_EVENT_SUBSYSTEM_PROCESS, "process exit",
"pid: %d -- process name: %s -- exit reason namespace: %d -- subcode: 0x%llx -- description: %s",
proc_getpid(p), proc_name, p->p_exit_reason->osr_namespace, p->p_exit_reason->osr_code,
exit_reason_get_string_desc(p->p_exit_reason));
} else {
record_system_event(SYSTEM_EVENT_TYPE_INFO, SYSTEM_EVENT_SUBSYSTEM_PROCESS, "process exit",
"pid: %d -- process name: %s -- exit status %d",
proc_getpid(p), proc_name, WEXITSTATUS(rv));
}
}
#endif
const bool fatal = false;
kr = task_exception_notify(EXC_CRASH, code, subcode, fatal);
/* Nobody handled EXC_CRASH?? remember to make corpse */
if ((kr != 0 || corpse_source) && p == current_proc()) {
/*
* Do not create corpse when exit is called from jetsam thread.
* Corpse creation code requires that proc_prepareexit is
* called by the exiting proc and not the kernel_proc.
*/
create_corpse = TRUE;
}
/*
* Revalidate the code signing of the text pages around current PC.
* This is an attempt to detect and repair faults due to memory
* corruption of text pages.
*
* The goal here is to fixup infrequent memory corruptions due to
* things like aging RAM bit flips. So the approach is to only expect
* to have to fixup one thing per crash. This also limits the amount
* of extra work we cause in case this is a development kernel with an
* active memory stomp happening.
*/
uintptr_t bt[2];
struct backtrace_user_info btinfo = BTUINFO_INIT;
unsigned int frame_count = backtrace_user(bt, 2, NULL, &btinfo);
int bt_err = btinfo.btui_error;
if (bt_err == 0 && frame_count >= 1) {
/*
* First check at the page containing the current PC.
* This passes if the page code signs -or- if we can't figure out
* what is at that address. The latter action is so we continue checking
* previous pages which may be corrupt and caused a wild branch.
*/
kr = revalidate_text_page(task, bt[0]);
/* No corruption found, check the previous sequential page */
if (kr == KERN_SUCCESS) {
kr = revalidate_text_page(task, bt[0] - get_task_page_size(task));
}
/* Still no corruption found, check the current function's caller */
if (kr == KERN_SUCCESS) {
if (frame_count > 1 &&
atop(bt[0]) != atop(bt[1]) && /* don't recheck PC page */
atop(bt[0]) - 1 != atop(bt[1])) { /* don't recheck page before */
kr = revalidate_text_page(task, (vm_map_offset_t)bt[1]);
}
}
/*
* Log that we found a corruption.
*/
if (kr != KERN_SUCCESS) {
os_log(OS_LOG_DEFAULT,
"Text page corruption detected in dying process %d\n", proc_getpid(p));
}
}
}
skipcheck:
if (task_is_driver(task) && PROC_HAS_EXITREASON(p)) {
IOUserServerRecordExitReason(task, p->p_exit_reason);
}
/* Notify the perf server? */
if (perf_notify) {
(void)sys_perf_notify(self, proc_getpid(p));
}
/* stash the usage into corpse data if making_corpse == true */
if (create_corpse == TRUE) {
kr = task_mark_corpse(task);
if (kr != KERN_SUCCESS) {
if (kr == KERN_NO_SPACE) {
printf("Process[%d] has no vm space for corpse info.\n", proc_getpid(p));
} else if (kr == KERN_NOT_SUPPORTED) {
printf("Process[%d] was destined to be corpse. But corpse is disabled by config.\n", proc_getpid(p));
} else if (kr == KERN_TERMINATED) {
printf("Process[%d] has been terminated before it could be converted to a corpse.\n", proc_getpid(p));
} else {
printf("Process[%d] crashed: %s. Too many corpses being created.\n", proc_getpid(p), p->p_comm);
}
create_corpse = FALSE;
}
}
if (corpse_source && !create_corpse) {
/* vm_map was marked for corpse, but we decided to not create one, unmark the vmmap */
vm_map_unset_corpse_source(get_task_map(task));
}
if (!proc_is_shadow(p)) {
/*
* Before this process becomes a zombie, stash resource usage
* stats in the proc for external observers to query
* via proc_pid_rusage().
*
* If the zombie allocation fails, just punt the stats.
*/
rup = zalloc(zombie_zone);
gather_rusage_info(p, &rup->ri, RUSAGE_INFO_CURRENT);
rup->ri.ri_phys_footprint = 0;
rup->ri.ri_proc_exit_abstime = mach_absolute_time();
/*
* Make the rusage_info visible to external observers
* only after it has been completely filled in.
*/
p->p_ru = rup;
}
if (create_corpse) {
int est_knotes = 0, num_knotes = 0;
uint64_t *buffer = NULL;
uint32_t buf_size = 0;
/* Get all the udata pointers from kqueue */
est_knotes = kevent_proc_copy_uptrs(p, NULL, 0);
if (est_knotes > 0) {
buf_size = (uint32_t)((est_knotes + 32) * sizeof(uint64_t));
buffer = kalloc_data(buf_size, Z_WAITOK);
if (buffer) {
num_knotes = kevent_proc_copy_uptrs(p, buffer, buf_size);
if (num_knotes > est_knotes + 32) {
num_knotes = est_knotes + 32;
}
}
}
/* Update the code, subcode based on exit reason */
proc_update_corpse_exception_codes(p, &code, &subcode);
populate_corpse_crashinfo(p, task, rup,
code, subcode, buffer, num_knotes, NULL, etype);
kfree_data(buffer, buf_size);
}
/*
* Remove proc from allproc queue and from pidhash chain.
* Need to do this before we do anything that can block.
* Not doing causes things like mount() find this on allproc
* in partially cleaned state.
*/
proc_list_lock();
#if CONFIG_MEMORYSTATUS
proc_memorystatus_remove(p);
#endif
LIST_REMOVE(p, p_list);
LIST_INSERT_HEAD(&zombproc, p, p_list); /* Place onto zombproc. */
/* will not be visible via proc_find */
os_atomic_or(&p->p_refcount, P_REF_DEAD, relaxed);
proc_list_unlock();
/*
* If parent is waiting for us to exit or exec,
* P_LPPWAIT is set; we will wakeup the parent below.
*/
proc_lock(p);
p->p_lflag &= ~(P_LTRACED | P_LPPWAIT);
p->p_sigignore = ~(sigcantmask);
/*
* If a thread is already waiting for us in proc_exit,
* P_LTERM is set, wakeup the thread.
*/
if (p->p_lflag & P_LTERM) {
wakeup(&p->exit_thread);
} else {
p->p_lflag |= P_LTERM;
}
/* If current proc is exiting, ignore signals on the exit thread */
if (p == current_proc()) {
ut->uu_siglist = 0;
}
proc_unlock(p);
}
void
proc_exit(proc_t p)
{
proc_t q;
proc_t pp;
struct task *task = proc_task(p);
vnode_t tvp = NULLVP;
struct pgrp * pg;
struct session *sessp;
struct uthread * uth;
pid_t pid;
int exitval;
int knote_hint;
uth = current_uthread();
proc_lock(p);
proc_transstart(p, 1, 0);
if (!(p->p_lflag & P_LEXIT)) {
/*
* This can happen if a thread_terminate() occurs
* in a single-threaded process.
*/
p->p_lflag |= P_LEXIT;
proc_transend(p, 1);
proc_unlock(p);
proc_prepareexit(p, 0, TRUE);
(void) task_terminate_internal(task);
proc_lock(p);
} else if (!(p->p_lflag & P_LTERM)) {
proc_transend(p, 1);
/* Jetsam is in middle of calling proc_prepareexit, wait for it */
p->p_lflag |= P_LTERM;
msleep(&p->exit_thread, &p->p_mlock, PWAIT, "proc_prepareexit_wait", NULL);
} else {
proc_transend(p, 1);
}
p->p_lflag |= P_LPEXIT;
/*
* Other kernel threads may be in the middle of signalling this process.
* Wait for those threads to wrap it up before making the process
* disappear on them.
*/
if ((p->p_lflag & P_LINSIGNAL) || (p->p_sigwaitcnt > 0)) {
p->p_sigwaitcnt++;
while ((p->p_lflag & P_LINSIGNAL) || (p->p_sigwaitcnt > 1)) {
msleep(&p->p_sigmask, &p->p_mlock, PWAIT, "proc_sigdrain", NULL);
}
p->p_sigwaitcnt--;
}
proc_unlock(p);
pid = proc_getpid(p);
exitval = p->p_xstat;
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_COMMON,
BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXIT) | DBG_FUNC_START,
pid, exitval, 0, 0, 0);
#if DEVELOPMENT || DEBUG
proc_exit_lpexit_check(pid, PELS_POS_START);
#endif
#if CONFIG_DTRACE
dtrace_proc_exit(p);
#endif
proc_refdrain(p);
/* We now have unique ref to the proc */
/* if any pending cpu limits action, clear it */
task_clear_cpuusage(proc_task(p), TRUE);
workq_mark_exiting(p);
/*
* need to cancel async IO requests that can be cancelled and wait for those
* already active. MAY BLOCK!
*/
_aio_exit( p );
/*
* Close open files and release open-file table.
* This may block!
*/
fdt_invalidate(p);
/*
* Once all the knotes, kqueues & workloops are destroyed, get rid of the
* workqueue.
*/
workq_exit(p);
if (uth->uu_lowpri_window) {
/*
* task is marked as a low priority I/O type
* and the I/O we issued while in flushing files on close
* collided with normal I/O operations...
* no need to throttle this thread since its going away
* but we do need to update our bookeeping w/r to throttled threads
*/
throttle_lowpri_io(0);
}
if (p->p_lflag & P_LNSPACE_RESOLVER) {
/*
* The namespace resolver is exiting; there may be
* outstanding materialization requests to clean up.
*/
nspace_resolver_exited(p);
}
#if SYSV_SHM
/* Close ref SYSV Shared memory*/
if (p->vm_shm) {
shmexit(p);
}
#endif
#if SYSV_SEM
/* Release SYSV semaphores */
semexit(p);
#endif
#if PSYNCH
pth_proc_hashdelete(p);
#endif /* PSYNCH */
pg = proc_pgrp(p, &sessp);
if (SESS_LEADER(p, sessp)) {
if (sessp->s_ttyvp != NULLVP) {
struct vnode *ttyvp;
int ttyvid;
int cttyflag = 0;
struct vfs_context context;
struct tty *tp;
struct pgrp *tpgrp = PGRP_NULL;
/*
* Controlling process.
* Signal foreground pgrp,
* drain controlling terminal
* and revoke access to controlling terminal.
*/
proc_list_lock(); /* prevent any t_pgrp from changing */
session_lock(sessp);
if (sessp->s_ttyp && sessp->s_ttyp->t_session == sessp) {
tpgrp = tty_pgrp_locked(sessp->s_ttyp);
}
proc_list_unlock();
if (tpgrp != PGRP_NULL) {
session_unlock(sessp);
pgsignal(tpgrp, SIGHUP, 1);
pgrp_rele(tpgrp);
session_lock(sessp);
}
cttyflag = (os_atomic_andnot_orig(&sessp->s_refcount,
S_CTTYREF, relaxed) & S_CTTYREF);
ttyvp = sessp->s_ttyvp;
ttyvid = sessp->s_ttyvid;
tp = session_clear_tty_locked(sessp);
if (ttyvp) {
vnode_hold(ttyvp);
}
session_unlock(sessp);
if ((ttyvp != NULLVP) && (vnode_getwithvid(ttyvp, ttyvid) == 0)) {
if (tp != TTY_NULL) {
tty_lock(tp);
(void) ttywait(tp);
tty_unlock(tp);
}
context.vc_thread = NULL;
context.vc_ucred = kauth_cred_proc_ref(p);
VNOP_REVOKE(ttyvp, REVOKEALL, &context);
if (cttyflag) {
/*
* Release the extra usecount taken in cttyopen.
* usecount should be released after VNOP_REVOKE is called.
* This usecount was taken to ensure that
* the VNOP_REVOKE results in a close to
* the tty since cttyclose is a no-op.
*/
vnode_rele(ttyvp);
}
vnode_put(ttyvp);
kauth_cred_unref(&context.vc_ucred);
vnode_drop(ttyvp);
ttyvp = NULLVP;
}
if (ttyvp) {
vnode_drop(ttyvp);
}
if (tp) {
ttyfree(tp);
}
}
session_lock(sessp);
sessp->s_leader = NULL;
session_unlock(sessp);
}
if (!proc_is_shadow(p)) {
fixjobc(p, pg, 0);
}
pgrp_rele(pg);
/*
* Change RLIMIT_FSIZE for accounting/debugging.
*/
proc_limitsetcur_fsize(p, RLIM_INFINITY);
(void)acct_process(p);
proc_list_lock();
if ((p->p_listflag & P_LIST_EXITCOUNT) == P_LIST_EXITCOUNT) {
p->p_listflag &= ~P_LIST_EXITCOUNT;
proc_shutdown_exitcount--;
if (proc_shutdown_exitcount == 0) {
wakeup(&proc_shutdown_exitcount);
}
}
/* wait till parentrefs are dropped and grant no more */
proc_childdrainstart(p);
while ((q = p->p_children.lh_first) != NULL) {
if (q->p_stat == SZOMB) {
if (p != q->p_pptr) {
panic("parent child linkage broken");
}
/* check for sysctl zomb lookup */
while ((q->p_listflag & P_LIST_WAITING) == P_LIST_WAITING) {
msleep(&q->p_stat, &proc_list_mlock, PWAIT, "waitcoll", 0);
}
q->p_listflag |= P_LIST_WAITING;
/*
* This is a named reference and it is not granted
* if the reap is already in progress. So we get
* the reference here exclusively and their can be
* no waiters. So there is no need for a wakeup
* after we are done. Also the reap frees the structure
* and the proc struct cannot be used for wakeups as well.
* It is safe to use q here as this is system reap
*/
reap_flags_t reparent_flags = (q->p_listflag & P_LIST_DEADPARENT) ?
REAP_REPARENTED_TO_INIT : 0;
reap_child_locked(p, q,
REAP_DEAD_PARENT | REAP_LOCKED | reparent_flags);
} else {
/*
* Traced processes are killed
* since their existence means someone is messing up.
*/
if (q->p_lflag & P_LTRACED) {
struct proc *opp;
/*
* Take a reference on the child process to
* ensure it doesn't exit and disappear between
* the time we drop the list_lock and attempt
* to acquire its proc_lock.
*/
if (proc_ref(q, true) != q) {
continue;
}
proc_list_unlock();
opp = proc_find(q->p_oppid);
if (opp != PROC_NULL) {
proc_list_lock();
q->p_oppid = 0;
proc_list_unlock();
proc_reparentlocked(q, opp, 0, 0);
proc_rele(opp);
} else {
/* original parent exited while traced */
proc_list_lock();
q->p_listflag |= P_LIST_DEADPARENT;
q->p_oppid = 0;
proc_list_unlock();
proc_reparentlocked(q, initproc, 0, 0);
}
proc_lock(q);
q->p_lflag &= ~P_LTRACED;
if (q->sigwait_thread) {
thread_t thread = q->sigwait_thread;
proc_unlock(q);
/*
* The sigwait_thread could be stopped at a
* breakpoint. Wake it up to kill.
* Need to do this as it could be a thread which is not
* the first thread in the task. So any attempts to kill
* the process would result into a deadlock on q->sigwait.
*/
thread_resume(thread);
clear_wait(thread, THREAD_INTERRUPTED);
threadsignal(thread, SIGKILL, 0, TRUE);
} else {
proc_unlock(q);
}
psignal(q, SIGKILL);
proc_list_lock();
proc_rele(q);
} else {
q->p_listflag |= P_LIST_DEADPARENT;
proc_reparentlocked(q, initproc, 0, 1);
}
}
}
proc_childdrainend(p);
proc_list_unlock();
#if CONFIG_MACF
if (!proc_is_shadow(p)) {
/*
* Notify MAC policies that proc is dead.
* This should be replaced with proper label management
* (rdar://problem/32126399).
*/
mac_proc_notify_exit(p);
}
#endif
/*
* Release reference to text vnode
*/
tvp = p->p_textvp;
p->p_textvp = NULL;
if (tvp != NULLVP) {
vnode_rele(tvp);
}
/*
* Save exit status and final rusage info, adding in child rusage
* info and self times. If we were unable to allocate a zombie
* structure, this information is lost.
*/
if (p->p_ru != NULL) {
calcru(p, &p->p_stats->p_ru.ru_utime, &p->p_stats->p_ru.ru_stime, NULL);
p->p_ru->ru = p->p_stats->p_ru;
ruadd(&(p->p_ru->ru), &p->p_stats->p_cru);
}
/*
* Free up profiling buffers.
*/
{
struct uprof *p0 = &p->p_stats->p_prof, *p1, *pn;
p1 = p0->pr_next;
p0->pr_next = NULL;
p0->pr_scale = 0;
for (; p1 != NULL; p1 = pn) {
pn = p1->pr_next;
kfree_type(struct uprof, p1);
}
}
proc_free_realitimer(p);
/*
* Other substructures are freed from wait().
*/
zfree(proc_stats_zone, p->p_stats);
p->p_stats = NULL;
if (p->p_subsystem_root_path) {
zfree(ZV_NAMEI, p->p_subsystem_root_path);
p->p_subsystem_root_path = NULL;
}
proc_limitdrop(p);
#if DEVELOPMENT || DEBUG
proc_exit_lpexit_check(pid, PELS_POS_PRE_TASK_DETACH);
#endif
/*
* Finish up by terminating the task
* and halt this thread (only if a
* member of the task exiting).
*/
proc_set_task(p, TASK_NULL);
set_bsdtask_info(task, NULL);
clear_thread_ro_proc(get_machthread(uth));
#if DEVELOPMENT || DEBUG
proc_exit_lpexit_check(pid, PELS_POS_POST_TASK_DETACH);
#endif
knote_hint = NOTE_EXIT | (p->p_xstat & 0xffff);
proc_knote(p, knote_hint);
/* mark the thread as the one that is doing proc_exit
* no need to hold proc lock in uthread_free
*/
uth->uu_flag |= UT_PROCEXIT;
/*
* Notify parent that we're gone.
*/
pp = proc_parent(p);
if (proc_is_shadow(p)) {
/* kernel can reap this one, no need to move it to launchd */
proc_list_lock();
p->p_listflag |= P_LIST_DEADPARENT;
proc_list_unlock();
} else if (pp->p_flag & P_NOCLDWAIT) {
if (p->p_ru != NULL) {
proc_lock(pp);
#if 3839178
/*
* If the parent is ignoring SIGCHLD, then POSIX requires
* us to not add the resource usage to the parent process -
* we are only going to hand it off to init to get reaped.
* We should contest the standard in this case on the basis
* of RLIMIT_CPU.
*/
#else /* !3839178 */
/*
* Add child resource usage to parent before giving
* zombie to init. If we were unable to allocate a
* zombie structure, this information is lost.
*/
ruadd(&pp->p_stats->p_cru, &p->p_ru->ru);
#endif /* !3839178 */
update_rusage_info_child(&pp->p_stats->ri_child, &p->p_ru->ri);
proc_unlock(pp);
}
/* kernel can reap this one, no need to move it to launchd */
proc_list_lock();
p->p_listflag |= P_LIST_DEADPARENT;
proc_list_unlock();
}
if (!proc_is_shadow(p) &&
((p->p_listflag & P_LIST_DEADPARENT) == 0 || p->p_oppid)) {
if (pp != initproc) {
proc_lock(pp);
pp->si_pid = proc_getpid(p);
pp->p_xhighbits = p->p_xhighbits;
p->p_xhighbits = 0;
pp->si_status = p->p_xstat;
pp->si_code = CLD_EXITED;
/*
* p_ucred usage is safe as it is an exiting process
* and reference is dropped in reap
*/
pp->si_uid = kauth_cred_getruid(proc_ucred_unsafe(p));
proc_unlock(pp);
}
/* mark as a zombie */
/* No need to take proc lock as all refs are drained and
* no one except parent (reaping ) can look at this.
* The write is to an int and is coherent. Also parent is
* keyed off of list lock for reaping
*/
DTRACE_PROC2(exited, proc_t, p, int, exitval);
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_COMMON,
BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXIT) | DBG_FUNC_END,
pid, exitval, 0, 0, 0);
p->p_stat = SZOMB;
/*
* The current process can be reaped so, no one
* can depend on this
*/
psignal(pp, SIGCHLD);
/* and now wakeup the parent */
proc_list_lock();
wakeup((caddr_t)pp);
proc_list_unlock();
} else {
/* should be fine as parent proc would be initproc */
/* mark as a zombie */
/* No need to take proc lock as all refs are drained and
* no one except parent (reaping ) can look at this.
* The write is to an int and is coherent. Also parent is
* keyed off of list lock for reaping
*/
DTRACE_PROC2(exited, proc_t, p, int, exitval);
proc_list_lock();
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_COMMON,
BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXIT) | DBG_FUNC_END,
pid, exitval, 0, 0, 0);
/* check for sysctl zomb lookup */
while ((p->p_listflag & P_LIST_WAITING) == P_LIST_WAITING) {
msleep(&p->p_stat, &proc_list_mlock, PWAIT, "waitcoll", 0);
}
/* safe to use p as this is a system reap */
p->p_stat = SZOMB;
p->p_listflag |= P_LIST_WAITING;
/*
* This is a named reference and it is not granted
* if the reap is already in progress. So we get
* the reference here exclusively and their can be
* no waiters. So there is no need for a wakeup
* after we are done. AlsO the reap frees the structure
* and the proc struct cannot be used for wakeups as well.
* It is safe to use p here as this is system reap
*/
reap_child_locked(pp, p,
REAP_DEAD_PARENT | REAP_LOCKED | REAP_DROP_LOCK);
}
if (uth->uu_lowpri_window) {
/*
* task is marked as a low priority I/O type and we've
* somehow picked up another throttle during exit processing...
* no need to throttle this thread since its going away
* but we do need to update our bookeeping w/r to throttled threads
*/
throttle_lowpri_io(0);
}
proc_rele(pp);
#if DEVELOPMENT || DEBUG
proc_exit_lpexit_check(pid, PELS_POS_END);
#endif
}
/*
* reap_child_locked
*
* Finalize a child exit once its status has been saved.
*
* If ptrace has attached, detach it and return it to its real parent. Free any
* remaining resources.
*
* Parameters:
* - proc_t parent Parent of process being reaped
* - proc_t child Process to reap
* - reap_flags_t flags Control locking and re-parenting behavior
*/
static void
reap_child_locked(proc_t parent, proc_t child, reap_flags_t flags)
{
struct pgrp *pg;
boolean_t shadow_proc = proc_is_shadow(child);
if (flags & REAP_LOCKED) {
proc_list_unlock();
}
/*
* Under ptrace, the child should now be re-parented back to its original
* parent, unless that parent was initproc or it didn't come to initproc
* through re-parenting.
*/
bool child_ptraced = child->p_oppid != 0;
if (!shadow_proc && child_ptraced) {
int knote_hint;
pid_t orig_ppid = 0;
proc_t orig_parent = PROC_NULL;
proc_lock(child);
orig_ppid = child->p_oppid;
child->p_oppid = 0;
knote_hint = NOTE_EXIT | (child->p_xstat & 0xffff);
proc_unlock(child);
orig_parent = proc_find(orig_ppid);
if (orig_parent) {
/*
* Only re-parent the process if its original parent was not
* initproc and it did not come to initproc from re-parenting.
*/
bool reparenting = orig_parent != initproc ||
(flags & REAP_REPARENTED_TO_INIT) == 0;
if (reparenting) {
if (orig_parent != initproc) {
/*
* Internal fields should be safe to access here because the
* child is exited and not reaped or re-parented yet.
*/
proc_lock(orig_parent);
orig_parent->si_pid = proc_getpid(child);
orig_parent->si_status = child->p_xstat;
orig_parent->si_code = CLD_CONTINUED;
orig_parent->si_uid = kauth_cred_getruid(proc_ucred_unsafe(child));
proc_unlock(orig_parent);
}
proc_reparentlocked(child, orig_parent, 1, 0);
/*
* After re-parenting, re-send the child's NOTE_EXIT to the
* original parent.
*/
proc_knote(child, knote_hint);
psignal(orig_parent, SIGCHLD);
proc_list_lock();
wakeup((caddr_t)orig_parent);
child->p_listflag &= ~P_LIST_WAITING;
wakeup(&child->p_stat);
proc_list_unlock();
proc_rele(orig_parent);
if ((flags & REAP_LOCKED) && !(flags & REAP_DROP_LOCK)) {
proc_list_lock();
}
return;
} else {
/*
* Satisfy the knote lifecycle because ptraced processes don't
* broadcast NOTE_EXIT during initial child termination.
*/
proc_knote(child, knote_hint);
proc_rele(orig_parent);
}
}
}
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdeprecated-declarations"
proc_knote(child, NOTE_REAP);
#pragma clang diagnostic pop
proc_knote_drain(child);
child->p_xstat = 0;
if (!shadow_proc && child->p_ru) {
/*
* Roll up the rusage statistics to the parent, unless the parent is
* ignoring SIGCHLD. POSIX requires the children's resources of such a
* parent to not be included in the parent's usage (seems odd given
* RLIMIT_CPU, though).
*/
proc_lock(parent);
bool rollup_child = (parent->p_flag & P_NOCLDWAIT) == 0;
if (rollup_child) {
ruadd(&parent->p_stats->p_cru, &child->p_ru->ru);
}
update_rusage_info_child(&parent->p_stats->ri_child, &child->p_ru->ri);
proc_unlock(parent);
zfree(zombie_zone, child->p_ru);
child->p_ru = NULL;
} else if (!shadow_proc) {
printf("Warning : lost p_ru for %s\n", child->p_comm);
} else {
assert(child->p_ru == NULL);
}
AUDIT_SESSION_PROCEXIT(child);
#if CONFIG_PERSONAS
persona_proc_drop(child);
#endif /* CONFIG_PERSONAS */
/* proc_ucred_unsafe is safe, because child is not running */
(void)chgproccnt(kauth_cred_getruid(proc_ucred_unsafe(child)), -1);
os_reason_free(child->p_exit_reason);
proc_list_lock();
pg = pgrp_leave_locked(child);
LIST_REMOVE(child, p_list);
parent->p_childrencnt--;
LIST_REMOVE(child, p_sibling);
bool no_more_children = (flags & REAP_DEAD_PARENT) &&
LIST_EMPTY(&parent->p_children);
if (no_more_children) {
wakeup((caddr_t)parent);
}
child->p_listflag &= ~P_LIST_WAITING;
wakeup(&child->p_stat);
/* Take it out of process hash */
if (!shadow_proc) {
phash_remove_locked(child);
}
proc_checkdeadrefs(child);
nprocs--;
if (flags & REAP_DEAD_PARENT) {
child->p_listflag |= P_LIST_DEADPARENT;
}
proc_list_unlock();
pgrp_rele(pg);
fdt_destroy(child);
lck_mtx_destroy(&child->p_mlock, &proc_mlock_grp);
lck_mtx_destroy(&child->p_ucred_mlock, &proc_ucred_mlock_grp);
#if CONFIG_AUDIT
lck_mtx_destroy(&child->p_audit_mlock, &proc_ucred_mlock_grp);
#endif /* CONFIG_AUDIT */
#if CONFIG_DTRACE
lck_mtx_destroy(&child->p_dtrace_sprlock, &proc_lck_grp);
#endif
lck_spin_destroy(&child->p_slock, &proc_slock_grp);
proc_wait_release(child);
if ((flags & REAP_LOCKED) && (flags & REAP_DROP_LOCK) == 0) {
proc_list_lock();
}
}
int
wait1continue(int result)
{
proc_t p;
thread_t thread;
uthread_t uth;
struct _wait4_data *wait4_data;
struct wait4_nocancel_args *uap;
int *retval;
if (result) {
return result;
}
p = current_proc();
thread = current_thread();
uth = (struct uthread *)get_bsdthread_info(thread);
wait4_data = &uth->uu_save.uus_wait4_data;
uap = wait4_data->args;
retval = wait4_data->retval;
return wait4_nocancel(p, uap, retval);
}
int
wait4(proc_t q, struct wait4_args *uap, int32_t *retval)
{
__pthread_testcancel(1);
return wait4_nocancel(q, (struct wait4_nocancel_args *)uap, retval);
}
int
wait4_nocancel(proc_t q, struct wait4_nocancel_args *uap, int32_t *retval)
{
int nfound;
int sibling_count;
proc_t p;
int status, error;
uthread_t uth;
struct _wait4_data *wait4_data;
AUDIT_ARG(pid, uap->pid);
if (uap->pid == 0) {
uap->pid = -q->p_pgrpid;
}
if (uap->pid == INT_MIN) {
return EINVAL;
}
loop:
proc_list_lock();
loop1:
nfound = 0;
sibling_count = 0;
PCHILDREN_FOREACH(q, p) {
if (p->p_sibling.le_next != 0) {
sibling_count++;
}
if (uap->pid != WAIT_ANY &&
proc_getpid(p) != uap->pid &&
p->p_pgrpid != -(uap->pid)) {
continue;
}
if (proc_is_shadow(p)) {
continue;
}
nfound++;
/* XXX This is racy because we don't get the lock!!!! */
if (p->p_listflag & P_LIST_WAITING) {
/* we're not using a continuation here but we still need to stash
* the args for stackshot. */
uth = current_uthread();
wait4_data = &uth->uu_save.uus_wait4_data;
wait4_data->args = uap;
thread_set_pending_block_hint(current_thread(), kThreadWaitOnProcess);
(void)msleep(&p->p_stat, &proc_list_mlock, PWAIT, "waitcoll", 0);
goto loop1;
}
p->p_listflag |= P_LIST_WAITING; /* only allow single thread to wait() */
if (p->p_stat == SZOMB) {
reap_flags_t reap_flags = (p->p_listflag & P_LIST_DEADPARENT) ?
REAP_REPARENTED_TO_INIT : 0;
proc_list_unlock();
#if CONFIG_MACF
if ((error = mac_proc_check_wait(q, p)) != 0) {
goto out;
}
#endif
retval[0] = proc_getpid(p);
if (uap->status) {
/* Legacy apps expect only 8 bits of status */
status = 0xffff & p->p_xstat; /* convert to int */
error = copyout((caddr_t)&status,
uap->status,
sizeof(status));
if (error) {
goto out;
}
}
if (uap->rusage) {
if (p->p_ru == NULL) {
error = ENOMEM;
} else {
if (IS_64BIT_PROCESS(q)) {
struct user64_rusage my_rusage = {};
munge_user64_rusage(&p->p_ru->ru, &my_rusage);
error = copyout((caddr_t)&my_rusage,
uap->rusage,
sizeof(my_rusage));
} else {
struct user32_rusage my_rusage = {};
munge_user32_rusage(&p->p_ru->ru, &my_rusage);
error = copyout((caddr_t)&my_rusage,
uap->rusage,
sizeof(my_rusage));
}
}
/* information unavailable? */
if (error) {
goto out;
}
}
/* Conformance change for 6577252.
* When SIGCHLD is blocked and wait() returns because the status
* of a child process is available and there are no other
* children processes, then any pending SIGCHLD signal is cleared.
*/
if (sibling_count == 0) {
int mask = sigmask(SIGCHLD);
uth = current_uthread();
if ((uth->uu_sigmask & mask) != 0) {
/* we are blocking SIGCHLD signals. clear any pending SIGCHLD.
* This locking looks funny but it is protecting access to the
* thread via p_uthlist.
*/
proc_lock(q);
uth->uu_siglist &= ~mask; /* clear pending signal */
proc_unlock(q);
}
}
/* Clean up */
(void)reap_child_locked(q, p, reap_flags);
return 0;
}
if (p->p_stat == SSTOP && (p->p_lflag & P_LWAITED) == 0 &&
(p->p_lflag & P_LTRACED || uap->options & WUNTRACED)) {
proc_list_unlock();
#if CONFIG_MACF
if ((error = mac_proc_check_wait(q, p)) != 0) {
goto out;
}
#endif
proc_lock(p);
p->p_lflag |= P_LWAITED;
proc_unlock(p);
retval[0] = proc_getpid(p);
if (uap->status) {
status = W_STOPCODE(p->p_xstat);
error = copyout((caddr_t)&status,
uap->status,
sizeof(status));
} else {
error = 0;
}
goto out;
}
/*
* If we are waiting for continued processses, and this
* process was continued
*/
if ((uap->options & WCONTINUED) &&
(p->p_flag & P_CONTINUED)) {
proc_list_unlock();
#if CONFIG_MACF
if ((error = mac_proc_check_wait(q, p)) != 0) {
goto out;
}
#endif
/* Prevent other process for waiting for this event */
OSBitAndAtomic(~((uint32_t)P_CONTINUED), &p->p_flag);
retval[0] = proc_getpid(p);
if (uap->status) {
status = W_STOPCODE(SIGCONT);
error = copyout((caddr_t)&status,
uap->status,
sizeof(status));
} else {
error = 0;
}
goto out;
}
p->p_listflag &= ~P_LIST_WAITING;
wakeup(&p->p_stat);
}
/* list lock is held when we get here any which way */
if (nfound == 0) {
proc_list_unlock();
return ECHILD;
}
if (uap->options & WNOHANG) {
retval[0] = 0;
proc_list_unlock();
return 0;
}
/* Save arguments for continuation. Backing storage is in uthread->uu_arg, and will not be deallocated */
uth = current_uthread();
wait4_data = &uth->uu_save.uus_wait4_data;
wait4_data->args = uap;
wait4_data->retval = retval;
thread_set_pending_block_hint(current_thread(), kThreadWaitOnProcess);
if ((error = msleep0((caddr_t)q, &proc_list_mlock, PWAIT | PCATCH | PDROP, "wait", 0, wait1continue))) {
return error;
}
goto loop;
out:
proc_list_lock();
p->p_listflag &= ~P_LIST_WAITING;
wakeup(&p->p_stat);
proc_list_unlock();
return error;
}
#if DEBUG
#define ASSERT_LCK_MTX_OWNED(lock) \
lck_mtx_assert(lock, LCK_MTX_ASSERT_OWNED)
#else
#define ASSERT_LCK_MTX_OWNED(lock) /* nothing */
#endif
int
waitidcontinue(int result)
{
proc_t p;
thread_t thread;
uthread_t uth;
struct _waitid_data *waitid_data;
struct waitid_nocancel_args *uap;
int *retval;
if (result) {
return result;
}
p = current_proc();
thread = current_thread();
uth = (struct uthread *)get_bsdthread_info(thread);
waitid_data = &uth->uu_save.uus_waitid_data;
uap = waitid_data->args;
retval = waitid_data->retval;
return waitid_nocancel(p, uap, retval);
}
/*
* Description: Suspend the calling thread until one child of the process
* containing the calling thread changes state.
*
* Parameters: uap->idtype one of P_PID, P_PGID, P_ALL
* uap->id pid_t or gid_t or ignored
* uap->infop Address of siginfo_t struct in
* user space into which to return status
* uap->options flag values
*
* Returns: 0 Success
* !0 Error returning status to user space
*/
int
waitid(proc_t q, struct waitid_args *uap, int32_t *retval)
{
__pthread_testcancel(1);
return waitid_nocancel(q, (struct waitid_nocancel_args *)uap, retval);
}
int
waitid_nocancel(proc_t q, struct waitid_nocancel_args *uap,
__unused int32_t *retval)
{
user_siginfo_t siginfo; /* siginfo data to return to caller */
boolean_t caller64 = IS_64BIT_PROCESS(q);
int nfound;
proc_t p;
int error;
uthread_t uth;
struct _waitid_data *waitid_data;
if (uap->options == 0 ||
(uap->options & ~(WNOHANG | WNOWAIT | WCONTINUED | WSTOPPED | WEXITED))) {
return EINVAL; /* bits set that aren't recognized */
}
switch (uap->idtype) {
case P_PID: /* child with process ID equal to... */
case P_PGID: /* child with process group ID equal to... */
if (((int)uap->id) < 0) {
return EINVAL;
}
break;
case P_ALL: /* any child */
break;
}
loop:
proc_list_lock();
loop1:
nfound = 0;
PCHILDREN_FOREACH(q, p) {
switch (uap->idtype) {
case P_PID: /* child with process ID equal to... */
if (proc_getpid(p) != (pid_t)uap->id) {
continue;
}
break;
case P_PGID: /* child with process group ID equal to... */
if (p->p_pgrpid != (pid_t)uap->id) {
continue;
}
break;
case P_ALL: /* any child */
break;
}
if (proc_is_shadow(p)) {
continue;
}
/* XXX This is racy because we don't get the lock!!!! */
/*
* Wait collision; go to sleep and restart; used to maintain
* the single return for waited process guarantee.
*/
if (p->p_listflag & P_LIST_WAITING) {
(void) msleep(&p->p_stat, &proc_list_mlock,
PWAIT, "waitidcoll", 0);
goto loop1;
}
p->p_listflag |= P_LIST_WAITING; /* mark busy */
nfound++;
bzero(&siginfo, sizeof(siginfo));
switch (p->p_stat) {
case SZOMB: /* Exited */
if (!(uap->options & WEXITED)) {
break;
}
proc_list_unlock();
#if CONFIG_MACF
if ((error = mac_proc_check_wait(q, p)) != 0) {
goto out;
}
#endif
siginfo.si_signo = SIGCHLD;
siginfo.si_pid = proc_getpid(p);
/* If the child terminated abnormally due to a signal, the signum
* needs to be preserved in the exit status.
*/
if (WIFSIGNALED(p->p_xstat)) {
siginfo.si_code = WCOREDUMP(p->p_xstat) ?
CLD_DUMPED : CLD_KILLED;
siginfo.si_status = WTERMSIG(p->p_xstat);
} else {
siginfo.si_code = CLD_EXITED;
siginfo.si_status = WEXITSTATUS(p->p_xstat) & 0x00FFFFFF;
}
siginfo.si_status |= (((uint32_t)(p->p_xhighbits) << 24) & 0xFF000000);
p->p_xhighbits = 0;
if ((error = copyoutsiginfo(&siginfo,
caller64, uap->infop)) != 0) {
goto out;
}
/* Prevent other process for waiting for this event? */
if (!(uap->options & WNOWAIT)) {
reap_child_locked(q, p, 0);
return 0;
}
goto out;
case SSTOP: /* Stopped */
/*
* If we are not interested in stopped processes, then
* ignore this one.
*/
if (!(uap->options & WSTOPPED)) {
break;
}
/*
* If someone has already waited it, we lost a race
* to be the one to return status.
*/
if ((p->p_lflag & P_LWAITED) != 0) {
break;
}
proc_list_unlock();
#if CONFIG_MACF
if ((error = mac_proc_check_wait(q, p)) != 0) {
goto out;
}
#endif
siginfo.si_signo = SIGCHLD;
siginfo.si_pid = proc_getpid(p);
siginfo.si_status = p->p_xstat; /* signal number */
siginfo.si_code = CLD_STOPPED;
if ((error = copyoutsiginfo(&siginfo,
caller64, uap->infop)) != 0) {
goto out;
}
/* Prevent other process for waiting for this event? */
if (!(uap->options & WNOWAIT)) {
proc_lock(p);
p->p_lflag |= P_LWAITED;
proc_unlock(p);
}
goto out;
default: /* All other states => Continued */
if (!(uap->options & WCONTINUED)) {
break;
}
/*
* If the flag isn't set, then this process has not
* been stopped and continued, or the status has
* already been reaped by another caller of waitid().
*/
if ((p->p_flag & P_CONTINUED) == 0) {
break;
}
proc_list_unlock();
#if CONFIG_MACF
if ((error = mac_proc_check_wait(q, p)) != 0) {
goto out;
}
#endif
siginfo.si_signo = SIGCHLD;
siginfo.si_code = CLD_CONTINUED;
proc_lock(p);
siginfo.si_pid = p->p_contproc;
siginfo.si_status = p->p_xstat;
proc_unlock(p);
if ((error = copyoutsiginfo(&siginfo,
caller64, uap->infop)) != 0) {
goto out;
}
/* Prevent other process for waiting for this event? */
if (!(uap->options & WNOWAIT)) {
OSBitAndAtomic(~((uint32_t)P_CONTINUED),
&p->p_flag);
}
goto out;
}
ASSERT_LCK_MTX_OWNED(&proc_list_mlock);
/* Not a process we are interested in; go on to next child */
p->p_listflag &= ~P_LIST_WAITING;
wakeup(&p->p_stat);
}
ASSERT_LCK_MTX_OWNED(&proc_list_mlock);
/* No child processes that could possibly satisfy the request? */
if (nfound == 0) {
proc_list_unlock();
return ECHILD;
}
if (uap->options & WNOHANG) {
proc_list_unlock();
#if CONFIG_MACF
if ((error = mac_proc_check_wait(q, p)) != 0) {
return error;
}
#endif
/*
* The state of the siginfo structure in this case
* is undefined. Some implementations bzero it, some
* (like here) leave it untouched for efficiency.
*
* Thus the most portable check for "no matching pid with
* WNOHANG" is to store a zero into si_pid before
* invocation, then check for a non-zero value afterwards.
*/
return 0;
}
/* Save arguments for continuation. Backing storage is in uthread->uu_arg, and will not be deallocated */
uth = current_uthread();
waitid_data = &uth->uu_save.uus_waitid_data;
waitid_data->args = uap;
waitid_data->retval = retval;
if ((error = msleep0(q, &proc_list_mlock,
PWAIT | PCATCH | PDROP, "waitid", 0, waitidcontinue)) != 0) {
return error;
}
goto loop;
out:
proc_list_lock();
p->p_listflag &= ~P_LIST_WAITING;
wakeup(&p->p_stat);
proc_list_unlock();
return error;
}
/*
* make process 'parent' the new parent of process 'child'.
*/
void
proc_reparentlocked(proc_t child, proc_t parent, int signallable, int locked)
{
proc_t oldparent = PROC_NULL;
if (child->p_pptr == parent) {
return;
}
if (locked == 0) {
proc_list_lock();
}
oldparent = child->p_pptr;
#if __PROC_INTERNAL_DEBUG
if (oldparent == PROC_NULL) {
panic("proc_reparent: process %p does not have a parent", child);
}
#endif
LIST_REMOVE(child, p_sibling);
#if __PROC_INTERNAL_DEBUG
if (oldparent->p_childrencnt == 0) {
panic("process children count already 0");
}
#endif
oldparent->p_childrencnt--;
#if __PROC_INTERNAL_DEBUG
if (oldparent->p_childrencnt < 0) {
panic("process children count -ve");
}
#endif
LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
parent->p_childrencnt++;
child->p_pptr = parent;
child->p_ppid = proc_getpid(parent);
proc_list_unlock();
if ((signallable != 0) && (initproc == parent) && (child->p_stat == SZOMB)) {
psignal(initproc, SIGCHLD);
}
if (locked == 1) {
proc_list_lock();
}
}
/*
* Exit: deallocate address space and other resources, change proc state
* to zombie, and unlink proc from allproc and parent's lists. Save exit
* status and rusage for wait(). Check for child processes and orphan them.
*/
/*
* munge_rusage
* LP64 support - long is 64 bits if we are dealing with a 64 bit user
* process. We munge the kernel version of rusage into the
* 64 bit version.
*/
__private_extern__ void
munge_user64_rusage(struct rusage *a_rusage_p, struct user64_rusage *a_user_rusage_p)
{
/* Zero-out struct so that padding is cleared */
bzero(a_user_rusage_p, sizeof(struct user64_rusage));
/* timeval changes size, so utime and stime need special handling */
a_user_rusage_p->ru_utime.tv_sec = a_rusage_p->ru_utime.tv_sec;
a_user_rusage_p->ru_utime.tv_usec = a_rusage_p->ru_utime.tv_usec;
a_user_rusage_p->ru_stime.tv_sec = a_rusage_p->ru_stime.tv_sec;
a_user_rusage_p->ru_stime.tv_usec = a_rusage_p->ru_stime.tv_usec;
/*
* everything else can be a direct assign, since there is no loss
* of precision implied boing 32->64.
*/
a_user_rusage_p->ru_maxrss = a_rusage_p->ru_maxrss;
a_user_rusage_p->ru_ixrss = a_rusage_p->ru_ixrss;
a_user_rusage_p->ru_idrss = a_rusage_p->ru_idrss;
a_user_rusage_p->ru_isrss = a_rusage_p->ru_isrss;
a_user_rusage_p->ru_minflt = a_rusage_p->ru_minflt;
a_user_rusage_p->ru_majflt = a_rusage_p->ru_majflt;
a_user_rusage_p->ru_nswap = a_rusage_p->ru_nswap;
a_user_rusage_p->ru_inblock = a_rusage_p->ru_inblock;
a_user_rusage_p->ru_oublock = a_rusage_p->ru_oublock;
a_user_rusage_p->ru_msgsnd = a_rusage_p->ru_msgsnd;
a_user_rusage_p->ru_msgrcv = a_rusage_p->ru_msgrcv;
a_user_rusage_p->ru_nsignals = a_rusage_p->ru_nsignals;
a_user_rusage_p->ru_nvcsw = a_rusage_p->ru_nvcsw;
a_user_rusage_p->ru_nivcsw = a_rusage_p->ru_nivcsw;
}
/* For a 64-bit kernel and 32-bit userspace, munging may be needed */
__private_extern__ void
munge_user32_rusage(struct rusage *a_rusage_p, struct user32_rusage *a_user_rusage_p)
{
bzero(a_user_rusage_p, sizeof(struct user32_rusage));
/* timeval changes size, so utime and stime need special handling */
a_user_rusage_p->ru_utime.tv_sec = (user32_time_t)a_rusage_p->ru_utime.tv_sec;
a_user_rusage_p->ru_utime.tv_usec = a_rusage_p->ru_utime.tv_usec;
a_user_rusage_p->ru_stime.tv_sec = (user32_time_t)a_rusage_p->ru_stime.tv_sec;
a_user_rusage_p->ru_stime.tv_usec = a_rusage_p->ru_stime.tv_usec;
/*
* everything else can be a direct assign. We currently ignore
* the loss of precision
*/
a_user_rusage_p->ru_maxrss = (user32_long_t)a_rusage_p->ru_maxrss;
a_user_rusage_p->ru_ixrss = (user32_long_t)a_rusage_p->ru_ixrss;
a_user_rusage_p->ru_idrss = (user32_long_t)a_rusage_p->ru_idrss;
a_user_rusage_p->ru_isrss = (user32_long_t)a_rusage_p->ru_isrss;
a_user_rusage_p->ru_minflt = (user32_long_t)a_rusage_p->ru_minflt;
a_user_rusage_p->ru_majflt = (user32_long_t)a_rusage_p->ru_majflt;
a_user_rusage_p->ru_nswap = (user32_long_t)a_rusage_p->ru_nswap;
a_user_rusage_p->ru_inblock = (user32_long_t)a_rusage_p->ru_inblock;
a_user_rusage_p->ru_oublock = (user32_long_t)a_rusage_p->ru_oublock;
a_user_rusage_p->ru_msgsnd = (user32_long_t)a_rusage_p->ru_msgsnd;
a_user_rusage_p->ru_msgrcv = (user32_long_t)a_rusage_p->ru_msgrcv;
a_user_rusage_p->ru_nsignals = (user32_long_t)a_rusage_p->ru_nsignals;
a_user_rusage_p->ru_nvcsw = (user32_long_t)a_rusage_p->ru_nvcsw;
a_user_rusage_p->ru_nivcsw = (user32_long_t)a_rusage_p->ru_nivcsw;
}
void
kdp_wait4_find_process(thread_t thread, __unused event64_t wait_event, thread_waitinfo_t *waitinfo)
{
assert(thread != NULL);
assert(waitinfo != NULL);
struct uthread *ut = get_bsdthread_info(thread);
waitinfo->context = 0;
// ensure wmesg is consistent with a thread waiting in wait4
assert(!strcmp(ut->uu_wmesg, "waitcoll") || !strcmp(ut->uu_wmesg, "wait"));
struct wait4_nocancel_args *args = ut->uu_save.uus_wait4_data.args;
// May not actually contain a pid; this is just the argument to wait4.
// See man wait4 for other valid wait4 arguments.
waitinfo->owner = args->pid;
}
int
exit_with_guard_exception(
proc_t p,
mach_exception_data_type_t code,
mach_exception_data_type_t subcode)
{
os_reason_t reason = os_reason_create(OS_REASON_GUARD, (uint64_t)code);
assert(reason != OS_REASON_NULL);
return exit_with_mach_exception(p, reason, EXC_GUARD, code, subcode);
}
#if __has_feature(ptrauth_calls)
int
exit_with_pac_exception(proc_t p, exception_type_t exception, mach_exception_code_t code,
mach_exception_subcode_t subcode)
{
os_reason_t reason = os_reason_create(OS_REASON_PAC_EXCEPTION, (uint64_t)code);
assert(reason != OS_REASON_NULL);
return exit_with_mach_exception(p, reason, exception, code, subcode);
}
#endif /* __has_feature(ptrauth_calls) */
int
exit_with_port_space_exception(proc_t p, mach_exception_data_type_t code,
mach_exception_data_type_t subcode)
{
os_reason_t reason = os_reason_create(OS_REASON_PORT_SPACE, (uint64_t)code);
assert(reason != OS_REASON_NULL);
return exit_with_mach_exception(p, reason, EXC_RESOURCE, code, subcode);
}
static int
exit_with_mach_exception(proc_t p, os_reason_t reason, exception_type_t exception, mach_exception_code_t code,
mach_exception_subcode_t subcode)
{
thread_t self = current_thread();
struct uthread *ut = get_bsdthread_info(self);
ut->uu_exception = exception;
ut->uu_code = code;
ut->uu_subcode = subcode;
reason->osr_flags |= OS_REASON_FLAG_GENERATE_CRASH_REPORT;
return exit_with_reason(p, W_EXITCODE(0, SIGKILL), NULL,
TRUE, FALSE, 0, reason);
}
#if CONFIG_EXCLAVES
int
exit_with_exclave_exception(proc_t p)
{
/* Using OS_REASON_GUARD for now */
os_reason_t reason = os_reason_create(OS_REASON_GUARD, (uint64_t)GUARD_REASON_EXCLAVES);
assert(reason != OS_REASON_NULL);
reason->osr_flags |= OS_REASON_FLAG_GENERATE_CRASH_REPORT;
return exit_with_reason(p, W_EXITCODE(0, SIGKILL), (int *)NULL, TRUE, FALSE,
0, reason);
}
#endif /* CONFIG_EXCLAVES */
int
exit_with_jit_exception(proc_t p)
{
os_reason_t reason = os_reason_create(OS_REASON_GUARD, (uint64_t)GUARD_REASON_JIT);
assert(reason != OS_REASON_NULL);
reason->osr_flags |= OS_REASON_FLAG_GENERATE_CRASH_REPORT;
return exit_with_reason(p, W_EXITCODE(0, SIGKILL), (int *)NULL, TRUE, FALSE,
0, reason);
}